Dynamic Programming

Slides courtesy of Charles Leiserson with small changes by Carola Wenk

Dynamic programming

Example 1: Longest Common Subsequence (LCS)

- Given two sequences $x[1..m]$ and $y[1..n]$, find a longest subsequence common to them both.
- "x" not "the"

x: A B C B D A B

y: B D C A B A

BCBA = LCS(x, y)

Different phrasing: Find a set of a maximum number of segments, such that
- Each segment connects a character of x to an identical character of y.
- Each character is used at most once.
- Segments do not intersect.

Brute-force LCS algorithm

Check every subsequence of $x[1..m]$ to see if it is also a subsequence of $y[1..n]$.

Analysis

- Checking = $\Theta(m+n)$ time per subsequence.
- 2^m subsequences of x (each bit-vector of length m determines a distinct subsequence of x).
- Worst-case running time = $\Theta((m+n)2^m)$ = exponential time.

Towards a better algorithm

Simplification:

1. Look at the length of a longest-common subsequence.
2. Extend the algorithm to find the LCS itself.

Notation: Denote the length of a sequence s by $|s|$.

Strategy: Consider prefixes of x and y.
- Define $c[i, j] = |LCS(x[1..i], y[1..j])|$.
- Then, $c[m, n] = |LCS(x, y)|$.

Recursive formulation

Theorem.

$$c[i, j] = \begin{cases} c[i-1, j-1] + 1 & \text{if } x[i] = y[j], \\ \max\{c[i-1, j], c[i, j-1]\} & \text{otherwise.} \end{cases}$$

Proof: First Note that it is impossible that $x[i]$ is matched to an element in $y[1..j-1]$ and in addition $y[j]$ is matched to an element in $x[1..i-1]$.

Proof:

We claim that there is a max matching that matches $x[i]$ to $y[j]$.

Indeed, if $x[i]$ is matched to $y[k]$ (for $k < j$) then $y[j]$ is unmatched (otherwise we have two crossing segments). Hence we can obtain another matching of the same cardinality by match $x[i]$ to $y[j]$.

This implies that we can match $x[i+1..j]$ to $y[i+1..j]$ and add the match $(x[i], y[j])$. So $c[i, j] = c[i-1, j-1] + 1$.
Recursive formulation-cont

Case (II): \(x[i] \neq y[j] \)

Claim: \(\forall i, j \geq 0 \), \(c[i, j] = \max\{ c[i-1, j], c[i, j-1] \} \)

Recall - in \(\text{LCS}(x[1..i], y[1..j]) \) it cannot be that both \(x[i] \) and \(y[j] \) are both matched.

Optimal substructure

An optimal solution to a problem (instance) contains optimal solutions to subproblems.

Dynamic-programming hallmark #1

If \(z = \text{LCS}(x, y) \), then any prefix of \(z \) is an LCS of a prefix of \(x \) and a prefix of \(y \).

Dynamic-programming hallmark #2

Overlapping subproblems

A recursive solution contains a “small” number of distinct subproblems repeated many times.

The number of distinct LCS subproblems for two strings of lengths \(m \) and \(n \) is only \(mn \).

Recursive algorithm for LCS

\[
\text{LCS}(x, y, i, j) = \\
\begin{cases}
0 & \text{if } (i=0 \text{ or } j=0) \\
\text{LCS}(x, y, i-1, j-1) + 1 & \text{if } x[i] = y[j] \\
\max\{ \text{LCS}(x, y, i-1, j), \text{LCS}(x, y, i, j-1) \} & \text{otherwise}
\end{cases}
\]

To call the function \(\text{LCS}(x, y, m, n) \)

Worst-case: \(x[i] \neq y[j] \) for all \(i, j \) in which case the algorithm evaluates two subproblems, each with only one parameter decremented.

Memoization algorithm

Memoization: After computing a solution to a subproblem, store it in a table. Subsequent calls check the table to avoid redoing work.

\[
\begin{align*}
\text{LCS}(x, y) & = \\
\text{for } i=0 \text{ to } m & \quad c[i, 0] = 0 \\
\text{for } j=0 \text{ to } n & \quad c[0, j] = 0 \\
\text{for } i=1 \text{ to } m & \\
\text{for } j=1 \text{ to } n & \\
\text{if } (x[i] = y[j]) & \quad \text{then } c[i, j] \leftarrow c[i-1, j-1] + 1 \\
\text{else } & \quad c[i, j] \leftarrow \max\{ c[i-1, j], c[i, j-1] \}
\end{align*}
\]

Time = \(\Theta(mn) \) = constant work per table entry.
Space = \(\Theta(mn) \).
LCS: Dynamic-programming algorithm

LCS(X,Y)=“BCBA”

```
<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>B</th>
<th>D</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>X=B</td>
<td>D</td>
<td>C</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y=A</td>
<td>B</td>
<td>C</td>
<td>B</td>
<td>D</td>
<td>A</td>
<td>B</td>
<td></td>
</tr>
</tbody>
</table>
```

Reconstruction z=LCS(x,y)

IDEA: Compute the table bottom-up. Fill up backward.

Observation: \(c[i][j]<c[i+1][j] \) and \(c[i][j]<c[i][j+1] \)

Proof Sketch: Use a longer prefix, so there are more chars to be matched.

LCS Reconstruction:
Set \(i=m; j=n; k=c[i][j] \)

While(\(i>0 \))

1. if \(c[i][j]<c[i-1][j] \) and \(c[i][j]<c[i][j+1] \) \{ \(\text{if } k=i; j--; k--; \)
2. else \(\text{if } c[i][j]<c[i+1][j] \) or \(c[i][j]<c[i][j+1] \) \{ \(\text{if } k=i+1; j--; \)
3. else \(k--; \)

Example 2

of dynamic programming:

Matrix Chain-Products

- Review: Matrix Multiplication.
 - \(C = AB \)
 - \(A \) is \(d \times e \), \(B \) is \(e \times f \)

- \(O(d^3) \) time

\[
C[i, j] = \sum_{k=0}^{e-1} A[i, k] \cdot B[k, j]
\]

An Enumeration Approach

- Matrix Chain-Product Alg.:
 - Try all possible ways to parenthesize \(A_0 A_1 \ldots A_{n+1} \)
 - Calculate number of ops for each one
 - Pick the one that is best

- Running time:
 - \# of parenthesizations = \# of binary trees with \(n \) nodes
 - Exponential!
 - Called the \(n \)th Catalan number – it is almost \(4^n \)
 - This is a terrible algorithm!
A Greedy Approach

Repeatedly select the product that uses the fewest operations.

Counter-example:
- A is 101 \times 11
- B is 11 \times 9
- C is 9 \times 100
- D is 100 \times 99
- Idea selects \(A(BCD) \)
- Best is \((AB)(CD) \)

A “Recursive” Approach

- Define subproblems:
 - Find the best parenthesization of \(A_i A_{i+1} \ldots A_j \)
 - Let \(N_{ij} \) = # of operations done by this subproblem.
 - The optimal solution for the whole problem is \(N_{0n-1} \).
- Subproblem optimality: Assume the last multiplication taken place is multiplying \((A_{i-1} \ldots A_j) \).
 - Then the optimal solution \(N_{i-1,j} \) is the sum of two optimal subproblems, \(N_{i-1,k} + N_{k+1,j} \) plus the time for the last multiply.
 - If the global optimum did not have these optimal subproblems, we could define an even better “optimal” solution.

A Characterizing Equation

- Again assume the last multiplication is \((A_i \ldots A_j) \).
 - That is, we break at index \(i \).
- Consider all possible places for that final multiply (possible values of \(0 \leq i \leq n-1 \)). That is...
 - \((A_0 (A_1 A_2 \ldots A_{i-1}) \ldots A_{i+1} \ldots A_j) \)
 - \((A_0 (A_1 A_2 \ldots A_{i-1}) \ldots A_{i-2} A_{i-1} A_j) \) etc till
 - \((A_0 A_{i-1} \ldots A_{i-1} A_{i+1} \ldots A_j) \).
- Recall that \(A_i \) is a \(d_i \times d_{i+1} \) dimensional matrix.
 - So, a characterizing equation for \(N_{ij} \) is the following:
 \[
 N_{ij} = \min_{0 \leq k < j} \{ N_{ik} + N_{k+1,j} + d_id_kd_{j+1} \}
 \]
 - i.e, break \((A_i \ldots A_j) \) into \((A_i \ldots A_k) (A_{k+1} \ldots A_j) \).

A Dynamic Programming Algorithm

Since subproblems overlap, we don’t use recursion. Instead, we construct optimal subproblems “bottom-up.”

\[
N_{ij} \text{'s are easy, so start with them}
\]

Then do length 2,3,... subproblems, and so on.

Running time: \(O(n^3) \)

Algorithm matrixChain(S):

- Input: sequence \(S \) of \(n \) matrices to be multiplied
- Output: \# of multiplications in optimal parenthesization of \(S \)

For \(i \) from 0 to \(n-1 \) do
 \(N_{ii} \leftarrow 0 \)
For \(b \) from 0 to \(n-1 \) do
 \(N_{ij} \leftarrow \infty \)
 //length of a run
 For \(i \) from 0 to \(n-b-1 \) do
 //start of run
 \(j \leftarrow i+b \)
 //end of run
 \(N_{ij} \leftarrow \min(N_{ij} , N_{i,l} + N_{l+1,j} + d_id_ld_{j+1}) \)
For \(k \) from \(i \) to \(j \) do //break point
 \(N_{ij} \leftarrow \min(N_{ij} , N_{ik} + N_{k+1,j} + d_id_kd_{j+1}) \)

Matrix Chain algorithm

How do we find the actual order of operations?

Example: ABCD

<table>
<thead>
<tr>
<th>A</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

For \(i \) from 0 to \(n-1 \) do
 \(N_{ii} \leftarrow 0 \)
For \(b \) from 0 to \(n-1 \) do
 \(N_{ij} \leftarrow \infty \)
 //length of a run
 For \(i \) from 0 to \(n-b-1 \) do
 //start of run
 \(j \leftarrow i+b \)
 //end of run
 \(N_{ij} \leftarrow \min(N_{ij} , N_{i,l} + N_{l+1,j} + d_id_ld_{j+1}) \)
For \(k \) from \(i \) to \(j \) do //break point
 \(N_{ij} \leftarrow \min(N_{ij} , N_{ik} + N_{k+1,j} + d_id_kd_{j+1}) \)

Return \(N_{0n-1} \)
Recovering Operations

- **Example:** ABCD
 - A is 10 × 5
 - B is 5 × 10
 - C is 10 × 5
 - D is 5 × 10

<table>
<thead>
<tr>
<th>N</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>50 0</td>
<td>50 0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>50 0</td>
<td>50 0</td>
<td>50 0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>50 0</td>
<td>50 0</td>
<td>50 0</td>
<td></td>
</tr>
</tbody>
</table>

- Example 3: All-Pairs Shortest Paths
 - Floyd-Warshall alg
 - Given a graph \(G(V,E) \) with weights (positive and negative) assign to each edge. Assume \(\forall (v_i, v_j) \).
 - Compute a matrix \(D \) such that \(D[i,j] \) contains the length of the shortest path from \(v_i \) to \(v_j \).
 - Define \(P_{i,j}^{(0)} \) as the shortest path \(v_i \rightarrow v_j \) that does not go through any of the vertices \(\{v_i, v_j\} \). (that is, it is allowed to go through any of \(\{v_i, v_j\} \).
 - \(D[i,j] \) – the length of \(P_{i,j}^{(0)} \).
 - We compute \(D_0 \) first, then \(D_1 \) etc.

This example appears in the shortest paths' chapter of CLRS (25.2).

The General Dynamic Programming Technique

- Applies to a problem that at first seems to require a lot of time (often exponential), provided we have:
 - **Simple subproblems:** the subproblems can be defined in terms of a few variables, such as \(j, k, l, m \), and so on.
 - **Subproblem optimality:** the global optimum value can be defined in terms of optimal subproblems

Floyd-Warshall-Pairs Shortest Paths

Computing \(D[i,j] \) for every \(i,j,k \).

Algorithm AllPair \((G) \) for all vertex pairs \((i,j) \)

if \(i = j \) then \(D[i,j] \leftarrow 0 \)
else if \((v_i, v_j) \) is an edge in \(G \)
 \(D[i,j] \leftarrow w(v_i, v_j) \)
else \(D[i,j] \leftarrow \infty \)

for \(k \leftarrow 1 \) to \(n \) do
 for \(i \leftarrow 1 \) to \(n \) do
 for \(j \leftarrow 1 \) to \(n \) do
 \(D[i,j] \leftarrow \min\{ D[i,j], D[i,k] + D[k,j] \} \)
 return \(D_0 \)

Floyd’s algorithm: example

![Floyd’s algorithm example](image-url)
Example 4: Edit distance

Given strings x,y, the edit distance $ed(x,y)$ between x and y is defined as the minimum number of operations that we need to perform on x, in order to obtain y.

Definition: An operation (in this context) is any of the following:
- Insertion/Deletion/Replacement of a single character.

Examples:
- $ed("aaba", "aaba") = 0$
- $ed("aaas", "aba") = 1$
- $ed("baas", "asab") = 2$

Example 4’: "Priced" Edit distance $ed(x,y)$

Assume also given:
- $InsCost$, the cost of a single insertion into x.
- $DelCost$, the cost of a single deletion from x.
- $RepCost$, the cost of replacing one character of x by a different character.

Definition: Given strings x,y, the edit distance $ed(x,y)$ between x and y is the cheapest sequence of operations, starting on x and ending at y.

Problem: Compute $ed(x,y)$, and compute the sequence of operations.

Theorem:

Let $c(i,j) = ed(x[1..i], y[1..j])$ then

If $x[i]=y[j]$ then $c(i,j) = c(i-1,j-1)$

If $x[i]≠y[j]$ then $c(i,j) = \min\{c(i-1,j) + InsCost, c(i,j-1) + DelCost, c(i-1,j-1) + RepCost\}$

Algorithm

Memoization: After computing a solution to a subproblem, store it in a table. Subsequent calls check the table to avoid redoing work.

```plaintext
ed(x, y)
for i=0 to m    c[i, 0] = 0
for j=0 to n    c[0, j] = 0
for i=1 to m    for j=1 to n
    if x[i] == y[j]
        then c[i, j] <- c[i-1, j-1]
    else if x[i] < y[j]
        then c[i, j] <- c[i-1, j] + InsCost
    else if y[j] < x[i]
        then c[i, j] <- c[i, j-1] + DelCost
    else c[i, j] <- c[i-1, j-1] + RepCost

Time = $Θ(mn)$ = constant work per table entry. Space = $Θ(mn)$.
```