Solutions to Homework 1

1. (Preserving lexicographical order on suffixes.)

We are given string $S[1 : 3n]$ and $\tilde{S}[1 : 2n]$, and name array N constructed according to the algorithm presented in class. Thus $N[i]$ is the lexicographic rank of $S[i : i + 2]$. Let X and Y be the front and back portions of \tilde{S}, i.e.,

$$X := (N[i] : i \mod 3 = 1), \quad Y := (N[i] : i \mod 3 = 2).$$

Proposition: $S_i \preceq S_j$ iff $\tilde{S}_I[i] \preceq \tilde{S}_I[j]$.

(The basic idea of the proof is to simulate the lexicographical comparisons we are trying to show, scanning left to right.)

Proof: If $i = j$ the claim is trivial, so assume $i \neq j$. Thus $S_i \neq S_j$ and $\tilde{S}_I[i] \neq \tilde{S}_I[j]$. We consider three cases:

Case 1. $i \mod 3 = j \mod 3 = 1$.

In this case, both $I[i]$ and $I[j]$ map to locations in X.

(\Rightarrow) Suppose $S_i < S_j$. Then, either (a) there exists a least position k at which $S_i[k] < S_j[k]$, or (b) S_i is a prefix of S_j.

In (a), the corresponding $N[k'], N[k'']$ that contain position k in S_i and S_j, respectively, must satisfy $N[k'] < N[k'']$ by construction. So $\tilde{S}_I[i] < \tilde{S}_I[j]$ before reaching the boundary between X and Y.

In (b), the last letter of S_i corresponds to letter-triplet $(S[3n−1] S[3n] 0)$, whose corresponding $N[k'] < N[k'']$. So $\tilde{S}_I[i] < \tilde{S}_I[j]$, again before reaching the boundary between X and Y.

(\Leftarrow) Now suppose $\tilde{S}_I[i] < \tilde{S}_I[j]$. Again the lex. comparison will terminate within X since the last letter of X corresponds to letter-triplet $(S[3n−1] S[3n] 0)$, which cannot equal any other letter in X. So for corresponding suffixes of S, $S_i < S_j$, by the same reasoning as above.

Case 2. $i \mod 3 = j \mod 3 = 2$.

In this case, both $I[i]$ and $I[j]$ map to locations in Y. The same reasoning as above applies to this case, except that both suffixes keep to Y, and now the last letter of S_i corresponds to letter-triplet $(S[3n] 0 0)$.
Case 3. $i \mod 3 = 1$ and $j \mod 3 = 2$.

Now $I[i]$ maps into X and $I[j]$ maps into Y.

(\Rightarrow) Suppose $S_i \prec S_j$. Again, either (a) there exists some k such that $S_i[k] \prec S_j[k]$, or (b) S_i is a prefix of S_j.

If condition (a) holds, the comparison in \tilde{S} of $\tilde{S}_{I[i]}$, $\tilde{S}_{I[j]}$ does not pass the boundary between X and Y, since (again) the last letter of X is the special value 0. So the compared letters in \tilde{S} directly correspond to S_i, S_j. Hence $\tilde{S}_{I[i]} \prec \tilde{S}_{I[j]}$.

In (b), we see $\tilde{S}_{I[i]} \prec \tilde{S}_{I[j]}$, as the last letter of S_i corresponds to triplet $(S[3n-1] S[3n] 0)$, so the corresponding $N[k'] < N[k'']$.

(\Leftarrow) Now suppose $\tilde{S}_{I[i]} \prec \tilde{S}_{I[j]}$. The comparison will not pass the X, Y boundary, as the last letter of X does not equal any letter in Y. If the comparison does not involve the last letter of X or Y, then $S_i \prec S_j$. The same holds if it does involve the last letters of X or Y.

Case 4. $i \mod 3 = 2$ and $j \mod 3 = 1$.

Now $I[i]$ maps to Y and $I[j]$ maps to X. The same reasoning of the prior case holds.

□

2. (Longest-common-prefix lengths from heights.)

Recall that $\text{lcp}(X, Y)$ is the length of the longest common prefix of strings X and Y.

Proposition: For string $S[1 : n]$, let $A[1 : n]$ be its suffix array, and let $H[1 : n]$ be its height array, where $H[i] := \text{lcp}(S_A[i], S_A[i+1])$. Then for any two indices $1 \leq i < j \leq n$,

$$\text{lcp}(S_A[i], S_A[j]) = \min_{1 \leq k < j} \{H[k]\}. \quad (1)$$

Proof: We show that the righthand (RHS) side of (1) is both an upper and lower bound on the lefthand side.

(Upper bound.) We will show that, for all $i \leq k < j$,

$$\text{lcp}(S_A[i], S_A[j]) \leq H[k] = \text{lcp}(S_A[k], S_A[k+1]), \quad (2)$$

which implies the upper bound. We prove this by contradiction. Suppose (2) is false at some k in the interval, and let ℓ be the RHS value there.

We define characters a, b like so:

$$a := S_A[i][\ell + 1] = S_A[j][\ell + 1] \neq S_A[k'][\ell + 1] =: b,$$

for at least one $k' \in \{k, k + 1\}$. Since $a < b$ or $b < a$, either $S_A[k'] \prec S_A[i]$ or $S_A[k'] > S_A[j]$, contradicting the fact that A is the suffix array for S. So claim (2) must hold.

(Lower bound.) Let ℓ be the RHS value of (1).

We have $S_A[k][1 : \ell] = S_A[k+1][1 : \ell]$ for all $i \leq k < j$, so transitively $S_A[i][1 : \ell] = S_A[j][1 : \ell]$. Thus $\text{lcp}(S_A[i], S_A[j]) \geq H[k] = \text{lcp}(S_A[k], S_A[k+1])$.

□
3. (Interval-minimum queries.)

Notation: For integers i and j, with $i < j$, we write $[i, j]$ to denote the set $\{i, i+1, \ldots, j\}$. Likewise $[i, i]$ denotes the single-element set $\{i\}$.

Preprocessing. We construct a balanced binary search tree T consisting of all the intervals of $[1, n]$ considered by a binary search that recursively splits the interval $[l, r]$ into $[l, m] \cup [m+1, r]$ where $m := \lfloor \frac{l+r}{2} \rfloor$. Thus the root of T is the interval $[1, n]$, and the leaves of T are the single-element intervals $[1, 1], [2, 2], \ldots, [n, n]$. Tree T has $\Theta(n)$ nodes and height $\Theta(\log n)$.

Each node v of T has the field $v.\text{min} := \min_{l \leq i \leq r} \{A[i]\}$ where $[l, r]$ is the interval for v. Note that if v is an internal node with children L, R, then $v.\text{min}$ can be computed in constant time by $v.\text{min} = \min\{L.\text{min}, R.\text{min}\}$. Constructing T top-down and filling in its fields bottom-up takes $\Theta(n)$ preprocessing time.

Queries. To answer an interval-minimum query on A for interval $[i, j]$, we find leaf v corresponding to interval $[i, i]$, leaf w corresponding to $[j, j]$, and the nearest common ancestor u of v, w by following the links from child to parent and marking nodes.

Note that u is the deepest node in T such that its interval $[l, r] \supseteq [i, j]$. Interval $[i, j]$ is exactly the union of the intervals for nodes that hang to the right on the path from u to v, and hang to the left of the path from u to w (see shaded nodes of Fig. 1). Taking the minimum of the min fields for these nodes answers the query.

Finding u, v, w and the minimum of the in-hanging nodes all take $O(\log n)$ time.

Figure 1: To conduct a query on $[i, j]$, first find the $[i, i]$ and $[j, j]$ leaves v, w and their nearest common ancestor u. Then trace along the paths from u to v and u to w, accumulating the minimum of v, w and inwards-hanging subtrees (shaded nodes), whose intervals are subsets of $[i, j]$. (The left/right orientations of parent-child links indicate which subtrees are inwards-hanging.)
4. (Single-pair longest common substring.)

Algorithm.

(a) Given input strings X, Y, form string $S := X\#Y$, where $\#$ $\notin \Sigma$. Construct the suffix array A and height array H for S.

(b) For each position $A[i]$, mark whether that suffix starts in string X or Y.

```
A
suffix origin: Y X X X X Y Y Y X
```

(c) Scan A to find index k such that

i. $A[k]$ and $A[k + 1]$ start in different strings, and

ii. $H[k]$ is maximum.

(d) Output the pair of substrings of X, Y that correspond to positions $A[k], A[k + 1]$ and have length $H[k]$.

For strings X, Y of lengths m, n this takes $\Theta(m + n)$ total time.

Correctness. Consider a longest common substring w of X, Y that occurs at positions i, j in S.

```
S
X \# Y
```

Suppose the suffixes S_i, S_j occur at indices \tilde{i}, \tilde{j} in A, where without loss of generality, $\tilde{i} < \tilde{j}$.

```
A
suffix origin: X \cdots X Y Y \cdots Y
```

Let index $k \in [\tilde{i}, \tilde{j}]$ be such that position $A[k]$ is in X and $A[k + 1]$ is in Y (which must exist). Notice that

$$
\ell := \text{lcp}(S_{A[k]}, S_{A[k+1]}) \\
= H[k] \\
\geq \min_{\tilde{i} \leq k < \tilde{j}} \{H[\tilde{k}]\} \\
= \text{lcp}(S_{A[\tilde{i}]}, S_{A[\tilde{j}]}) \quad \text{by problem 2} \\
= |w|.
$$
Since the substring of length ℓ starting at position $A[k], A[k+1]$ is a common substring of X,Y and $\ell \geq |w|$, it is also a longest common substring of X,Y. The algorithm finds an optimal k of this form, hence it finds a longest common substring of X and Y.
\[\square\]