Problem definition

Given: A set $S=\{p_1, \ldots, p_n\}$ of n points in the plane
Problem: Find the pair p_i, p_j that minimizes $d(p_i, p_j)$, where $d(p_i, p_j)$ is the Euclidean distance between p_i and p_j.

$O(n^2)$ time algorithm – trivial
$\Omega(n \log n)$ bound for any deterministic algorithm.

In this talk – a randomized algorithm whose expected running time is $O(n)$

Notation

Let $S_i=\{p_1, p_2, \ldots, p_i\}$

Let $d(S_i)$ denote the distance between the closest pair in S_i.

Clearly $d(S_2) \geq d(S_3) \geq d(S_4) \geq \ldots \geq d(S_n)$.

Idea – incremental algorithm – compute $d(S_{i+1})$ from $d(S_i)$.

Let $\Gamma(S_i)$ denote an axis-parallel grid, where the edge-length of each grid-cell is $d(S_i)/2$, and one of its corners is on the point $(0,0)$.

Properties of $\Gamma(S_i)$.

Claim 1: there is at most one point of S_i inside every cell of $\Gamma(S_i)$.

Proof – if there are two, then the distance between them is smaller than the length of the diagonal of the cell, which is $(\sqrt{2}d(S_i))/2 = d(S_i)/\sqrt{2} < d(S_i)$.

Locating points.

Claim 2: given $d(S_i)$ we can place all points of S_i in a data structure $H(S_i)$, such that we can (in $O(1)$ expected time)
1) insert a new point p_i.
2) Given a query point q find if there is a point of S_i in the cell of $\Gamma(S_i)$ containing q.

The structure $H(S_i)$ is described in HW1.
Rehashing with $d(S_i)$

Procedure Rehashing with $d(S_i)$:
Construct the hash table $H(S_i)$ (from HW1) with $d(S_i)$, and inserting all points of S_i into the table.

Expected time $O(|S_i|)$.

Deciding if $d(S_i) > d(S_{i+1})$

To decide whether $d(S_i) > d(S_{i+1})$ or $d(S_i) = d(S_{i+1})$ do
find all points of S_i in the cell containing p_{i+1}…
and in all the cells whose distance from this cell < $d(S_i)$
Measure the distance from p_{i+1} to each of these points.

Note – only a constant number of cells, and due to Claim 1, only a constant number of points. Altogether: (expected) constant time.

Algorithm – version 1

Input: S
Output: $d(S)$, The closest pair of S

Find $d(S_3)$, and construct $H(S_3)$.

For $i = 2, 4, \ldots, n$ do {
 Use $H(S_i)$ to decide whether $d(S_i) > d(S_{i+1})$ or $d(S_i) = d(S_{i+1})$.
 If $d(S_i) > d(S_{i+1})$ then $\Gamma(S_{i+1}) = \Gamma(S)$; insert p_{i+1}; and
 Else $H(d(S_i) < d(S_{i+1}))$ rehash with $d(S_{i+1})$. (O(i) expected time)
}

Running time: Worst case $1+2+\ldots+(n-1) = O(n^2)$

Algorithm – version 2

Create random permutation of the points of S before calling the algorithm of version 1.

Assumption: the closest pair is unique.

Claim 3: The probability that $d(S_i) > d(S_{i+1})$ is $\frac{2}{i+1}$.

Proof: There are $(i+1)$ points, two are special (determining the closest pair. All permutations are equally likely, so the probability that one of the special pair appears last in the permutation is $\frac{2}{i+1}$.

Finishing the analysis

So in the ith stage we are spending $O(1)$ time with probability $(i-1)/(i+1)$, and $O(i)$ time with probability $2/(i+1)$, so the expected work in this stage is $O(i)$ $2/(i+1)$ = $O(1)$.

Hence the total expected time is $O(n)$.

This argument can be done more formal using random variables.

Expected time

Let T_i denote the expected time at stage i. Then
$T_i = \ell$ with probability $(i-1)/(i+1)$ and $T_i = i$ with probability $2/(i+1)$

$$E(T_i) = \sum_{j=1}^{i} \Pr(T_i = j) = 1 \Pr(T_i = i) + \frac{i}{i+1} \Pr(T_i = i) = \frac{i}{i+1} = 2$$

Hence the total time is
$$E(\sum_{i=1}^{n} T_i) = \sum_{i=1}^{n} E(T_i) = \sum_{i=1}^{n} \frac{2}{i} = O(n)$$