Bloom Filter

As usual, need a data structure for a set S. The data needs to support
• insert(k, S)
• Find(k, S). In contrast to almost all other DS, here find only return a yes/no answer, but does not provide auxiliary data.
• Delete(S). Could also work, but is less efficient.

• For example, if S is the list of courses offered this semester, and we perform find("cs545", S), the answer is that it is in S (offered), we to find any information about the course, queries in other databases are needed.
• It is possible that find("cs545", S) will return "yes" even though cs545 is NOT in S. (false positive). But the probability is small.
• Bloom filter is used (da) for filtering the search. Only if Bloom returns 'yes' a more expensive search is performed.
• Very useful for distributed databases.

\[h(x) \]

\[\approx \]

\[\text{Probability of false positive} \]
\[
\text{Performing find(x)} \\
\text{return \(A[h_1(x)] = 1 \) AND \(A[h_2(x)] \neq 1 \) AND \ldots AND \(A[h_k(x)] \neq 1 \)}
\]

• Assume an insert(x) is performed. Fix 1 \(\leq r \leq m \). Consider \(T[r] \). The probability that \(h_1(x) \neq r \) is \(1/m \). This is the probability that this bit is not set to 1 by \(h_1(x) \).
• The prob that none of the \(k \) hash functions \(h_1(x), h_2(x), \ldots h_k(x) \) did not set this bit is \((1 - 1/m)^k \) \(\approx e^{-k/m} \).
• If \(n \) words are inserted into S, the prob that \(T[r] \) is still 0 is \(e^{-nk/m} \).
• The probability that \(T[r] \) is 1 \(\approx e^{nk/m} \).
• Now, assume \(x \notin S \). The prob that we perform find(x) and the answer is erroneously YES is \(\varepsilon = (1 - e^{-nk/m})^k \). This is the probability of a false positive.
• Next we need to optimize for m and k.
• \(m=2n \) or \(3n \) for \(\varepsilon = 0.05 \). That is, 2 bits per (comparing to maintaining the whole key - a string (multiple chars) or at least, a word (64 bits))
• \(k=4 \) or 5

Example (credit wikipedia)
\[
S = \{ x, y, z \}, \ w \notin S
\]

String Matching

• Need a guessestimate about \(n = |S| \) the number of keys to be inserted.
 Also given \(\varepsilon > 0 \), the error rate. Typically \(\varepsilon = 0.05 \).
• We determine \(m \) - table size. In contrast to hash table, each cell in the table contains only one bit (not a key).
• Generate \(A[1..m] \). If S is empty, then all bits are set to 0.
• Determine a value \(k \) (later).
• Fix \(k \) hash functions \(h_1(x), h_2(x), \ldots h_k(x) \), all returns values between 1..m.

Performing insert(x)
For \(i = 1..k \)
Set \(A[h_i(x)] = 1 \) // independent of its previous value.

Performing find(x)
\[
\text{return \(A[h_1(x)] = 1 \) AND \(A[h_2(x)] \neq 1 \) AND \ldots AND \(A[h_k(x)] \neq 1 \)}
\]

• Needs to work 20X faster or perform in parallel, using online arithmetic.
• To estimate the number of keys in \(A \), we could use
 • Assume \(T \) and \(T' \) are the Bloom Filters arrays of sets \(S \) and \(S' \). Both uses the same set of hash functions. How could we compute the array for the set \(S \cup S' \)?
 \[
 m(A \cup B) = -m \ln \left(1 - \frac{|A|}{m} \right)
 \]
 • Answer: Just take the bitwise OR of the tables.
 \[
 n(A \cup B) = m \ln \left(1 - \frac{|A \cup B|}{m} \right)
 \]
 • From knowing the number of 1’s in the filter, we could estimate n(S), the number of items in S
 • What about intersection ?
 • \(n(A \cap B) \approx n(A) + n(B) - n(A \cup B) \)

String Matching

• Input: Two strings \(T[1…n] \) and \(P[1…m] \).
• Notation: \(T[i..j] \) is the part of the string starting at \(T[i] \) and ending at \(T[j] \).
• Example \(T[1…18] = "to be or not to be" \)
• \(P \) and \(T \) containing symbols from alphabet \(\Sigma \)
• Goal: find all "shifts" \(1 \leq s \leq n-m \) such that \(T[s + 1..s + m] = P \)
• Example:
 - \(\Sigma = \{a, b, \ldots, z\} \)
 - \(T[1..18] = "to be or not to be" \)
 - \(P[1..2] = "be" \)
 - Shifts: 3, 16

Thanks to
Prof. Piotr Indyk
Simple Algorithm

\[
\begin{align*}
\text{for } s & \leftarrow 0 \text{ to } n-m \\
\text{Match} & \leftarrow 1 \\
\text{for } j & \leftarrow 1 \text{ to } m \\
\text{if } T[s+j] \neq P[j] \text{ then} \\
\text{Match} & \leftarrow 0 \\
\text{exit loop} \\
\text{if } \text{Match} = 1 \text{ then output } s
\end{align*}
\]

Results

- Running time of the simple algorithm:
 - Worst-case: \(\Theta(mn) \)
 - Average-case (random text): \(O(n) \)
- Is it possible to achieve \(O(n) \) for any input?
 - Knuth-Morris-Pratt’77: deterministic
 - Karp-Rabin’81: randomized

Karp-Rabin Algorithm

\[
\begin{align*}
\text{for } s & \leftarrow 0 \text{ to } n-m \\
\text{Match} & \leftarrow 1 \\
\text{for } j & \leftarrow 1 \text{ to } m \\
\text{if } T[s+j] \neq P[j] \text{ then} \\
\text{Match} & \leftarrow 0 \\
\text{exit loop} \\
\text{if } \text{Match} = 1 \text{ then output } s
\end{align*}
\]

Implementation

\[
\begin{align*}
0 & \ 1 \ 0 \ 0 \ 0 \ 1 \ 1 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 0 [0 \ 1 \ 1 \ 1] \\
\text{for } s & \leftarrow 0 \\
\text{Think about each } T_t & = T[s+1\ldots s+m] \text{ as a number in binary representation, i.e.,} \\
t & = T[s+1]2^0 + T[s+2]2^1 + \ldots + T[s+m]2^{m-1} \\
\text{Find a fast way of computing } t_{s+1} \text{ given } t_s \\
\text{Output all } s \text{ such that } t_s \text{ is equal to the number } p \text{ represented by } P
\end{align*}
\]

The great formula

- How to transform
 \[
t_s = T[s+1]2^0 + T[s+2]2^1 + \ldots + T[s+m]2^{m-1}
\]
 into
 \[
t_{s+1} = T[s+2]2^0 + T[s+3]2^1 + \ldots + T[s+m+1]2^{m-1}
\]
- Three steps:
 - Subtract \(T[s+1]2^0 \) (this is the least-significant bit. It is either 0 or 1)
 - Divide by 2 (i.e., shift the bits by one position)
 - Add \(T[s+m+1]2^{m-1} \)
- Therefore:
 \[
t_{s+1} = (t_s - T[s+1]2^0) + T[s+m+1]2^{m-1}
\]

Algorithm

- Can compute \(t_{s+1} \) from \(t_s \) using 3 arithmetic operations
- Therefore, we can compute all \(t_0, t_1, \ldots, t_{n-m} \) using \(O(n) \) arithmetic operations
- We can compute a number corresponding to \(P \) using \(O(m) \) arithmetic operations
- Are we done?
Problem

- To get $O(n)$ time, we would need to perform each arithmetic operation in $O(1)$ time.
- However, the arguments are m-bit long!
- It is unreasonable to assume that operations on such big numbers can be done in $O(1)$ time.
- We need to reduce the number range to something more manageable.

Hashing

We will instead compute $t'_s = h(T[s+1:s+m]) = \sum_{i=s+1}^{s+m} T[i] \mod q$.

where q is an “appropriate” prime number.

Algorithm

- Let \prod be a set of $2nm$ primes, each having $O(\log n)$ bits (we will replace this stage with a simpler one soon).
- Choose q uniformly at random from \prod.
- Compute t'_0, t'_1, \ldots (the hashed values) and p'.

False positives

- Consider any $t \neq p$. We know that both numbers are in the range $\{0 \ldots 2m-1\}$.
- How many primes q are there such that $t \mod q = p \mod q = 0$?
- Such prime has to divide $x = (t-p)$.
- To understand how likely it is to stumble upon false positives, we need to understand the prime factorization of x.
- Think about the representations of x as a product of primes: $x = p_1^{e_1} p_2^{e_2} \cdots p_k^{e_k}$.
- This has at most m factors.

“Details”

- How do we know that such \prod exists?
- How do we choose a random prime from \prod in $O(n)$ time?
Prime density

- Primes are “dense”. I.e., if PRIMES(N) is the set of primes smaller than N, then asymptotically
 \[|\text{PRIMES}(N)|/N \sim 1/\log N \]
- If N large enough, then
 \[|\text{PRIMES}(N)| \geq N/(2\log N) \]

Prime density continued

- If we set \(N=9mn \log n \), and \(N \) large enough, then
 \[|\text{PRIMES}(N)| \geq N/(2\log N) \geq 2mn \]
- All elements of \(\text{PRIMES}(N) \) are \(\log N = O(\log n) \) bits long

Prime selection

- Still need to find a random element of \(\text{PRIMES}(N) \)
- Solution:
 - Choose a random element from \(\{1 \ldots N\} \)
 (or pick at random from a database of primes)
 - Check if it is prime
 - If not, repeat

Prime selection analysis

- A random element \(q \) from \(\{1 \ldots N\} \) is prime with probability \(\sim 1/\log N \)
- We can check if \(q \) is prime in time polynomial in \(\log N \) (trust me ☺)
- Therefore, we can generate random prime \(q \) in \(o(n) \) time
- The rest of the algorithm takes \(O(n) \) time