Exercise

Correctness of greedy algorithm for continuous knapsack

Lemma

Number the items 1, ..., n so that

\[
\frac{v_1}{w_1} \geq \cdots \geq \frac{v_n}{w_n}
\]

and suppose fractions \(f_i, \ldots, f_i \), for \(0 \leq i \leq n \), are the fractions for items 1, ..., i in an optimal continuous knapsack of capacity \(W \). Then fractions \(f_i, \ldots, f_i, f_{i+1} \), where

\[
f_{i+1} = \min \left\{ \frac{w_{i+1}}{f_{i+1}}, \frac{W - \sum_{1 \leq j \leq i} f_j w_j}{w_{i+1}} \right\}
\]

are the fractions for items 1, ..., i+1 in an optimal knapsack.

Proof

Let \(K^* \) be an optimal knapsack using fractions \(f_i, \ldots, f_i, f^*_i \), \(f^*_{i+1}, \ldots, f^*_n \) on items 1, ..., n, and let \(f_{i+1} \) be defined as in the lemma.

Since \(K^* \) is optimal, there is a smallest index \(j \) in range \(i+1, \ldots, n \) such that

\[
\sum_{i+1 \leq k \leq n} f^*_k w_k \geq f_{i+1} w_{i+1}.
\]

Consider the knapsack \(\tilde{K} \) derived from \(K^* \) that has fractions \(f_i, \ldots, f_i, f_{i+1}, \tilde{f}_i, \tilde{f}_{i+1}, \ldots, \tilde{f}_j, f^*_j, f^*_{j+1}, \ldots, f^*_n \), same as \(K^* \), greedy new same as \(K^* \),

where \(\tilde{f}_{i+1} = 0, \ldots, \tilde{f}_{j-1} = 0, \) and

\[
\tilde{f}_j = \left(\sum_{i+1 \leq k \leq n} f^*_k w_k - f_{i+1} w_{i+1} \right) / w_j.
\]

Knapsack \(\tilde{K} \) has the same total weight as \(K^* \), so it is feasible, and since \(\frac{v_{i+1}}{w_{i+1}} \geq \cdots \geq \frac{v_j}{w_j} \), it has total value at least as great as \(K^* \), so it is also optimal. \(\square \)
(Greedy algorithms) Suppose we have a collection of n tasks that must be performed. For each task i we know t_i, the length of time it takes to perform task i. We can perform a task at any point in time that we choose, and we can perform them in any order, but we can only perform one task at a given moment.

The completion time of a task is the time at which we finish performing it. Design an efficient greedy algorithm that finds a sequence in which to perform the tasks that minimizes the average completion time for the n tasks. More formally, if c_i is the completion time of task i for a given sequence, the solution value for that sequence is

$$\frac{1}{n} \sum_{i=1}^{n} c_i.$$

Analyze the running time of your algorithm, and prove that it finds an optimal solution using a greedy augmentation lemma of the type given in class.

Algorithm

We sort the tasks by increasing running time.

Rename the sorted tasks so that

$$t_1 \leq t_2 \leq \ldots \leq t_n.$$

We then execute the tasks in this order $1, 2, \ldots, n$, starting them at times

$$0, t_1, t_1+t_2, \ldots, \sum_{i=1}^{k} t_i.$$

(Equivalently, this greedy procedure executes next that task i that has the smallest t_i of all tasks not yet executed.)

Analysis

Sorting the tasks and determining their start times takes a total of $O(n \log n)$ time for n tasks.

Correctness

Let a partial solution be a prefix of the listing of tasks in their order of execution.

A partial solution is contained in a complete solution if it is a prefix of the complete solution.
Correctness, cont.

Lemma
Suppose tasks 1,2,..., i form a partial solution contained in an optimal solution.
Let task \(i+1 \) be the next task executed by the greedy procedure.
Then partial solution 1,2,..., i, i+1 is contained in an optimal solution.

Proof
Let \(S^* \) be an optimal solution that contains the partial solution 1,2,..., i.
If the next task \(S^* \) executes is \(i+1 \), the lemma holds.
Suppose instead \(S^* \) executes next task \(j > i+1 \).
Let \(k \) be the position in the ordering at which \(S^* \) executes task \(i+1 \).
Form a new solution \(\tilde{S} \) by exchanging the positions of tasks \(i+1 \) and \(j \), as follows.

\[
\begin{array}{ccccccc}
S^* & & & & & & \\
\hline
1 & 2 & \cdots & i & i+1 & k & \cdots \\
\hline
\end{array}
\]

\[
\begin{array}{ccccccc}
\tilde{S} & & & & & & \\
\hline
1 & 2 & \cdots & i & i+1 & \cdots & j \\
\hline
\end{array}
\]

Notice that the average completion time \(c(S) \) of a schedule \(S \) is,
Proof, cont'd.

\[c(S) = \frac{1}{n} \sum_{i \in u} \sum_{j \neq i} t_{S[i]} \]

\[= \frac{1}{n} \sum_{i \in u} (n - i + 1) t_{S[i]} \cdot \]

Since schedules \(S^* \) and \(\tilde{S} \) only differ at positions \(i+1 \) and \(k \),

\[c(S^*) - c(\tilde{S}) = \frac{1}{n} \left((n - i) t_j + (n - k + 1) t_{i+1} \right) \]

\[- \left((n - i) t_{i+1} + (n - k + 1) t_j \right) \]

\[= \frac{1}{n} \left((k - (i+1)) t_j - (k - (i+1)) t_{i+1} \right) \]

\[> 0 \quad \text{since} \quad t_1 \leq \ldots \leq t_n \]

which implies \(c(\tilde{S}) \leq c(S^*) \).

Thus \(\tilde{S} \) is an optimal solution that contains the partial solution \(1, 2, \ldots, i+1 \). \[\square \]

Theorem The greedy procedure finds an optimal schedule.

Proof By the lemma, using induction on the number of iterations. \[\square \]
Problem (Deleting the larger half)

Implement the following operations on a set S of numbers,

- Insert (x, S): Add x to S;
- Delete Larger Half (S): Delete the largest $\left\lfloor \frac{|S|+1}{2} \right\rfloor$ elements from S;

so both operations take $O(1)$ amortized time.

Solution Sketch

We implement these operations as follows:

- Insert (x, S): Put x onto a singly-linked, unordered list L.
- Delete Larger Half (S): Compute the median element x of S.

Every element y in S, with $y \geq x$, delete from L.

For our amortized analysis we use the charging method.

<table>
<thead>
<tr>
<th>Operation</th>
<th>Actual time</th>
<th>Amortized time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insert (x, S)</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Delete Larger Half (S)</td>
<td>2n</td>
<td>0</td>
</tr>
</tbody>
</table>

We take the actual time for Delete Larger Half, which (i) computes the median and then (ii) does a scan to delete elements, to be $2n$.

An insert takes 1 unit of actual time, but receives 5 units of amortized time; we store the 4 units of credit on the inserted element.
Solution:

For `DeleteLargerHalf`, let us assume every element has 4 units of credit on it before the operation.
To execute `DeleteLargerHalf`, we use 2 units from every element. (So now every element has 2 units remaining on it.)
Take the remaining 2 units from every deleted element and place those units on the elements not deleted.
Now every element left in S has 4 units of credit again (as there are at least as many elements deleted as not deleted). So the credit assumption is maintained.
Problem: Variation on a sorted array to support both binary search and insert.

A sorted array of \(n \) elements allows us to find any given element in \(O(\log n) \) time using binary search, but inserting a new element can take as much as \(O(n) \) time. In this variation, instead of maintaining a sorted array \(A[1..n] \) we maintain \(k = \sum \log(n+1) \) arrays \(A_1, A_2, \ldots, A_k \) where \(|A_i| = 2^{i-1} \). Array \(A_i \) is full iff bit \(i-1 \) is 1 in the binary representation of \(n \); otherwise \(A_i \) is empty. Further, each \(A_i \) is sorted, but we do not enforce any relation between elements from different \(A_i \).

(a) We can implement the Find operation on this structure as follows. The operation returns the location of the elements if found (given by the index of the list and the element's position within the list), and \((0,0)\) otherwise.

```
function Find(x) begin
  for \( i := 1 \) to \( k \) do begin
    Use binary search on \( A_i \).
    if \( x \) is found at index \( j \) in \( A_i \) then
      return \((i,j)\)
  end
  return \((0,0)\)
end
```

In the worst case, when each \(A_i \) is full and all are searched, this takes time

\[
\sum_{i \leq k} \Theta(\log 2^i) = \sum_{i \leq k} \Theta(i) = \Theta(k^2) = \Theta(\log^2 n).
\]
(b) We can insert an element into this structure as follows.
The procedure is similar to incrementing a binary counter.

procedure insert(x) begin
Find the longest prefix A_1, A_2, \ldots, A_i of full lists.
Merge those lists in sequence using an auxiliary
array $B[1..n]$ to hold intermediate results.
Merge x into the final result in B.
Copy B into A_{i+1}, and mark lists A_i, \ldots, A_i as empty.
end

The time is dominated by the time to perform the $i-1$ merges.
The time to merge the jth list A_j with the merge of
the preceding lists is linear in 2^{j-1}, the length of A_j,
plus the total length of all preceding lists A_1, \ldots, A_{j-1}.
This gives a total time of

$$
\theta \left(\sum_{1<j<i} (2^{j-1} + \sum_{1<k<j} 2^{k-1}) \right) = \theta \left(\sum_{1<j<i} (2^{j-1} + 2^{j-1}-1) \right)
= \theta \left(\sum_{0<j<i} 2^j \right)
= \theta (2^i).
$$

In the worst case, $i = k = \Theta (\log n)$, so the time for insert
is $\Theta (2 \log n) = \Theta (n)$ worst-case.

We determine the amortized time for an insert using
averaging. The analysis is similar to that for incrementing
a binary counter. Consider a series of m inserts. The time
for a merge that spills list A_i into A_{i+1} is $\Theta (2^i)$, but
this only happens $\lfloor m/2^i \rfloor$ times during the series. Thus
the total time for the m inserts is

$$
\sum_{|s\in k \leq k} \Theta (2^i) \cdot \lfloor \frac{m}{2^i} \rfloor = \sum_{|s\in k \leq k} \Theta (2^i \frac{m}{2^i}) = \sum_{|s\in k \leq k} \Theta (m) = \Theta (mk).
$$

By averaging, the amortized time for an insert is
Problem cont'd

(b) (cont'd)

\[\frac{1}{m} \Theta(mk) = \Theta(k) = \Theta(\log n). \]

It may be tempting to try keeping the elements in sorted order across the lists so that \(A_1 < A_2 < \ldots < A_k \). Interestingly, this only makes matters worse: when the number of elements in binary is \(100 \ldots 01 \), for instance, we may be forced to insert into \(A_k \) instead of \(A_1 \), which can cause the whole structure to be reorganized, ruining the amortized time bound.

(c) There is no satisfactory way to implement Delete on this data structure. The reorganization of the lists caused by removing an element is similar to the effect of a decrement on a binary counter. To decrement a binary counter, we

- find the leftmost 1,
- change the 1 to a 0, and
- set all preceding 0's to 1's.

Our implementation of Delete is similar.

```
procedure Delete(x) begin
1. Find the list \( A_j \) containing element \( x \).
2. Let \( A_{j+1} \) be the first non-empty list.
   Choose an arbitrary element \( y \) from \( A_{j+1} \).
3. Redistribute the elements of \( A_{j+1} \) other than \( y \) among lists \( A_1, A_2, \ldots, A_j \).
4. Remove element \( x \) from \( A_j \).
   Insert \( y \) into \( A_j \).
end
```

(The description above is for the general case in which \(A_j \neq A_{j+1} \); the case in which \(A_j = A_{j+1} \) is slightly simpler.)
The time for step 1 is
\[\sum_{1 \leq k \leq j} \Theta(\log 2^k) = \sum_{1 \leq k \leq j} \Theta(k) = \Theta(j^2). \]

The time for step 2 is \(\Theta(1) \). The time for step 3 is \(\Theta(2^i) \). Finally, the time for step 4 is \(\Theta(2^j) \).

As \(i \leq j \), the total time is \(\Theta(2^j) \).

In the worst case, \(j = k = \Theta(\log n) \), so this is
\[\Theta(2^{\log n}) = \Theta(n) \]

time worst-case. Moreover, the presence of Delete destroys the amortized time bound on Insert, so we can place no better time bound for an Insert or Delete than \(\Theta(n) \). (For an argument justifying this, see the solution to Exercise 18.1-2.)