
ISH(1) USER COMMANDS ISH(1)
NAME
ish - a shell (command interpreter) with a csh-like syntax and advanced interactive features.

SYNOPSIS
ish

DESCRIPTION
ish, a shell, is a command interpreter with a syntax similar to csh.

Initialization and Termination
When first started, ish performs commands from the file ~/.ishrc, provided that it is readable.
Typically, the ~/.ishrc file contains commands to specify the terminal type and environment.

Interactive Operation
After startup processing, an interactive ish shell begins reading commands from the terminal,
prompting with hostname%. The shell then repeatedly performs the following actions: a line of
command input is read and broken into words; this sequence of words is parsed (as described
under USAGE); and the shell executes each command in the current line.

USAGE

Lexical Structure
The shell splits input lines into words separated by spaces or tabs, with the following
exceptions:

•The special characters ‘&’, ‘|’, ‘<‘, ‘>’, and ‘;’ form separate words. The following sequences of
special characters form single words: ‘>>’, ‘|&’, ‘>&’, and ‘>>&’.

•Special characters preceded by a backslash ‘\’character prevents the shell from interpreting
them as special characters.

•Strings enclosed in double quotes (“) or quotes (‘) form part or all of a single word. Special
characters inside of strings do not form separate words.

Command Line Parsing
A simple command is a sequence of words, the first of which specifies the command to be
executed. A pipeline is a sequence of one or more simple commands separated by | or |&. With
‘|’, the standard output of the preceding command is redirected to the standard input of the
command that follows. With ‘|&’, both the standard error and the standard output are
redirected through the pipeline.
A list is a sequence of one or more pipelines separated by ‘;’ or ‘&’. These separators have the
following meanings:

; Causes sequential execution of the preceding pipeline. The shell waits for the pipeline to
finish. A newline character following a pipeline behaves the same as a ‘;’.

& Causes asynchronous execution of the preceding pipeline. The shell does not wait for the
pipeline to finish; instead, it displays the job number (see Job Control) and associated
process IDs, and begins processing the next pipeline (prompting if necessary).
CSc 552 -- Advanced Operating Systems Fall 2004, Project #1
1 of 3

ISH(1) USER COMMANDS ISH(1)
I/O Redirection
The following metacharacters indicate that the subsequent word is the name of a file to which
the command’s standard input, standard output, or standard error is redirected.

• < Redirect the standard input.

• >, >& Redirect the standard output to a file. If the file does not exist, it is created. If it
does exist, it is overwritten; its previous contents are lost. The ‘&’ form redirects
both standard output and the standard error to the file.

• >>, >>& Append the standard output. Like ‘>’, but places output at the end of the file
rather than overwriting it. The ‘&’ form appends both the standard error and
standard output to the file.

 Command Execution
If the command is an ish shell built-in, the shell executes it directly. Otherwise, the shell
searches for a file by that name with execute access. If the command-name contains a ‘/’, the
shell takes it as a pathname, and searches for it. If the command-name does not contain a ‘/’,
the shell attempts to resolve it to a pathname, searching each directory in the PATH variable
for the command.
When a file is found that has proper execute permissions, the shell forks a new process and
passes it, along with its arguments, to the OS using the execve (2V) system call (you must use
this system call). The OS then attempts to overlay the new process with the desired program. If
the file is an executable binary the OS succeeds, and begins executing the new process.
If the file does not have execute permissions, or if the pathname matches a directory, a
“permission denied” message is displayed. If the pathname cannot be resolved a “command not
found” message is displayed. If either of these errors occur with any component of a pipeline the
entire pipeline is aborted, although some of the components of the pipeline may have already
started running.
A pipeline is completed (i.e. returns to the prompt), only when all the commands that form a
part of the pipeline and that are being executed in the foreground are completed.

Environment Variables
Environment variables may be accessed via the setenv and unsetenv built-in commands.
Initially no environment variables are set, i.e. ish does not inherit environment variables from
its parent. Ish maintains environment variables internally, and must not use the C library
routines putenv or getenv . When a program is exec’ed the environment variables are passed
as parameters to execve . The only environment variable that ish interprets is PATH; all other
environment variables can be set and unset in ish using the above builtin commands, but are
not interpreted.

Signal Handling
The shell normally ignores QUIT signals. Background jobs are immune to signals generated
from the keyboard, including hangups (HUP). Other signals have the values that ish inherited
from its environment. Shells catch the TERM signal.

Job Control
The shell associates a numbered job with each command sequence, to keep track of those
commands that are running in the background or have been stopped with TSTP signals
(typically CTRL-Z). Jobs are put into the foreground using the tcsetpgrp system call. When a
command is started in the background using the ‘&’ metacharacter, the shell displays a line
with the job number in brackets, and a list of associated process numbers; e.g.,
[1] 1234
To see the current list of jobs, use the jobs built-in command. The job most recently stopped (or
put into the background if none are stopped) is referred to as the current job.
CSc 552 -- Advanced Operating Systems Fall 2004, Project #1
2 of 3

ISH(1) USER COMMANDS ISH(1)
To manipulate jobs, refer to the built-in commands bg, fg, and kill.
A reference to a job begins with a ‘%’. Refer to job number j as in: ‘kill %j’.
A job running in the background stops when it attempts to read from the terminal. Background
jobs can normally produce output, but this can be suppressed using the ‘stty tostop’ command.

 Status Reporting
While running interactively, the shell tracks the status of each job and reports whenever it
finishes or becomes blocked. Status only need be reported prior to printing the prompt; this
means that job status may be polled via wait . Do not use signal handlers to track job status.

 Built-In Commands
Built-in commands are executed within ish. If a built-in command occurs as any component of a
pipeline except the last, it is executed in a subshell.

bg %job ... Run the specified job in the background.

cd [dir] Change the shell’s working directory to directory dir. If no
argument is given, change to the home directory of the user.

exit Causes ish to exit.

fg %job Bring the specified job into the foreground.

jobs List the active jobs under job control.

kill %job ... Send the TERM (terminate) signal to the job indicated. To insure
termination, the job is also sent a CONT (continue) signal.

setenv [VAR [word]] With no arguments, setenv displays all environment variables.
With the VAR argument, it sets the environment variable VAR to
have an empty (null) value. (By convention, environment variables
are normally given upper-case names.) With both VAR and word
arguments, setenv sets the named environment variable to the
value word, which must be either a single word or a quoted string.

unsetenv VAR Remove VAR from the environment.

FILES
~/.ishrc Read at beginning of execution by each shell.

LIMITATIONS
Words can be no longer than 1024 characters. The system limits argument lists to 1,048,576
characters.
CSc 552 -- Advanced Operating Systems Fall 2004, Project #1
3 of 3

	Initialization and Termination
	Interactive Operation
	Lexical Structure
	Command Line Parsing
	I/O Redirection
	Command Execution
	Environment Variables
	Signal Handling
	Job Control
	Status Reporting
	Built-In Commands

