
CSc 552, Fall 2004 John H. Hartman

d in a
it a

that
mber

n to

n be
e the
quire
a bit

led.
n the
t data
disk,

ize
taining
to a

at the

ctory
nt of a
rs.

ble and
ent is
with
Project 2: Log-Structured File System

 Due: December 7, 2004 at midnight

Overview

Implement a log-structured file system that allows applications to read and write files store
log. The functionality is similar to that described in the LFS paper, although I’ve simplified
bit.

Log Format

The log is stored on a virtual disk represented by a single UNIX file. You must write a utility
creates and initializes the disk. The parameters to this utility should include the size and nu
of segments in the disk, and the size of the file blocks. The utility uses this informatio
initialize whatever metadata the disk contains.

Log I/O

All I/O to the disk is done in units of segments; that is, the smallest amount of data that ca
read or written is one segment. The file system will read and write in units of file blocks (se
next section), which are smaller than segments. Therefore, reading a file block may re
reading an entire segment from the disk and discarding the unneeded portions. Writing is
more difficult, but one way to do is it to maintain a “current segment” that is currently being fil
Space is allocated from the current segment to hold file blocks and file metadata; whe
segment is full it is written to the disk and a new current segment started. One issue is tha
may die before the segment is written to disk. You need not worry about writing dead data to
but you must ensure that this space is eventually reclaimed by the cleaner.

Files

You must implement a UNIX-like hierarchical file system. A file is a collection of fixed-s
blocks as specified when the file system was created. A file is represented by an inode con
the file’s metadata including 4 direct pointers to file blocks and 1 indirect pointer that points
block containing direct pointers. Inodes are stored in a special file called the imap. Note th
imap is simply a special kind of file.

You should use the standard UNIX directory mechanism to implement file names, i.e. a dire
is a file containing a list of (component,inode #) pairs. You may assume that each compone
name is at most 8 characters, and the entire pathname is at most MAXPATHLEN characte

Cleaner

The cleaner is responsible for cleaning the log. It should use the same segment usage ta
cost/benefit calculation as the LFS paper to determine which segments to clean. A segm
cleaned by copying its live data to the end of the log. Cleaning must happen concurrently
1

CSc 552, Fall 2004 John H. Hartman

two
eaning
below.

ystem
the

g so
n that
ving to
the
ple, a

elf as
ader

rt of
LFS
ay be
res are
cess.
n the

ide a

ber of
application file access (you can’t stop the world while cleaning). Cleaning is controlled by
parameters to the cleaner. The first is the minumum number of free segments before cl
begins. The cleaner starts cleaning when the number of segments falls to this number or
The second is the number of free segments at which point the cleaner stops cleaning.

Crash Recovery

During a crash the current segment and data not yet written to the disk are lost. Your s
should recover from a crash by periodically checkpointing its state and rolling forward from
most recent checkpoint. Roll-forward requires that you store additional information in the lo
that the metadata can be updated properly. For example, a file block may have informatio
indicates to which file it belongs so the metadata can be updated. Checkpoints prevent ha
rollforward from the beginning of the log. The checkpoint interval is configurable and is
number of segments that can be written before a checkpoint must be done. For exam
checkpoint interval of 1 means that a checkpoint will occur after every segment written.

Checkpoints can be written to a special location on disk as per the LFS paper, or in the log its
per Zebra. You can put them in the log if you put checkpoint information in the segment he
indicating whether or not a particular segment contains a checkpoint and where it is.

Use segment checksums to detect corruption caused by a crash when writing a segment.

Concurrency

Multiple applications may access your LFS simultaneously. You must provide some so
synchronization to prevent metadata corruption. I think the simplest solution is to have an
process that all applications communicate with to access the LFS. The LFS process m
multithreaded to support cleaning and simultaneous accesses, but all LFS data structu
confined to a single process. It also makes it easy to simulate a crash by killing this pro
Alternatively, you can used shared memory to share the LFS data structures betwee
application programs. The choice is yours, but if you go this latter route you need to prov
mechanism that simulates a crash.

API

Applications use the following routines to access your file system.

int
LFS_Read(

char *name, // name of file read
int offset, // offset at which to read
int size, // amount to read
void *buffer); // buffer in which to put data

 Description
Readssizebytes of data from filenamestarting at offsetoffset. The data are put intobuffer. It is not an
error to read beyond the end of the file; the read is simply truncated at the end of the file and the num
bytes read returned.

 Returns
2

CSc 552, Fall 2004 John H. Hartman
number of bytes read on success
-1 name does not exist
-2 name is too long
-3 offset must be positive
-4 size must be positive

int
LFS_Write(

char *name, // name of file write
int offset, // offset at which to write
int size, // amount to write
void *buffer); // data to write

 Description
Writessizebytes of data to filenamestarting at offsetoffset. The data written frombuffer. The file is cre-
ated if it does not already exist.

 Returns
number of bytes written on success
-2 name is too long
-3 offset must be positive
-4 size must be positive
-5 name is a directory
-6 invalid path (path to name either doesn’t exist or contains a file)
-10 no space (no free space, inodes, directory entries, etc.)

int
LFS_Mkdir(

char *name); // name of file write
 Description

Creates a directory with the given name.
 Returns

0 success
-2 name is too long
-6 invalid path (path to name either doesn’t exist or contains a file)
-7 name already exists
-10 no space (no free space, inodes, directory entries, etc.)

int
LFS_Rmdir(

char *name); // name of file write
 Description

Deletes an empty directory with the given name.
 Returns

0 success
-1 name does not exist
-2 name is too long
-6 invalid path (path to name either doesn’t exist or contains a file)
-8 name is a file
-9 directory is not empty

int
LFS_Link(

char *old, // old file name
char *new); // new file name
3

CSc 552, Fall 2004 John H. Hartman

ere is
ly on
e
;
ct as
can

t
our
as any
 Description
Creates a new name for a file.

 Returns
0 success
-1 old does not exist
-2 old or new is too long
-5 old is a directory
-6 invalid path (path to old or new either doesn’t exist or contains a file)
-7 new already exists
-10 no space (no free space, inodes, directory entries, etc.)

int
LFS_Unlink(

char *name); // file name to remove
 Description

Removes the name of a file. The file is deleted if it has no more names.
 Returns

0 success
-1 name does not exist
-2 name is too long
-5 name is a directory
-6 invalid path (path to name either doesn’t exist or contains a file)

Logistics

This project will be done in teams of size one or two. Since working in groups means that th
a danger of one person not carrying his or her load, I’m likely quiz each group member oral
any part of the system during the final demos.Each group member must be familiar with th
overall design and structure of their group’s project. I encourage you to work in groups of two
should you decide to work alone you will not be expected to complete as much of the proje
the larger groups. I leave it up to my discretion as to how much this will be, although you
expect it to be more than half of what the larger groups must complete.

Turn in your assignment using the assignment name552lfs. You must include a design documen
(PDF preferred). You will demo your project to me as part of the grading and I will read y
design document prior to the demo. Be sure to include what does and doesn’t work, as well
cool features you implemented. The demos will take place on the December 8 and 9.Your
assigment will be graded on lectura.
4

	Project 2: Log-Structured File System
	Overview
	Log Format
	Log I/O
	Files
	Cleaner
	Crash Recovery
	Concurrency
	API
	Logistics

