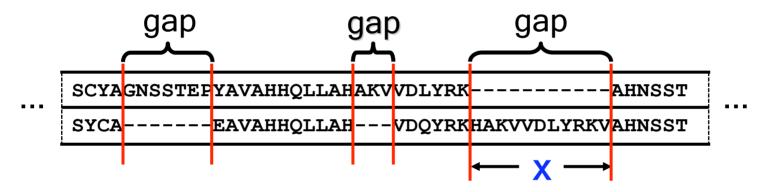
Aligning alignments exactly

John Kececioglu Dean Starrett

Department of Computer Science
The University of Arizona
Tucson Arizona USA

Motivation

Linear gap-costs are necessary for biologically-correct alignment [Fitch, Smith 1981].

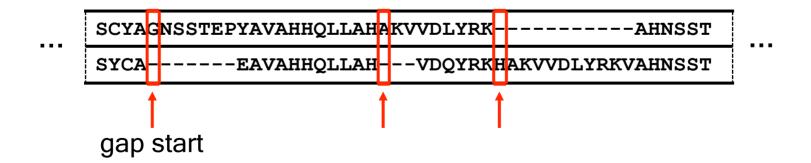


Gap cost $\gamma + \lambda x$

- γ, initiation cost
- λ , extension cost
- X, gap length

A *two-sequence* alignment, with linear gap-costs, is scored,

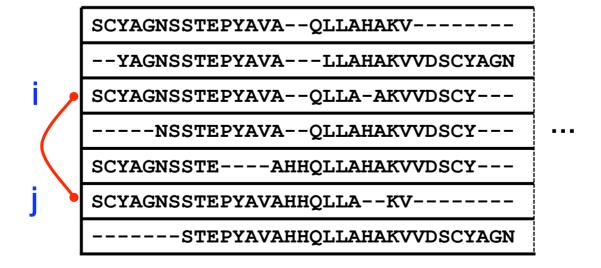
$$\sum_{\text{columns}} \left(\begin{array}{c} \text{substitution} \\ \text{cost} \end{array} \right) + \sum_{\text{columns}} \left(\begin{array}{c} \text{insertion} \\ \text{deletion} \\ \text{cost} \end{array} \right) + \gamma \cdot \left(\begin{array}{c} \text{gap} \\ \text{count} \end{array} \right)$$



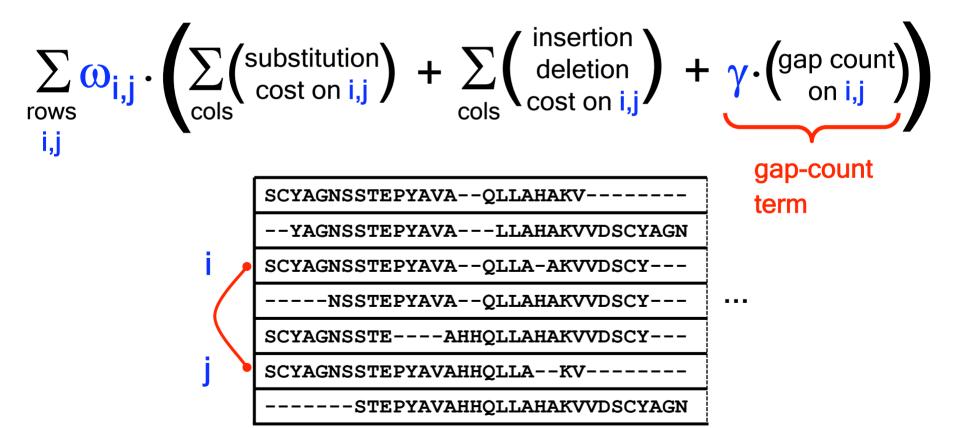
A *multiple-sequence* alignment, under the sum-of-pairs objective, is scored,

 $\sum_{\substack{\text{rows}\\ i,j}} \omega_{i,j} \cdot$

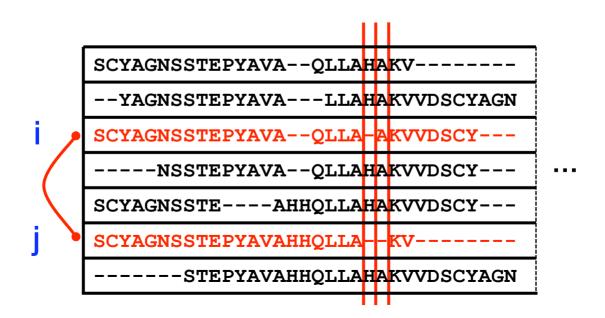
score for the 2-sequence alignment induced by rows i and j



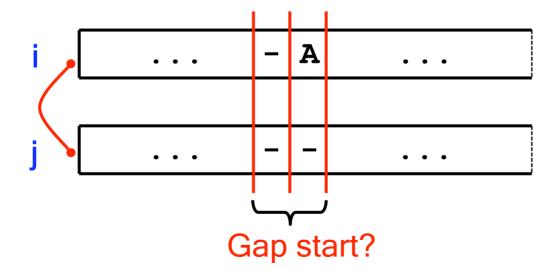
A *multiple-sequence* alignment, under the sum-of-pairs objective, is scored,



- Computing the gap-count term is not easy.
- Known algorithms do not use exact gap-counts.



- Computing the gap-count term is not easy.
- Known algorithms do not use exact gap-counts.



The inherent *complexity* of gap-counts in multiple alignment has been a mystery.

- Approximate gap-counts [Altschul 1989] add exponential overhead [Gupta, Kececioglu, Schäffer 1995].
- Without gap-counts, multiple alignment is already NP-complete [Wang, Jiang 1994; Wareham 1995; Kececioglu 1993].

We show that a form of multiple alignment, called *Aligning Alignments*, is,

- (1) NP-complete with exact gap-counts,
- (2) polynomial-time solvable without them, yet
- (3) can be exactly-solved with gap-counts in practice.

Together (1) and (2) show exact gap-counts are *inherently hard*.

Problem

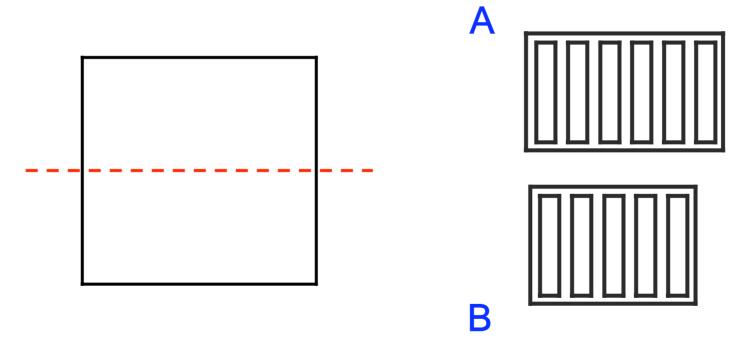
Aligning Alignments is the following problem.

Given multiple alignments A and B, find an optimal alignment of

- the *columns* of A versus the columns of B,
- under the sum-of-pairs objective,
- with linear gap-costs.

Problem continued

The alignment of A with B substitutes, inserts, and deletes *columns*.



This yields a multiple alignment containing A and B.

Results

For Aligning Alignments, we show the following.

- NP-completeness
- Exact algorithm
- Tight analysis
- Speedup techniques
 - Biological alignments in 1 second (25 sequences, length 900)
 - Simulated alignments in 3 minutes (200 sequences, length 1000)
- Linear space
- Ceiling phenomenon

Related work

Gotoh (1993, 1994)

- First to consider Aligning Alignments.
- Presented four procedures (one finds an optimal solution).
- Gave complex criteria for eliminating candidate solutions.
- Showed how to evaluate gap-counts in linear time.

Related work continued

Kececioglu and Zhang (1998)

- Introduced optimistic-pessimistic gap-counts for aligning alignments, profiles, or both.
- Gave a polynomial-time exact-algorithm for aligning a sequence versus an alignment.
- Conjectured that Aligning Alignments is NP-complete.

Related work continued

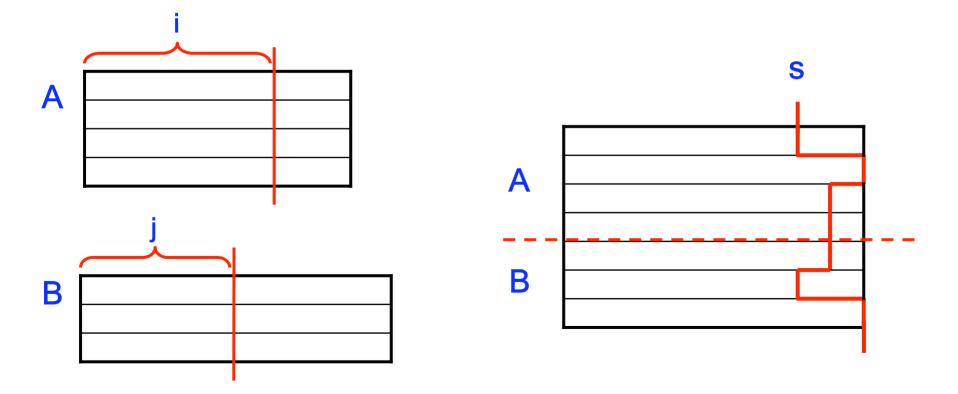
Ma, Wang and Zhang (2003)

- Independently proved NP-completeness.
- Rediscovered Gotoh's heuristic and speedup.

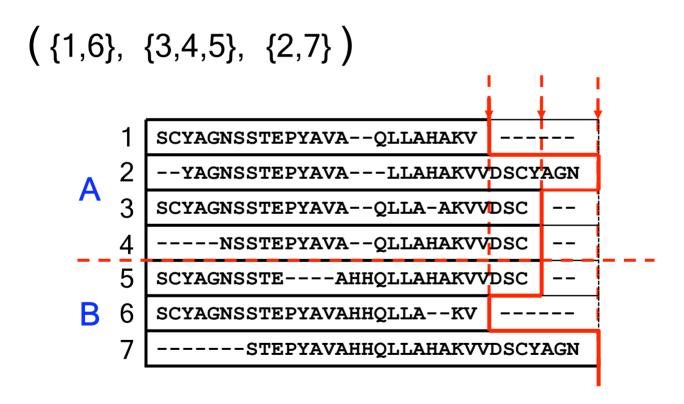
Algorithm

We solve Aligning Alignments by dynamic programming.

- Inputs A and B viewed as sequences of columns.
- Subproblem consists of prefixes i and j, and a shape s.



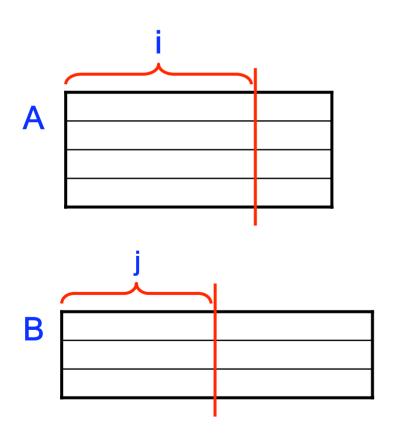
A shape is an *ordered partition* of the rows.

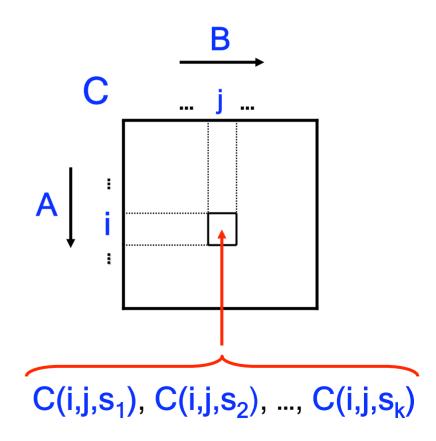


The *overhang* or *underhang* of a pair of rows is given by the order of the blocks.

The *cost* of an optimal solution to subproblem (i,j,s) is *C(i,j,s)*.

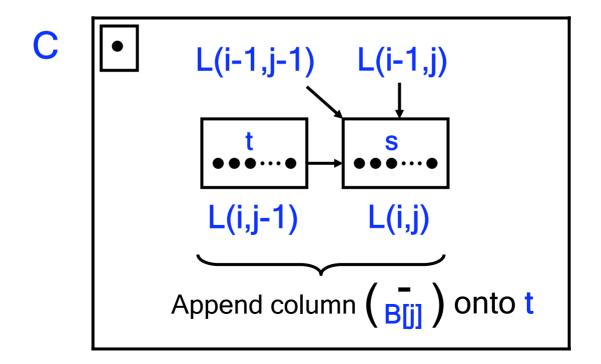
The costs C(i,j,s) are computed in a table.





Entry (i,j) holds a list of *realizable shapes* L(i,j).

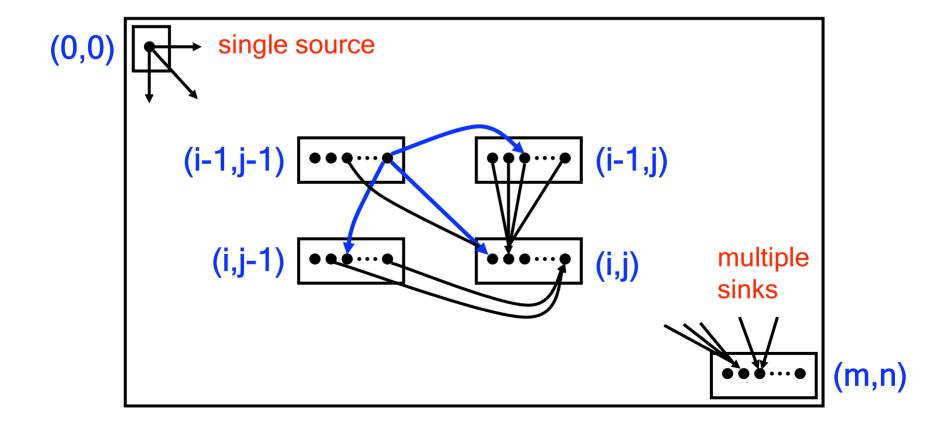
- L(0,0) holds the flat shape.
- L(i,j) is obtained from adjacent entries by appending columns.



The dynamic program is viewed as a *shortest-path problem*.

- Vertex for each <u>subproblem</u> (i,j,s).
- Edge between subproblems that append a column.
- Weight of an edge is the column cost.
- Graph built on-the-fly in lexicographic order on (i,j).

We solve a *source-sink* shortest-path problem on the graph.



Time and space

The time and space for the exact algorithm depends on the *number of shapes* at entries.

- Number of shapes is a complex function of gap-structure.
- Let F(m,n) denote the number of alignments of two strings of lengths m and n.
- Let a and b denote the number of sequences in A and B.

The *number of shapes* is a surprising function of **F**, **a**, and **b**.

Theorem The *worst-case* number of shapes at entry (i,j) is exactly,

number of alignments of two strings whose *lengths* are the number of *sequences*!

We know the time and space when *both* inputs have k *sequences* and n *columns*.

Theorem The exact algorithm takes worst-case *time*,

$$\begin{cases} \theta ((3 + \sqrt{2})^k (n - k)^2 k^{3/2}), & k < n; \\ \theta ((3 + \sqrt{2})^n k^2 n^{-1/2}), & k \ge n. \end{cases}$$

The worst-case *space* is a factor k smaller.

The following bound is *simpler* but looser.

Corollary For k sequences and n columns, the exact algorithm runs in *time*,

$$O(5^{\min\{k,n\}} \cdot \max\{k,n\}^2)$$
.

Speedup techniques

To reduce the time and space, we *prune* shapes at entries.

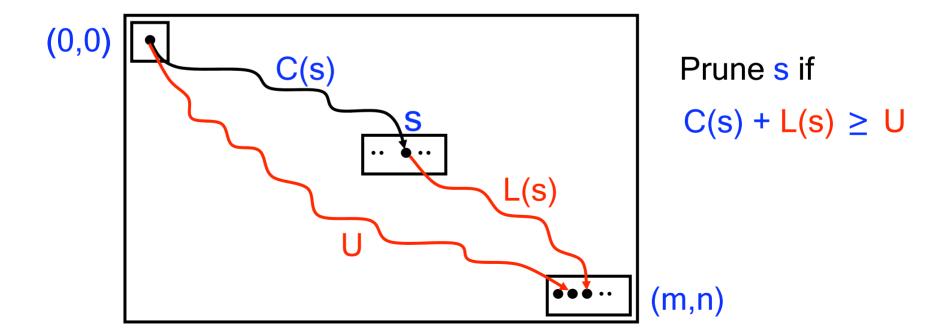
- Bound pruning uses upper- and lower-bounds on alignment costs.
- Dominance pruning uses a dominance relation on shapes.

Both preserve *correctness*.

Bound pruning

We prune shape s if, on every *extension*, it is no better than a feasible solution.

- Compute *lower-bound* L(s) on cost of extending s.
- Compute upper-bound U on cost of optimal solution.



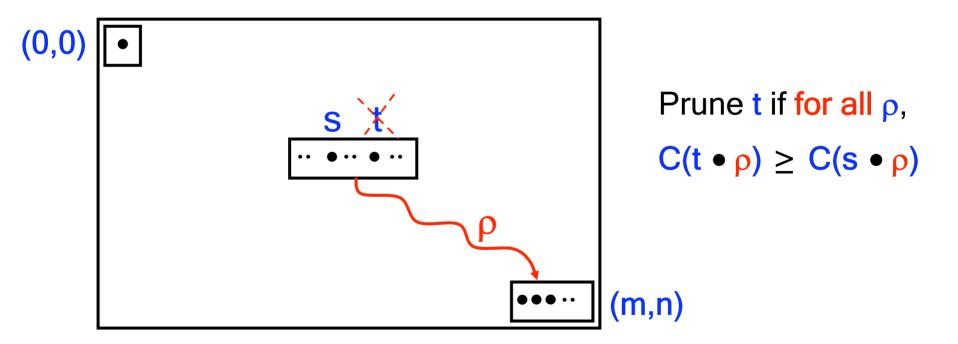
Bound pruning continued

The algorithm computes bounds using *approximate* gap-counts.

- Use optimistic gap-counts on suffixes for lower-bound L(s).
- Use pessimistic gap-counts for upper-bound U.
- Use a lookup table to efficiently evaluate L(s).

Dominance pruning

We prune shape t if it is no better than *some* shape son *all* extensions.



Dominance pruning continued

We express this by a dominance *relation* on shapes.

Definition Shape s dominates shape t if,

$$C(t) \ge C(s) + \gamma \cdot \sum_{\text{rows}} \left(1, \text{ if } t \text{ ends with a gap that } s \text{ does not;} \right)$$
 p,q

Dominance is an easily-tested *sufficient condition* for t to be no better than s.

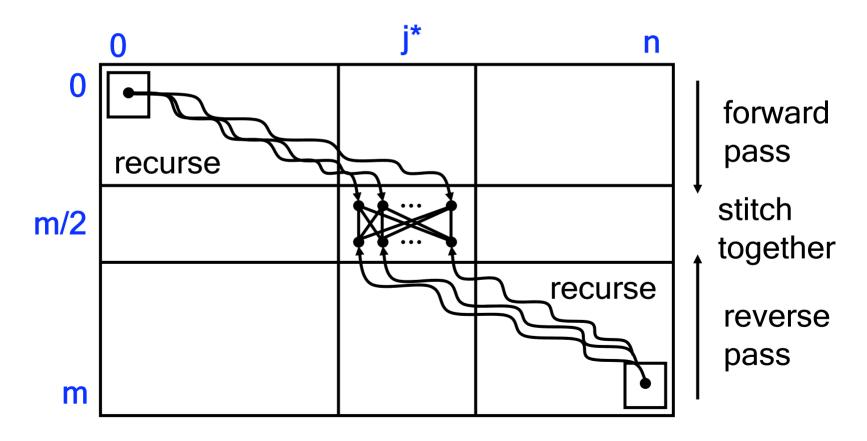
Linear space

We generalize the classic *linear-space* result on aligning two strings [Hirschberg 1975; Myers, Miller 1988].

- Space becomes linear in the number of columns.
- Subproblem decomposition is complicated by the presence of shapes.
- Technique is compatible with dominance pruning.
- Time with dominance pruning does not increase.

Linear space

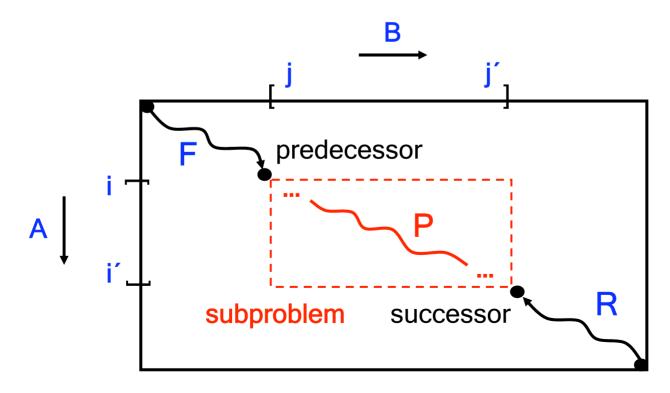
We find the cost, shape, and entry of an optimal path through the *middle row*.



Linear space continued

This leads to the *subproblem* of

- aligning A[i:i'] and B[j:j'], given
- predecessor and successor shapes.



Experimental results

To evaluate the feasibility of computing *optimal alignments*, we used both

- biological data, obtained from the BAliBASE [Thompson, Plewniak, Poch 1999] and MVF [McClure, Vassi, Fitch 1994] collections, and
- simulated data, generated by randomly aligning strings with parameterized gap-structure.

We implemented five *versions* of the exact algorithm:

- Q, no pruning, quadratic space,
- BQ, bound pruning, quadratic space,
- DQ, dominance pruning, quadratic space,
- BDQ, bound and dominance pruning, quadratic space,
- **DL**, dominance pruning, linear space.

The MVF collection has 4 benchmarks with

- 12 sequences, and
- 150 400 *columns*.

The maxima, over 2047 *instances* for every benchmark, are:

_				
	Version	Total shapes	Time (sec)	Space (Mb)
	Q	11,950,000	6,570.0	57.5
	BQ	3,315,000	980.0	28.8
most time efficient	DQ	199,000	0.8	3.3
		39,000	0.2	3.7
most space efficient	DL	208,000	1.9	0.1

The BAlibase collection has 144 alignments with

- 3 30 sequences, and
- 60 1000 *columns*.

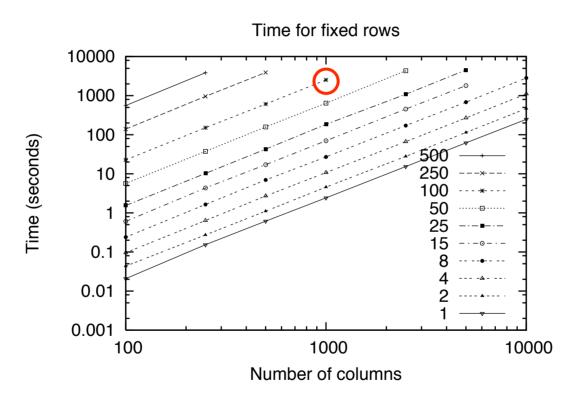
The maximum time and space, over 20 *instances* for every benchmark, is:

Version	Time (sec)	Space (Mb)
BDQ	1.0	23.2
DL	14.6	0.2

We used *simulated data* to study the observed growth in time and space.

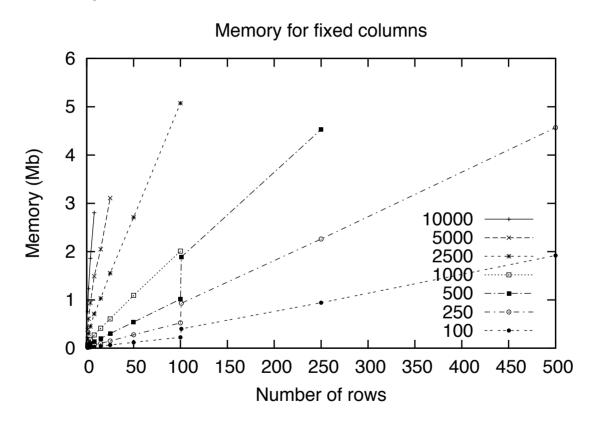
- Letter distribution same as benchmarks.
- Gap density same as hardest benchmarks.
 - Spacer density, the percentage of entries that are spacers, fixed at 35%.
 - Startup density, the percentage of entries that start a gap, fixed at 10%.

We studied time for version **DL** as a function of *columns*, **n**.



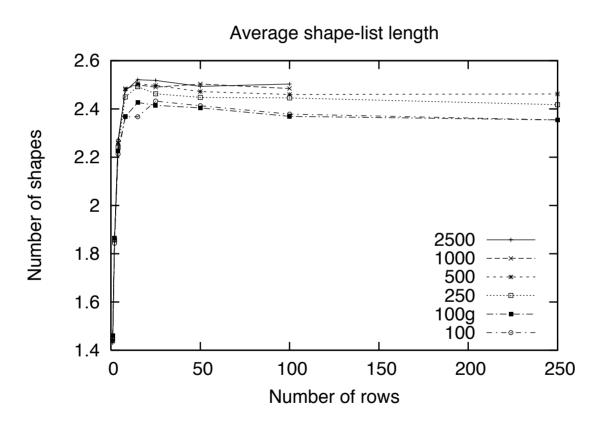
- Time is quadratic in n.
- Aligns 200 rows and 1000 columns in 3 minutes and 2 Mb.

We studied space for version **DL** as a function of *rows*, **k**.



- Space is linear in k.
- This implies the number of shapes is constant in k!

A *ceiling phenomenon* in shape-growth causes this behavior.



- Less than 3 shapes per entry, independent of k.
- Same behavior on biological data.

Conclusions

We can *solve* large, highly-gapped instances of Aligning Alignments in practice.

- Aligns 200 sequences, 1000 columns in 3 minutes, 2 Mb.
- Fastest version combines bound- and dominance-pruning.
- Smallest version does dominance-pruning in linear-space.
- Ceiling phenomenon explains tractability.

Future work

Many interesting questions remain *open*.

- Is Aligning Alignments approximable?
- How accurate is gap placement by heuristics, compared to the exact algorithm?
- Is the ceiling phenomenon explainable by a probabilistic analysis?