A Simple Improved Distributed Algorithm for Minimum CDS in Unit Disk Graphs

Stefan Funke
Max Planck Institut für Informatik, Saarbrücken, Germany.
Email: funke@mpi-sb.mpg.de.

Alex Kesselman
Max Planck Institut für Informatik, Saarbrücken, Germany.
Email: akessel@mpi-sb.mpg.de.

Ulrich Meyer
Max Planck Institut für Informatik, Saarbrücken, Germany.
Email: umeyer@mpi-sb.mpg.de.

Michael Segal
Communication Systems Engineering Dept., Ben Gurion University, Beer-Sheva, Israel.
Email: segal@cse.bgu.ac.il.

The second author has done a part of this work while visiting the Dipartimento di Scienze dell’Informazione at Universita di Roma La Sapienza, Italy. Supported in part by AvH-Stiftung, EYES project and MIUR grant FIRB WebMinds.
Abstract

We consider the problem of finding a minimum connected dominating set (CDS) in unit disk graphs. Algorithms for computing a small CDS are essential for efficient routing in ad hoc networks, where nodes in CDS form a virtual backbone. We present a very simple distributed algorithm for computing a minimum connected dominating set (MCDS). Our algorithm explicitly deals with the problem of interference between neighboring stations and produces a CDS of at most 6.91 times the size of a minimum CDS, improving upon the previous best known approximation factor of 8 due to the work of Wan et al. [INFOCOM'02]. The crux of the proof is an improved analysis of the relationship between the size of a maximal independent set and a minimum CDS in a unit disk graph, which is also of benefit for many other algorithms.

I. INTRODUCTION

Wireless ad hoc networks appear in a wide variety of applications, including military battle-field, disaster relief, sensing and monitoring. Unlike wired networks, no physical backbone infrastructure is installed in wireless ad hoc networks. Instead, the nodes communicate either directly or via intermediate nodes. In this paper we assume that all nodes are located in a Euclidean plane and have an equal transmission range of 2. The topology of such a network can be modeled as a unit-disk graph \(G = (V, E) \). Two nodes are adjacent if the unit disks centered at them intersect, i.e., their inter-distance is at most two. Although a wireless ad-hoc network has no physical backbone infrastructure, a virtual backbone can be formed by nodes in a connected dominating set (CDS) of \(G \). A CDS of \(G \) is a subset \(S \subseteq V \) such that each node in \(V \setminus S \) is adjacent to some node in \(S \) and the communication graph induced by \(S \) is connected. We denote by OPT a minimum CDS in \(G \).

The problem of finding a minimum CDS in a unit disk graph has been shown to be NP-hard [4]. The work in [6] proposes a 10-approximation centralized algorithm for this problem. The work in [3] presents a PTAS that guarantees an approximation factor of \((1+1/s)\) with running time of \(n^{O((s \log s)^2)} \). However, centralized algorithms cannot be applied to real networks. Recently, distributed construction of a small CDS has attracted a great deal of attention. The currently best known distributed algorithm due to [7] has an approximation factor of 8 and running time \(O(n) \). However, the analysis of [7] ignores delays incurred by interference. An algorithm recently presented in [5] w.h.p. computes a 192-approximation in \(O(n \log n) \) time and explicitly handles interference. The algorithm of [5] is based on a D2-coloring, where no two nodes at 2-hop distance can have the same color.

In this paper we present a very simple 6.91-approximation algorithm for computing a minimum CDS
in unit disk graphs. That improves upon the previous best known approximation factor of 8 due to [7].

Our algorithm uses D2-coloring of [5]. We also show an improved analysis of the relationship between
the size of a maximal independent set and a minimum CDS in a unit disk graph, which yields better
bounds for many previous algorithms [1], [2], [5], [6], [7]. Note that a maximal independent set is also
a dominating set, which only needs to be connected to obtain a CDS.

The rest of the paper is organized as follows. The distributed CDS algorithm is presented in Section
II. In Section III we bound the size of any independent set as a function of MCDS size. Section IV
contains some concluding remarks.

II. A SIMPLE DISTRIBUTED ALGORITHM FOR MCDS

In this section we present a very simple distributed algorithm computing a CDS of G. We assume
that there exists an assignment of time slots to the nodes such that no interference occurs and each node
transmits exactly once. Such an assignment can be determined using the D2-coloring algorithm from [5].

Let us denote by \(q \leq n \) be the number of different time slots in this assignment.

In the course of our algorithm, we construct a connected set \(S \) and an independent set \(I \subseteq S \). In a
nutshell, we color a node (without connection to D2-coloring) with the following colors: black – the
node is a part of \(I \); blue – it is not in \(S \) but adjacent to a node in \(I \); grey – it is in \(S \) but not in \(I \), red –
it is neither black, grey, nor blue, but a neighbor to a grey or blue node; and white – it is neither black
nor grey nor blue, nor a neighbor to a grey or blue node. Initially, one node is colored red (this node
can be chosen by running a leader election algorithm) and all other nodes are colored white. Each red
node \(u \) (except the first one) keeps its parent grey node.

The execution of our algorithm is divided into rounds. Each round consists of three phases and in each
phase we use a conflict-free time slots assignment so that each node is able to transmit once. Basically,
in a round each red node with minimum ID among its red neighbors joins \(I \) and its blue parent joins \(S \).

Then the colors of the relevant nodes are updated accordingly. The algorithm is presented on Figure 1.

A. Analysis

The algorithm terminates when there remain no white and red nodes. Next we state the main theorem.

Theorem 2.1: Our algorithm computes a connected dominating set \(S \) in \(G \) with \(|S| \leq 6.91 \cdot |\OPT| + 16.58 \)
and has running time and message complexity of \(O(|\OPT| \cdot n) \).

Proof: The fact that the final set \(S \) (black and grey nodes) is indeed a CDS, can be easily established
by verifying the following invariants maintained throughout the execution of our algorithm:
I. APPLY PHASE: Each red node sends an APPLY-MSG with its ID.

II. CONFIRM PHASE: Each red node that during the first phase received only APPLY-MSG’s of nodes with larger ID if any, colors itself black and sends a CONFIRM-MSG(black) with its ID and parent’s ID. Each blue node that receives a CONFIRM-MSG(black) with parent ID equal to its own ID, colors itself grey.

III. UPDATE PHASE: Each red or white node that during the second phase received one or more CONFIRM-MSG(black), colors itself blue and sends an UPDATE-MSG(blue) with its ID. Each white node that receives an UPDATE-MSG(blue) from node \(v \) colors itself red and sets its parent to be \(v \).

![Fig. 1. The distributed CDS algorithm.](image)

1) The set of black nodes \(I \) form an independent set in \(G \) and dominate the set of grey and blue nodes;

2) The subgraph induced by black and grey nodes is connected;

3) If the set of black nodes does not form a dominating set of \(G \), there is at least one red node;

4) In each round at least one red node turns black.

Note that \(|S| \leq 2|I| \). That is due to the fact that each grey node \(u \) can be associated with a unique black node \(v \) s.t. \(u \) was parent of \(v \). As we show in Section III, \(|I| \leq 3.453 \cdot |OPT| + 8.291 \), which implies that \(|S| = O(|OPT|) \).

The running time of our algorithm is \(O(|OPT| \cdot q) \), since each phase lasts \(q \) rounds. The message complexity is \(O(|OPT| \cdot n) \) because during each phase at most \(n \) messages are sent (the message size is \(O(\log n) \) bits). ■

III. Bounding the Size of an Independent Set

In this section we bound the size of any independent set in \(G \) with respect to the size of \(OPT \). The first bound will follow by dividing the area covered by the union of all unit disks in \(G \) in terms of \(|OPT| \) by the area covered by a single unit disk from the independent set.

Theorem 3.1: The area covered by the union of unit disks in \(G \) is at most \(|OPT| \cdot 11.774 + 9\pi \).

Proof: Consider the set \(L \) of disks with radius 3 around the centers of unit disks from \(OPT \). Clearly, all unit disks corresponding to the nodes of \(G \) must be contained in the union of the disks in \(L \) and this union is connected. To bound the area covered by \(L \), we mimic the growth of a spanning tree of \(OPT \).
In iteration \(i\), we add a new disk \(l_i\) whose center has distance at most 2 to a center of the already added disks \(l_1, \ldots, l_{i-1}\). We consider the area 'newly covered' by \(l_i\), i.e., the area not covered by the union of disks \(l_1, \ldots, l_i\).

Note that the center of \(l_i\) is at distance at most 2 from the center of a \(l_j\) s.t. \(j < i\). The newly covered area is thus at most the hatched area on Figure 2, where \(|c_jm| = |c_im| = 1\). Let \(\alpha = \angle i_1cjm\) be the angle spanned by \(i_1\) and \(m\) at \(c_j\). We have \(\cos \alpha = 1/3\) and \(|mi_1| = |mi_2| = \sqrt{8} = 2\sqrt{2}\). The hatched area can then be computed by considering a \(2\pi - 2\alpha\) sector of \(D_i\), subtracting a \(2\alpha\) sector of \(D_j\) and adding the area of the diamond \(i_1cji_2\). Hence, we get:

\[
A_h = \frac{2\pi - 2\alpha}{2\pi} 9\pi - \frac{2\alpha}{2\pi} 9\pi + 4 \cdot \frac{1}{2} \cdot 1 \cdot 2\sqrt{2} \\
= (\pi - 2 \arccos(1/3)) \cdot 9 + 4 \cdot \sqrt{2} \\
\leq 11.774
\]

Therefore, the total area covered by \(L\) is at most \(|\text{OPT}| \cdot 11.774 + 9\pi\).

![Fig. 2. Arguing about the covered area.](image)

We note that this bound immediately implies that the size of any independent set is bounded by \(3.748 \cdot |\text{OPT}| + 9\) since it consists of disjoint disks, which are contained in the area covered by \(L\). Next we will derive even better bound. Let us consider the Voronoi diagram of the centers \(c_i\) of the disks in \(L\). How small can the Voronoi cell of a point \(c_i\) be? It is not hard to see that since all \(c_i\)'s have pairwise distance of at least 2, the smallest possible Voronoi cell is a regular hexagon of width \(w = 2\). See Figure 3, left. The area of this hexagon is \(\frac{\sqrt{3}}{2} w^2 = 2\sqrt{3}\).

Theorem 3.2: The size of any independent set in a unit disk graph \(G\) is at most \(3.453 \cdot |\text{OPT}| + 8.291\).
Proof: First observe that any point in the Voronoi Cell of c_i is either covered by the unit-disk around c_i or not covered at all (if it was not covered by the unit disk centered at c_i but by another unit disk, it would not be in the Voronoi cell of c_i). So basically each placed unit-disk ‘uses’ up an area of $2\sqrt{3}$ (and not only π) from the area of the region covered by L with the only exception of points near the boundary. If c_i is close to the boundary, part of its Voronoi cell might lie outside the region covered by L. But still it is easy to give a lower bound on the area z of the intersection of the Voronoi cell of c_i with the region covered by L. Assume that the other points c_j are allowed to be placed arbitrarily, in particular also outside the region covered by L. The area z is minimized when there are 6 centers c_j placed regularly at distance 2 around c_i. How much of c_i’s Voronoi cell can then lie outside the region covered by L? As it is illustrated on Figure 4, at most $(2\sqrt{3} - \pi)/6$, that is one ‘ear’ of the regular
hexagon. Hence, we can uniquely assign each c_i an area of

$$2\sqrt{3} - (2\sqrt{3} - \pi)/6 \geq 3.410$$

from the area covered by L. Therefore, the number of disjoint unit disks that can be placed in the region covered by L is at most

$$\frac{|OPT| \cdot 11.774 + 9\pi}{3.410} \leq 3.453 \cdot |OPT| + 8.291.$$

We note that the same technique can be used to improve the number of non-adjacent D2/D3-Neighbors to 22 and 44 respectively improving upon the previously best bounds of 23 and 47. This has a direct impact on the size of several CDS constructions, which also have bounded geometric and topological dilation, like in [2], [5].

IV. CONCLUDING REMARKS

In this work we have proposed an improved distributed 6.91-approximation algorithm for computing a connected dominating set in unit disk graphs. The algorithm is very simple and can be easily implemented in wireless ad hoc networks. In particular, we have shown an improved analysis of the relationship between the size of a maximal independent set and a minimum CDS in a unit disk graph, which yields better bounds for many other algorithms. An obvious open problem is to further improve the analysis of the relationship between the size of a maximal independent set and a minimum CDS or design algorithms based on different techniques.

REFERENCES

