
Review of
Quantifying Behavioral Differences

Between C and C++ Programs
by Brad Calder, Dirk Grunwald, and Benjamin Zorn

Michelle Strout
January 19, 2006

1/19/2006 Example Review 2

What problem did the paper address?

  Big picture problem
–  How can we make C++ programs execute faster using hardware

technology and compiler optimizations?

  Why the problem is hard
–  C++ is a new language (1995) and perceived as different than previous

languages
–  Computer architecture and optimizing compiler design has been driven by

the behavior in C benchmarks

  Specific Problem
–  How do C++ programs behave in comparison to C programs?

1/19/2006 Example Review 3

Why should we care?

  In 1995 C++ was becoming the standard programming language in
industry

  Similar program behavior studies in C and Fortran
–  guide computer architecture design
–  guide optimizing compiler design directly and indirectly through

computer arch design

  No other study had compared the behavior between to closely related
languages

  Benchmark selection
–  C programs from SPEC benchmarks, which are still used extensively in

the computer architecture community: gcc, tex, etc.
–  C++ programs are academia and industry applications with many users

1/19/2006 Example Review 4

What is the approach used to solve this problem?

  Empirical study of the behavior of C and C++ programs
–  hypothesis: “...C++ programs behave quite differently from C programs and that

these differences may have a significant impact on performance”
–  select C and C++ benchmarks

–  that many people use
–  select some C++ benchmarks that have similar goals to C benchmarks

–  collect static and dynamic statistics about the program using the ATOM tool,
execute programs on DEC Alpha architecture

–  also use cache simulation based on dynamic memory reference stats

  Static statistics
–  # of instructions, # of functions, #instrs/function, etc.

  Dynamic statistics
–  # of instructions, # func calls, # of indirect func calls, instrs per call, branching

behavior, memory reference behavior, etc.

1/19/2006 Example Review 5

How does the paper support the conclusions it reaches?

  Some of their conclusions (most based directly on empirical results)
–  DHRYSTONE benchmark does not capture the behavior of C or C++

programs
–  C++ programs have “shorter procedures that are often reached via indirect

function calls”, therefore need procedure inlining
–  C++ programs need different branch prediction architectures
–  C++ programs may have ILP problems
–  C++ program performance improves with a customized memory allocator

–  actually did a study to show this
–  link-time optimizations will be important

1/19/2006 Example Review 6

Future Research Questions

  How do specific optimizations and reasonable optimization combinations
affect performance differently in C and C++ programs?

–  constant propagation could help virtual method resolution
–  how many loops are parallelizable?

  What affect does alias/pointer analysis precision have on the program
optimizations that are possible and their affect on performance?

  How much ILP is available in C++ programs? Similar to the Wall study.

  Is their a relationship between conditional branch directions and indirect
function call targets?

1/19/2006 Example Review 7

Critique

  Hypothesis
–  have one, which is great
–  the hypothesis is weak and the experiments can only validate the first part

  “Truth in advertising”
–  points out in multiple places that the results rely heavily on the set of benchmarks
–  which compiler you use and which version of the operating system are important

  Empirical results
–  in each section they describe why the measurements they are taking are important

  Benchmarks
–  DHRYSTONE benchmarks were meant to model “average system behavior”, they

don’t tell us what programs Weicker used to derive this
–  They say that input doesn’t have an effect. That is definitely not the case for

performance in irregular applications, but they are studying #function calls, etc.

1/19/2006 Example Review 8

Relation to CS653

  Shows how to define a program performance problem
–  carefully select a set of benchmarks
–  collect statistics and calculate metrics about program behavior
–  determine how these statistics and metrics affect execution time

–  they used previous knowledge about this

  The next step
–  develop program optimizations (including the analyses that support them)

to change those statistics and metrics in a way that improves execution
time

  Related possible project
–  profiling benchmarks with Tau
–  redo the profiling after an optimizing compiler has “optimized” the

benchmarks

