1. Prove item (3) of Lemma 19.1 (there are exactly \(\binom{k}{i} \) nodes at depth \(i \) at \(B_k \)).

3. Question 20.2-1 from CLRS.

4. Question 20.2-4 from CLRS.

5. Question 20.2-5 from CLRS.

6. Question 20.4-1 from CLRS.

7. (This question has more than one solution, and basically the question’s purpose is to trigger you to seek nice solutions.

Let \(P \) be an \(m \times m \) boolean matrix, and \(T \) be an \(n \times n \) boolean matrix, where \(m \) is much smaller than \(n \). Each element in these matrices is either 0 or 1. Suggest an algorithm that checks if there are values \(s_1, s_2 \) such that

\[
P[i_1, i_2] = T[i_1 + s_1, i_2 + s_2],
\]

for every pair of integers \(i_1, i_2 \) such that \(1 \leq i_1 \leq m \) and \(1 \leq i_2 \leq m \).

8. Given points \(p, q, r \), the triangle determined by \(pqr \) is the triangle whose vertices are \(p, q, r \). The perimeter of this triangle is the sum of lengths of its edges.

Let \(S \) be a set of \(n \) points in the plane. Suggest an algorithm whose **expected** running time is \(O(n) \), and finds the triangle determined by 3 points of \(S \), and its perimeter is no larger than the perimeter of any triangle determined by triple of points of \(S \). What is the worst case running time of this algorithm?