Two Easy Applications of Amortized Analysis:

1. Making Static Data Structures semi-dynamic
2. Dynamic Hash Tables

These slides are based on slides by Charles Leiserson and Carola Wenk

Voronoi Diagram – cont.

The Voronoi Diagram $VD(S)$ is the subdivision of the plane so that two point lie in the same region of $VD(S)$ if their nearest site is the same.

Example: $S = \{s_1, \ldots, s_7\}$ set of sites.

Point p and q lie in the same cell since the nearest site for both points is the site s_1.

Making Static structure Dynamic (problem 17-2 in the text)

Last meeting we introduced the Voronoi Diagram.

Given: A set $S = \{s_1, \ldots, s_n\}$ of points (sites) in 2D.

The Voronoi Diagram $VD(S)$ is the plane – partition of the plane into “cell” or “regions”.

History

Informal use of Voronoi diagrams can be traced back to Descartes in 1644.

Dirichlet used 2-dimensional and 3-dimensional Voronoi diagrams in his study of quadratic forms in 1850.

British physician John Snow used a Voronoi diagram in 1854 to illustrate how the majority of people who died in the Soho cholera epidemic lived closer to the infected Broad Street pump than to any other water pump.

Voronoi diagrams are named after Russian mathematician Georgy Fedoseevich Voronoi.

Using $VD(S)$ – some facts

Let $n=|S|$.

$VD(S)$ can be constructed in $O(n \log n)$.

Moreover, we can create in time $O(n \log n)$ a “point location data structure” so that once a query point q is given, we can find the nearest site to q in time $O(\log n)$.

By abusing notation, in this context, we call $VD(S)$ to the whole structure.

This structure is static – we cannot add sites.

Static Dynamic and Semi-Dynamic

Consider a data structure D constructed on some input.

Def: D is static, if once a new point is inserted or deleted, we need to constructed D from scratch (takes super-linear time ($\Omega(n)$)).

Example: Sorted array.

D is dynamic if once a point is inserted or deleted, we can update the D in sub-linear time. (better than $O(n)$).

Example – red-black tree/AVL tree.

D is semi-dynamic if once a point is inserted, we can update D in sub-linear time. (better than $O(n)$).
General technique for Making static DS Semi-Dynamic

Making the structure semi-dynamic

Need a semi-dynamic structure, so that we can
Add a new site to S in amortized time $O(\log^2 n)$
Find the nearest site to a query point q, in time $O(\log^2 n)$

We use Voronoi Diagram only for a demonstration – applies for many data structures.

Idea: We decompose S into a disjoint collection of sets $S = \{ S_0 \cup S_1 \cup \ldots \cup S_k \}$, (some might be empty) where $|S_i| = 2^i$
So – at most one set of size 1, at most one of size 2, one of size 4, and so on. So $k = O(\log n)$.

We construct $VD(S_i)$, $\forall i$

Performing a query

Given $VD(S_0)$, $VD(S_1)$… $VD(S_k)$, to find the nearest site to a query point q, we just perform a query in each $VD(S_i)$ and find the nearest.

Time: $O(\log n)$ per VD, altogether $O(\log^2 n)$.

Running time analysis

Recall that constructing new VD of m sites (where $m \leq n$) costs $O(m \log m) \leq O(m \log n)$

When inserting a new site, we equipped it with $O(\log^2 n)$ dollars.
The constant is the same constant as the constant in the $O(\)$ of the VD construction time.

Every time that a new VD of m sites is constructed, its sites pays for the construction. We collect $O(m \log m)$ dollars, so the construction leaves us with a positive balanced.

Every cite is involved in $\leq \log n$ different VD’s, so it is charged no more than $O(\log^2 n)$ dollars, as required.

Thm: Starting with an empty set, an sequence of n insertions takes time $O(n \log^2 n)$.

Handling insertions of sites:
Given $S = \{ S_0 \cup S_1 \cup \ldots \cup S_k \}$, add new site s'

Rule: During the insertion process, we can temporarily have 2 sets both containing 2^i sites, but then they gave to be merged.

Algorithm:

Create a new set $S'_{i+1} = \{ s' \}$.
While (there are two sets S_i, S'_i both containing 2^i sites) {
Merge S_i, S'_i to form a new set S'_{i+1} containing 2^{i+1} sites;
Discard S_i, S'_i;
}
Compute new VD for all new sets.

When done, we have at most one set of size $2^i \forall i$

Running time analysis

Recall that constructing new VD of m sites (where $m \leq n$) costs $O(m \log n) \leq O(m \log n)$

When inserting a new site, we equipped it with $O(\log^2 n)$ dollars.
The constant is the same constant as the constant in the $O(\)$ of the VD construction time.

Every time that a new VD of m sites is constructed, its sites pays for the construction. We collect $O(m \log m)$ dollars, so the construction leaves us with a positive balanced.

Every cite is involved in $\leq \log n$ different VD’s, so it is charged no more than $O(\log^2 n)$ dollars, as required.
Application 2: Dynamic tables

Goal: Maintain insertions into an array, s.t. the array is small (with respect to the input)

Applications: Hashing tables, when the number of keys is not known in advanced.

Problem: What if we don’t know the number of insertions in advance?

Solution: Dynamic tables.

IDEA: Whenever the table overflows, “grow” it by allocating (via *malloc* or *new*) a new, larger table. Move all items from the old table into the new one, and free the storage for the old table.

Example of a dynamic table

1. INSERT
2. INSERT

overflow
Example of a semi-dynamic table

1. INSERT
2. INSERT
3. INSERT

Example of a dynamic table

1. INSERT
2. INSERT
3. INSERT
4. INSERT

Example of a dynamic table

1. INSERT
2. INSERT
3. INSERT
4. INSERT
5. INSERT

Example of a dynamic table

1. INSERT
2. INSERT
3. INSERT
4. INSERT
5. INSERT
6. INSERT

Example of a dynamic table

1. INSERT
2. INSERT
3. INSERT
4. INSERT
5. INSERT
6. INSERT
7. INSERT

overflow
Worst-case analysis

Consider a sequence of \(n \) insertions. The worst-case time to execute one insertion is \(\Theta(n) \). Therefore, the worst-case time for \(n \) insertions is \(n \cdot \Theta(n) = \Theta(n^2) \).

WRONG! In fact, the worst-case cost for \(n \) insertions is only \(\Theta(n) \neq \Theta(n^2) \).

Let’s see why.

Tighter analysis

Let \(c_i \) = the cost of the \(i \)th insertion

\[
= \begin{cases}
 i & \text{if } i - 1 \text{ is an exact power of } 2, \\
 1 & \text{otherwise}.
\end{cases}
\]

Thus, the amortized cost of each dynamic-table insertion is \(\Theta(n)/n = \Theta(1) \).

Accounting analysis of dynamic tables

Charge an amortized cost of \(\hat{c}_i = $3 \) for the \(i \)th insertion.

- $1 pays for the immediate insertion.
- $2 is stored for later table doubling.

When the table doubles, $1 pays to move a recent item, and $1 pays to move an old item.

Example:

- \($0 \) $0 $0 $0 $0 $2 $2 $2 $2 $2 \) overflow

Tighter analysis (continued)

Cost of \(n \) insertions = \[
\sum_{i=1}^{n} c_i \leq n + \sum_{j=0}^{\lfloor \log(n-1) \rfloor} 2^j \leq 3n = \Theta(n)\]

Thus, the amortized cost of each dynamic-table insertion is \(\Theta(n)/n = \Theta(1) \).

Accounting analysis of dynamic tables

Charge an amortized cost of \(\hat{c}_i = $3 \) for the \(i \)th insertion.

- $1 pays for the immediate insertion.
- $2 is stored for later table doubling.

When the table doubles, $1 pays to move a recent item, and $1 pays to move an old item.

Example:

- \($0 \) $0 $0 $0 $0 $0 $0 $0 $0 $0 \) overflow
Accounting analysis of dynamic tables

Charge an amortized cost of $c_i = 3$ for the ith insertion.

• 1 pays for the immediate insertion.
• 2 is stored for later table doubling.

When the table doubles, 1 pays to move a recent item, and 1 pays to move an old item.

Example:

What about deletions?

If m is the size of the table containing n elements

Doubling: Copy all elements the size into a table of size $2m$, if $n > m$.

Shrinking: Copy all elements the size into a table of size $\frac{m}{2}$ if $n < \frac{m}{4}$.

Then still the amortized time per operation is $O(1)$

(homework)

Accounting analysis (continued)

Key invariant: Bank balance never drops below 0. Thus, the sum of the amortized costs provides an upper bound on the sum of the true costs.