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ABSTRACT

Wireless sensor networks offer the potential to span anditoron
large geographical areas inexpensively. Sensors, howbkage
significant power constraint (battery life), making comrication
very expensive. Another important issue in the context okee
based information systems is that individual sensor remdare
inherently unreliable. In order to address these two aspsehsor
database systems like TinyDB and Cougar enable in-netwatik d
aggregation to reduce the communication cost and imprdiee re
bility. The existing data aggregation techniques, howeses lim-
ited to relatively simple types of queries suchSidM COUNT,
AVG, andM N MAX. In this paper we propose a data aggregation
scheme that significantly extends the class of queries #rabe
answered using sensor networks. These queries includeofapp
mate) quantiles, such as the median, the most frequent aiatasy
such as theonsensusalue, a histogram of the data distribution,

1. INTRODUCTION

With the advances in hardware miniaturization and intégmait
is possible to design tiny sensor devices that combine rsgmgth
computation, storage, and communication. Availabilitgoth de-
vices has made it possible to deploy them in a networkedngetti
for applications such as wildlife habitat monitoring [1@jild-fire
prevention [7], and environmental monitoring [16]. As nesns-
ing devices are developed, it is envisioned that sensorankswill
be used in a large number of civil and military applicatioB®ing
beyond traditional temperature, sound or magnetic senaarext
generation of sensor technology is emerging which can sinse
more diverse physical variables. In particular, highlysstve and
selective biological/chemical sensors are in developrfemapid
detection of hazardous biological and chemical agents][2, 3

In order to support advanced sensing technology, it is Isaces
to develop information and communication infrastructurevhich

as well as range queries. In our scheme, each sensor aggregat such sensors can be gainfully deployed. The MICA2 mote kavai

the data it has received from other sensors into a fixed (ps®i-s
fied) size message. We provide strict theoretical guarardeehe
approximation quality of the queries in terms of the messane.

We evaluate the performance of our aggregation scheme by sim
ulation and demonstrate its accuracy, scalability and lesource
utilization for highly variable input data sets.
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able from Crossbow Technology [5]) with TinyOS operating-sy
tem [14] developed at UC Berkeley represents a typical mgld
block of such an infrastructure. The key characteristic ¢€R2
motes is that it is severely limited in terms of computati@pa-
bilities, communication bandwidth, and battery power. o
issue is the inherent unreliability of the sensing fundidgy. Al-
though as a first order of approximation, sensor networkgpcizm
ing multiple sensor nodes can be viewed as a distributedrsyst a
network of computers, the limited capabilities of individisensor
nodes necessitate a careful design of both the commuricatid
information infrastructure. Although hardware advanaeslikely
to result in reducing the footprint of such devices even mtre
limitations and unreliability will continue to remain. Nwarous ef-
forts are in progress to build sensor networks that will Geatifze
for a broad range of applications [14].

Most common mode in which sensors and sensor networks are
deployed is in the context of monitoring and detection ofical
events in a physical environment. Typically, each sensderul-
lects data from its physical environment and this data nezte
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ther analysis. The simplest way this can be accomplishem |t t
each sensor node deliver its data periodically to the hospater,
referred to as théase stationwhere the data can be assembled
for subsequent analysis. This approach, however, is wasiece

it results in excessive communication. When combined with t
fact that transmitting one bit over radio is at least thredecs of
magnitude more expensive in terms of energy consumption tha
executing a single instruction, alternative approachescégarly
warranted. In order to address this problem, proposals haea
made to exploit the multi-hop routing protocols in sensdmaeeks

in such a way that messages from multiple nodes are combired e



route from the sensor nodes to the base station [11]. Routing
such a network can be visualized as a routing tree with the bas
station as the root and nodes sending messages up the taregow
the root. Although this approach does reduce the number sf me

end, we introduce Quantile Digest or g-digest : a novel dates
ture which provides provable guarantees on approximatioor e
and maximum resource consumption. In more concrete tefms, i
the values returned by the sensors are integers in the fapgg

sages, it still suffers from the problem of larger messagessas
information passes through the routing tree from the leaesdo
the root node, i.e., the base station.

Researchers at UC Berkeley [18, 17] (TinyDB project) and-Cor
nell University [24] (Cougar) have developed energy efficguery
processing architectures over sensor networks. Theioappris
based on a couple of observations : first, for a user, theiohei

sensor values do not hold much value. For example, in a sensor

network spanning thousands of nodes, the user would likeadak
the average temperature of an extended region which migint sp
large number of sensors. Second, extracting all the datafoat
sensor network is very inefficient in terms of bandwidth and/er
usage. It is much more efficient to gather an overview of tha to
range of data with aggregate measures sudtVERAGE, SUM
COUNT, andM N/ MAX. In addition to energy benefits, aggregation
can help us reduce the effects of error in sensor readingszidn
ual sensor readings are inherently unreliable and, thexefaking
an average of multiple sensor values gives a more accurctie i
of the true physical data value. Based on these considesatite
Cougar and TinyDB architectures have proposed usisgetwork

aggregationto compute such aggregates over the routing tree, min-

imizing both the number of messages as well as the size ofése m
sages. Note that measures sucMall andMAX are not strictly ag-
gregate measures and are indeed singleton sensor valu®saikh
however easy to compute in the same data aggregation framewo
Although aggregation measures suchAR&RAGE andSUMare
sufficient in many applications, there are situations wiiey tay
not be enough. In particular, in the context of biological hem-
ical sensors, individual readings can be highly unrelialé even
a handful of outliers can introduce large errors in singlgragate
values such a&\WVERAGE and SUM For example, the electronic
nose project [2] based on chemical sensors deploys a langerse
array for detecting chemical agents. The distribution dfiea on
the array is used as a chemical signature to classify thet agen
being safe or unsafe. In such environments, we envisionittieat
important not only to estimate single-valued aggregatesomedbut
also estimate the distribution of the sensor values. Byrpthe
estimate of the data distribution available at the baséstatisers

can pose more complex queries and perform more sophigticate

analysis by computing median, quantiles, and consensusuresa
Our goal in this paper is to develop techniques that wouldlkena
such an estimate of data distribution of sensor values hiabiaat
the base station in an energy efficient manner while progidirnict
error guarantees.

Although measures such AYERAGE and MEDI AN seem very
similar at first glance, the amounts of resource requiredoto-c
pute them are very different. To compu&WERAGE, every node
sends two integers to its parent, one representing the suafl of
data values of its children and the other is the total numbéso
children [17]. In other wordsAVERAGE can be computed by using

constant memory and by sending constant sized messagebeOn t

other hand, to answerMEDI AN query accurately, we need to keep
track of all distinct values and thus the message size andomyem
required to store it grows linearly with the size of the natworo
get around this difficulty we focus oapproximationschemes to
answer quantile and related queries. For most sensor rietyper
plications 100% accuracy is not necessary and our appréxima

then using g-digest we can answer quantile queries usingages
size m within an error of O(log(c)/m). We also outline how
we can use g-digest to answer other queries such as rangesjuer
most frequent items and histograms. Another notable prppér
g-digest is that in addition to the theoretical worst casaniicerror,
the structure carries with itself an estimate of error fas garticu-
lar query.

The organization of the rest of the paper is as follows. Itisac
2 we discuss the model we shall be working with and some gklate
work. Section 3 is devoted a to a detailed description ofggst
and how it performs in-network data aggregation. In secfiowe
shall show how one can query g-digest to obtain quantitiéstef-
est. Then in section 5 we move on to an experimental evatuafio
our scheme under various inputs. Finally we discuss exiaasd
g-digest and outline directions for future work.

2. BACKGROUND AND RELATED WORK

We consider a network of sensor devices, where all devices
are sensing in a common modality. Without loss of generality
each sensor’s reading is assumed to be an integer valuerarthe
[1, o], whereo is the maximum possible value of the signal. The
network contains a special node, called base station, wkiof+
sponsible for initiating the query, and collecting the dfaten the
sensors. When a query is initiated by the base station, tisose
organize themselves in a spanning tree, rooted at the batsenst
which acts as the routing tree for sensors to propagate stugial
values towards the base station. Actually a routing treeises-
sential to our purposes; the only requirements we imposéen t
routing scheme is that there be no routing loops and no datplic
packets. The routing tree can be used for query dissemmato
well. In this paper, we assume that the links between sertaEs
are reliable (no packets are lost), and focus exclusiveltherdata
aggregation problem.

An aggregate such a#&DI AN is intrinsically more difficult to
compute tharM N, MAX, or AVERAGE. In fact, under the natural
assumption that each sensor only forwards a fixed amounttaf da
itis easy to argue that one cannot calculate the median yastaer
quantile) precisely. Imagine, for instance, a simple siturewhere

sensorA calculates the median based on the medians received from

two other sensor® andC. Even if B andC know the exact me-
dian of their own data, there is an inherent uncertaintg’Bxcom-
putation: A doesn’t know the rank oB’s median in dataset af’
and vice-versa. IB andC aggregate data from sensors each,
then A’s estimate of the combined median can have errer/@fin
the worst case.

This argument shows that, with the in-network aggregatiodeh
only an approximation of th&EDI AN, or quantiles, is possible.
Our scheme, in fact, shows the best possible approximatiafity
(asymptotically), and offers a trade-off between the mgssaze
and the error guarantee.

2.1 Related Work

The problems of decentralized routing, network mainteaamz
data aggregation in sensor networks have led to novel idsehal-
lenges in networking, databases, and algorithms [15, 6{erims
of providing database queries over sensor networks, TinyI3B
at UC Berkeley and Cougar [24] at Cornell University are the t

scheme can be adapted to meet any user specified toleratee at t

expense of higher memory and bandwidth consumption. To this major efforts. They provide algorithms for many interegtaggre-

gates such a€AX, M N, AVERAGE, SUM COUNT. For queries such



asMEDI AN, TinyDB does not perform any aggregation; all data is
delivered to the base station whavEDI ANis calculated centrally
[17]. Approximate aggregation schemes for more complexigsie
such as contours and wavelet histograms have been propwsed f
the TinyDB system [12]. These algorithms perform fairly el
practice, but they do not provide any strict bounds on eZbiao
et al. [25] have also suggested algorithms for construcing-
maries likeMAX, AVG. The focus of their work is however more on
network monitoring and maintenance, rather than database/.q
Considine et. al. [4] have discussed how to com@@eNT, SUM
AVERAGE in a robust fashion in the presence of failures such as lost
and duplicate packets. Przydatek et. al. [21] have disdusseure
ways to aggregate data, but with only one aggregating nameui
knowledge, this work is the first to provide efficient approgie
algorithm for queries like quantiles, consensus and range.

The data streams community has also dealt with very similar

problems where queries on large amounts of data need to be an-

swered with limited memory. In the data stream model, tha dat
is not stored and hence can be examined only once. In sensor ne
works the data is stored, but is distributed. In the contéxtada
streams, Greenwald and Khanna [8] have proposed an effagent
proximation algorithm for computing quantiles. Manku andtM
wani [19] have provided approximate algorithms for findimg-f
quent items. A recent work by Hershberger et al. [13] can leel us
to compute quantile and frequent items. Since this papersuas
mitted, Greenwald and Khanna [9] have proposed a distiitaga-
sor network algorithm to find approximate quantiles usingsage
sizemm within an error of©O(log®(n)/m). The similarity between
the problems that arise in sensor networks and data stresjgest
that it will be a fruitful avenue of research to exploit thesights
gathered on one field on the other one.

3. THE QUANTILE DIGEST

Figure 1: g-digest: Complete binary treeT built over the entire
range|[1...o] of data values. The bottom most level represents
single values. The the dark nodes are included in the g-diges
@, and number next to them represent their counts.

information. We can extract information on quantiles, data
distribution and consensus values from this structureawmith
further querying the sensor nodes.

The core idea behind g-digest is that it adapts to the daté-dis
bution and automatically groups values into variable stngckets
of almost equal weights. Since g-digest is aimed at sumingriz

A query processing framework for a sensor database needs tothe data distribution and to support quantile computaiids,use-

support both single valued queries suchA84 as well as more
complex queries likéll STOGRAM Using the TinyDB framework,
many single valued queries can be answered accurately viith m
mal resource usage.

In order to support more complex query functionality, we-pro
pose a new summary structure, referred to as the g-digeah{qu
tile digest), which captures the distribution of sensoadgiproxi-
mately. g-digest has several interesting properties wdickv it to
be used in different ways.

1. Error-Memory Trade-off g-digest is an adaptive query frame-
work in which users can decide for themselves the appropri-

ful to compare it with traditional database approaches sischis-
tograms. The critical difference between g-digest anddittomal

histogram is that g-digest can have overlapping bucketse ria-

ditional histogram buckets are disjoint. g-digest is alstidy suited
towards sensor network queries. For example, a simpleweigiti
histogram technique is not suitable for determining questibe-
cause the weight of a bucket can be arbitrarily large resylti un-
bounded errors. For bounding errors in quantile queriesntare
appropriate approach would be to use an equi-depth histol@@].

This technique, however, requires that the data be storsdried
order in a single location, which is not practicable in a semet-
work setting. The overlapping buckets gives g-digest asro#tl-

ate message size and error trade-offs. The error consciousyantage over equi-depth histogram, in being able to ansoresen-
user can set a high maximum message size and achieve goodys queries (frequent values).

accuracy. A resource conscious user can specify the maxi-

mum message size he/she is willing to tolerate, and the g-
digest will automatically adapt to stay within this boundian
provide the best possible error guarantees. The usefubfiess
this mode of operation is further extended by toafidence
factor which is a part of g-digest.

. Confidence Factor The theoretical worst case error bound
applies to only very specific data sets which are unlikely
to arise in practice. In any actual query, the error is much
smaller and the g-digest structure contains within itself a
measure of the maximum error accumulated.aSpanswer
provided by g-digest comes with a strict bound of error.

. Multiple Queries Once a g-digest query has been completed
the g-digest at the base station contains a host of intagesti

The plan for the rest of this section is as follows. First iotsm
3.1 we discuss the properties of g-digest and then how orésbui
it in a single sensor (section 3.2). In section 3.3, we show o
digests from different sensors are merged together. Iiosedtd
we prove the memory and error bounds on g-digest. Finally, in
Section 3.5, we show how g-digest can be represented in aazamp
fashion.

3.1 Properties of g-digest

A g-digest consists of a set of buckets of different sizesthait
associated counts. Every sensor has a separate g-diges$t nghi
flects the summary of data available to it. The set of possible
different buckets are chosen from a binary partition of tatue
spacel, .., o as shown in Fig. 1. The depth of the trées log o.
Each nodev € T can be considered a bucket, and has a range



[v.min, v.max] which defines the position and width of the bucket.
For example, root has a rangg o], and its two children have
ranges(1,0/2] and[o/2 + 1,0]. The nodes at the bottom-most
level have buckets of width (single values). Every bucket or node
v has a countercpunt(v)) associated with it.

In any particular sensor, the g-digest is a subset of thessilge
buckets with their associated counts. From now on, we refer t
g-digest agy and theconceptuakomplete tree a&'. The g-digest
encodes information about the distribution of sensor alugor
example, the number of values which lie betwéeando /2, is the
total count of all nodes in the subtree rooted at [ther /2] node.

In Fig. 1, the nodef corresponds to the rang. . . 8] and the total
number of values in this range 2+ 2 = 4. For the root nodg
(range[1. .. 8]), the total number of values is+ 2+2+4+6 = 15.

The size of the g-digest is determined by a compression param
eterk. The exact dependence bfon memory required will be
spelled out in Section 3.4. Given the compression paranietar
nodev is in g-digest if and only if it satisfies the followindigest

property.

<
>

count(v)

count(v) + count(vp) + count(vs)

wherew, is the parent and, is the sibling ofv.

The only exception to this property are the root and leaf sode
If a leaf’s frequency is larger tham /& | then too it belongs to the
g-digest. And since there are no parent and sibling for iteotan
violate property 2 and still belong to the g-digest.

The first constraint (1) asserts that unless it is a leaf node,
node should have a high count. This property will be used tate
prove error bounds on g-digest. The second constraint {8)that
we should not have a node and its children with low counts. The
intuition behind this property is that if two adjacent butskerhich
are siblings have low counts, then we do not want to include tw
separate counters for them. We merge the children into renpa
and thus achieve a degree of compression. This will be de=stri
in detail in the next section. Looking at Fig. & & 15, k = 5) we
can check that indeed all nodes satisfy these two properties

3.2 Building a g-digest

Consider a particular sensethat has at its disposal data val-
ues. Each data value is an integer in the rige]. An exact rep-
resentation of the data will consist of the frequendigs f, ..., fo},
where f; is the frequency with which the data valué observed,
and)_, f; = n. Inthe worst case, the storage required to store this
data will beO(n) or O(o), whichever is smaller. Since transmit-
ting this data via radio will be very expensive in a sensowoel,
we would like to construct a compact representation of thta ds-
ing g-digest. For the ease of presentation, we shall nowithesthe
process of creation of a g-digest as if all the sensor datzitable
at s. In a real sensor network all these values will be distridute
across different sensors. We will later discuss how g-dégase
constructed in a distributed fashion on multiple sensors.

To construct the g-digest we will hierarchically merge agdirce
the number of buckets. We go through all nodes bottom up and
check if any node violates the digest property. Since we aigg
bottom up, the only constraint that can be violated is Pryp2r
i.e. nodes whose parent and sibling add up to a small count. Fo
later notational convenience we define a relatbonon the nodey
as follows:

A, = count(v) + count(v;) + count(vy)

where,v; andwv, are the left and right child of. So, if any node

Algorithm 1 COMPRESSQ, n, k)

1. {=logo — 1,
2: whilel > 0do

3. forall vinlevel ¢ do

4: if count(v) + count(vs) + count(v,) < | %] then
5: count(vp)+ = count(v) + count(vs);

6: deletev andv, from Q);

7 end if

8: endfor

9 l—0—1,

10: end while

Figure 2: Building the g-digest. The leaf nodes represent \aes
[1...8] from left to right. Dark nodes in (d) are included in g-
digest.

v whose child violate Property 2, its children are merged \titly
setting its count ta\,, and deleting its children. The algorithm to
execute this hierarchical merge is described as COMPRESS (A
gorithm 1). It takes the uncompressed g-dig@sthe number of
readings: and compression paramefens input. The next exam-
ple will make it clear how the compression is done.

EXAMPLE 1. Consider a set ofi = 15 values in the range
[1, 8] as shown in Fig. 2(a). The leaf nodes from left to right repre-
sentthe values, 2, . . ., 8 and the numbers next to the nodes repre-
sent the count. The number of buckets required to storerfos-i
mation exactly is 7 (one bucket per non-zero node). Let ugass
a compression factok = 5, [n/k| = 3. In Fig. 2(a), children of
a, ¢, d violate digest property (2). So we compress each of these
nodes by combining their children with them. Thus we arrivihe
situation in Fig. 2(b). At this point node still violates the digest
property. So we compress nodand arrive at Fig. 2(c). Nodeg
still violates the digest property and so we compressd arrive
at our final g-digest shown in Fig. 2(d). Onfiynodes are required
to storeit. [

We note some aspects of the g-digest now. Consider dode
which represents the rangd®, 8] in Fig. 2. The only information
that we can recover from the g-digest is that there were thigega
which were present in the original value distribution in thege



[7, 8]; the original information that there was a valliand a value

tree in 3(b) shows the corresponding portion@$. For the sake

8 has been lost. On the other hand the information on the rangesof clarity, we are only showing a small subset (rarjge. . 8]) of
3 and 4 have been preserved perfectly. The g-digest can tell us the complete trees. The dark nodes are the nodes includégbin t

that there were exactly occurrences of the valugand6 occur-
rences of valuel. This emphasizes a key feature of g-digest: de-
tailed information concerning data values which occur diegly
are preserved in the digest, while less frequently occgvadues
are lumped into larger buckets resulting in informatiorslos

3.3 Merging g-digests

So far we have shown how the g-digest is built if all the data is
available on a single sensor. But in a true sensor netwotinget
we need to be able to build the g-digest in a distributed &shi
For example if two sensors, and sz send their g-digests to their
parent sensor (parent in the routing tree), the parent sersuls
to merge these two g-digests to construct a new g-digestland a
add its own value to the g-digest. A single value can be censdl
a trivial g-digest with one leaf node. Since merging muéiph
digests is no harder than merging two digests, we shall naw sh
how two g-digests can be merged.

Algorithm 2 MERGE(Ql(nl, k)7 QQ(TL27 k))

1: Q — Q1 @] QQ;
2: COMPRESSQ, n1 + na, k);

The idea is to take the union of the two g-digest and add the
counts of buckets with the same rangeu{n, maz]). Then, we
compresghe resulting g-digest. The formal MERGE algorithm is
described in Algorithm 2. The following example shows thegee
of two g-digests.

20 20,
Q. Q.
3 1
p p
15 19 2
.
a s 4
60 16 57 25
@ (b)

iy )
9
p
3 36
r
S qt
6

16 74 0

(d)

Figure 3: Merging two g-digest ; and @2, shown in (a) and
(b). (c) shows the union of the two g-digests. (d) is the final
g-digest after compression.

g-digest, whereas the light ones are just for visualizatiBor the
final g-digestn = ny +n2 = 400 and [ | = 40.

The first step is to take the union of the two g-digests. This is
shown in Figure 3(c). Notice the nodes in 3(a) and 3(b): after
union, their counts have been added in 3(c). After this step,
g-digest could have some nodes which violate the digesepsop
In 3(c), nodes- andp violate this property A, = 36 < 40, A, =
39 < 40). (Notice that no node can violate Property (1)). Hence,
r and p are merged with their respective children (shown by the
dashed rectangle). Figure 3(d) shows the final g-dige&il

3.4 Space Complexity and Error Bound

In this section we evaluate the space-accuracy tradetodfént
in g-digest. g-digest is a small subset of the complete trieietw
contains only the nodes with significant counts. This featfrthe
g-digest provides the following theoretical guaranteetendgize of

Q.

LEMMA 1. A g-digest ) constructed with compression pa-
rameterk has a size at mostk.

PROOF Since nodes i) satisfy digest property (2), we have
the following inequality:

Z (count(v) + count(vp) + count(vs)) > |Q| - %
vEQ

where|Q)| is the size of the g-diges).

Now, in the summation on the left hand side, the count of any
node contributes at most once as each parent, sibling agldl its
Hence,

Z (count(v) 4+ count(vp) + count(vs))

vEQ
<3 Z count(v) = 3n.
vEQ
Hence, we get
Q- 2 < 3n.

k
So the total size of the g-digestig. [

Any time a g-digest is created, information is lost. As isdevit
from Example 1, a node with small count will be merged into its
parent, and thus its count can recursively “float” to its atmeat
any level. For example, the count of leftmost leaf in Fig.) Zads
up in the root of the tree in Fig. 2(d). Similarly merging twb d
gests can also lead to information loss. For example contide
two nodes marked &sn Fig 3 (a) and (b). In the tre@2, the infor-
mation for node has been merged inga So in the final g-digest
shown in Fig. 3(d), the nodg undercounts the occurrence of that
value. Some of that count is hidden in ngdend some even in
the root node. In the worst case, the count of any node carn devi
ate from its actual value by the sum of the counts of its ancest
We will use this reasoning to prove the error bounds on gleanti
queries. This bounds the maximum error in our scheme as shown
in the next lemma.

EXAMPLE 2. Figure 3 shows the steps of merging two g-digests

Q1 and Q2. For this examplen; = ne = 200,k = 10 and
o = 64. The tree on the left (3(a)) shows a portion@f, and

LEMMA 2. In a g-digest @) created using the compression
factor k, the maximum error in count of any nodelJ?%#‘ -n.



PROOF Any value which should be counteddrcan be present
in one of the ancestors ofin 7. So the maximum error in:

>

zE€ancestor(v)

error(v) < count(x)

n
< =
< > - (Property )
zE€ancestor(v)
< logo- % (height of tree idog o)

O

Thus the relative errarrror(v) /ninany node’s count ibg(o) /k.

THEOREM 1. Given memoryn to build a g-digest, it is possi-
ble to answer any quantile query with erreisuch that

e < 3logo
m
PROOF Choose the compression facfoto bem /3. Lemma 1
says that the memory requiredris The error in quantile query:

log o

3logo
< =
=%

m

O

We now prove that after merging two g-digests, we can still 3.5 Representation of a q-digest

maintain the same error bounds.

LEMMA 3. Givenp g-digests@1, Q2, ...Qp, builtonni, na, ...n,
values, each with maximum relative error 6&%, the algorithm
MERGE combines them into a g-digest Joyn, values, with the
same relative error.

PROOF. Merging is a two step process: union step and compres-

sion step. From Lemma 2, the compression algorithm enshags t
the error is less thaﬁ’%—", given that the tree before compression
had the same error bounds. So, we just need to prove thatfzadter
union step error is not more théﬁg.

After union, any node of Q is just the union of corresponding
nodeswi, ve, ...vp iN g-digests, the error im can be at most the
sum of errors in counts afy, vz, ...vp:

Z error(v;) < Z loiam

log o log o
= L Zni: PR

Hence, the relative error after union step is boundedp§. [

error(v) <

Now, we prove the error bounds on quantile queries. But kefor
we proceed, we would like to provide a definition of quantilery
and explain how quantiles can be computed using g-digest.

In quantile query, the aim is the following: given a fractigre
(0, 1), find the value whose rank in sorted sequence ofithialues
is gn. MEDI ANis a special case of quantile query, with= 0.5.
The relative erroe in the query is defined as follows: if the returned
value has true rank, then the erroe is

_|r—an|
= .

5

After computing the g-digest structure, each sensor hasck p
it, and transmit it to its parent. The main limitation of senget-
works is their limited bandwidth. To represent a g-digesetin a
compact fashion we number the nodes froto 20 — 1 in a level
by level order, i.e. root is numbered 1 and its two childresrarm-
bered 2 and 3 etc. Now to transmit the g-digest we send a set of
tuple of the following form(nodeid(v), count(v)) which requires
a total of(log(20) + log n) bits for each tuple. For example, the g-
digestin Fig. 1isrepresented g1, 1), (6, 2), (7,2), (10,4), (11,6) }

4. QUERIES ON Q-DIGEST

In this section, we describe the possible queries that caujpe
ported using g-digest. We assume that the size of g-digests |
which means that the relative errois less thart252.

4.1 Quantile Query

The quantile query is: Given a fractigne (0, 1), find the value
whose rank in sorted sequence of thealues isgn.

To find theqth quantile from g-digest, we sort the nodes of g-
digest in increasing right endpoints:¢x values); breaking ties by
putting smaller ranges first. This lisL) gives us thepost-order
traversal of list nodes in g-digest. Now we scar{from the be-

ginning) and add the counts of nodes as they are seen. For some

nodew, this sum becomes more than, we reportv.max as our
estimate of the quantile.

Notice that there are at leagt readings with value less than
v.max, hence rank of is at leasyn. The source of error are read-
ings with value less than.max, present in ancestors of These
will not be counted in quantile algorithm, sincecomes before its
ancestors ifl.. This error is bounded byn (Theorem 1). So, the

We now describe how quantile queries can be answered using"@k of value reported by our algorithm is betweerand(q+¢)n.

g-digest. The intuition is as follow: Suppose we digast-order

traversal onR, and summed the counts of all the nodes visited be-

fore anodey. This sun, is a lower bound on the number of values
which are surely less thanmaz. We report the value.mazx as
gth quantile, for whichc becomes greater than (or equal to).
This sum would be the exact quantile, if all the non-leaf rsode
whose range contains efmaz (ancestors of the leaf node con-
taining the single value.max) had a count of zero. But if they are

Thus the error in our estimate is always positive, i.e., weagb
give a value which has a rank greater than (or equal to) theahct
quantile.

For example, if we perform &EDI AN query on g-digest)
{(1,1),(6,2),(7,2),(10,4), (11, 6) }, shown in Fig. 2(d), the sorted
list L will be {(10, 4), (11, 6), (6,2), (7,2),(1,1)}. The count at
node (11, 6) will be more than0.5n (8), and we will report the
value4 as the estimated median. The error is bounded by the count

non zero, some of the values counted in them can be greater tha ©f nodeg.

v.max, and we have no way to determine that. For example, if we

did aMEDI AN query on Fig. 2(d), we will report the valukeas the
answer, but do not know whether the valueg iwere less than or
more thant.

Using Lemma 3, we know that this error is bounded B§-¢ -
n). Hence we can find the number of values less thamax with
bounded error. The algorithm to do this query efficiently og-a
digest is described in Section 4.

Now we are ready to state the main result of this paper.

4.2 Other Queries
Once the g-digest is computed, it can be used to provide &ppro
imate answers to a variety of queries.
e Inverse Quantile: Given a valuer, determine its rank in the
sorted sequence of the input values.

In this case, we again make the same sortedllistgnd tra-
verse it from beginning to end. We report the sum of counts



of bucketsv for whichz > v.max as the rank of. The re-
ported rank is betweetunk(z) andrank(x)+-en, rank(x)
being the actual rank of.

e Range Query Find the number of values in the given range
[low, high].

We simply perform two inverse quantile queries to find the
ranks oflow andhigh, and take their difference. The maxi-
mum error for this query i8n

e Consensus Query Given a fractions € (0, 1), find all the
values which are reported by more tham sensors. This
can be thought of finding a value on which more than certain
fraction of sensomngreed These values are callégequent
items

We report all the unit-width buckets whose count are more
than (s — €)n. Since the count of leaf bucket has an error
of at-mosten (Lemma 2), we will find all the values with
frequency more thann. There will be a small number of
false positives; some values with count betwéen- ¢)n
andsn may also be reported as frequent.

4.3 The Confidence Factor
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Figure 4: A typical network routing tree for 40 nodes placed n

In Theorem 1 we proved that the worst case error for a g-digest @ 200x200 area.

of sizem is “c’% But this worst case occurs for a very patholog-
ical input set, which is unlikely in practice. Choosing thessage
size according to these estimates will lead to uselessrhiga®n

of large messages, when a smaller one could have ensureahtlee s
required error bounds. So if the g-digest is computed byngett

to a value for which it iexpectedo deliver the required error guar-
antees, we still need a way to certify that those guarantessat.
For this, we provide a way to calculate the error in each algr
g-digest structure. We call this tlvenfidence factor

If we define theweightof a path as the sum of the counts of the
nodes in the path, the weight of the path from root to any nede i
equal to the sum of its ancestors. So the maximum error igptes
in the path of g-digest with the maximum weight. We define the
confidence factof as: § = (maximum weight of any path from
root to leaf inQ) / n.

This ensures that the error @my quantile query is bounded by
#. Hence, now we can find out the maximum error in any g-digest
and discard the query if it does not satisfy the requiredipi@t.

In experiments, for example, we work with = 2% andm =
100, the theoretical maximum error ﬁsl;ﬁ ~ 48%, but we get
a confidence factor ok 9% for the g-digest at the base station.
This leads to huge savings in terms of transmission costicélot
that the actual error in query can still be much smaller thgim
experiments the actual error in the median was clog¥4p

5. EXPERIMENTAL EVALUATION

We simulated our aggregation algorithm in C++. The simulato
takes the network topology (routing tree) and readings iméses as
the input. The base station initiates g-digest computdtipeend-
ing a query to all its children, which forwards this query beir
children, and so on. The leaf sensors send their value agegtdio
their parent. Each sensor then aggregates g-digests eddeom
its children with its own reading, and then sends the aggeeiga
its parent. The quantile and range queries are performedhen t
g-digest received at the base station.

The topology for the network was generated as follows. We as-

they are considered neighbors. This generates a networiecen
tivity graph. The routing tree required for our simulatiersimply

a breadth first search tree over this graph with an arbitraden
chosen as the root or the base station. In Fig 4, we show a typ-
ical network routing tree. When we vary the number of sensors
we vary the size of the area over which they are distributedsso

to keep the density of sensors constant. As an example, vek use
a 1000« 1000 area for 1000 sensors with equal radio ranges. For
4000 sensors, the terrain dimensions were enlarged tox22000
keeping radio range constant.

We ran our aggregation algorithm for “random” and “corretit
sensor values. For the random case, each sensor valuensttake
be al6 bit random number. In a real network, the values at sensors
are not random, but are correlated with their geographiation.

To simulate such correlation we adapted geographic etevdtta
available from the United States Geological Survey (US@3] [
which is shown in Fig 5. The sensors are assumed to be schttere
over the terrain and the elevation of the terrain at the sdasation

is assigned as the sensor value. The terrain size was sodieiht
with our simulated terrain size and the elevation data wakeddo
fitin 16 bits. All performance data we present is averaged éver
different topologies.

We compare the performance of our algorithm with a simple un-
aggregated data summarization scheme which wdisallin this
scheme, the summary is a list of distinct sensor values aodrat c
for each value. At each node, this list contains all the nistsensor
values that occur in the subtree rooted at the node. In otbetsv
the list structure is a histogram with bucket width There is no
information loss and we can answer quantile or histogramiegie
exactly. As the message progresses towards the base statioa
and more distinct values begin to occur and the size of theages
grows.

5.1 Range Queries and Histogram
As a first demonstration of our algorithm we build a histogram

sume that the sensors have a fixed radio range and are plaaed in of the correlated input data using range queries for 800@&sod

square area randomly. If two sensors are within range of eter,

We divided the data values in82 equi-width buckets and queried
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Figure 6: Exact and approximate histogram of input data
shown in Fig 5. The open boxes represent the exact histogram

Figure 5. Three dimensional elevation data for Death Valley \ypjje the solid thin bars represent the approximate histogam
which is used to model correlated data for our simulation. The obtained from g-digest.

bottom of the plot shows the contour lines for the terrain.

Data Type| Msg Size (bytes) 6 Actual Error 25 — . . . . . .
Random 160 13% 6.1% correlated data ———
Correlated 160 21% 5.0% random data -
Random 400 6.6% 2.6% 20
Correlated 400 7.3% 1.9% 5
L 15 |
()
Table 1: Maximum possible error and actual error in median g
query g 10
&
both g-digest andist summaries to find the number of values in 5}
each bucket. The resulting histogram is shown in Fig 6. OrbFig
there are two relatively flat areas which are clearly ideatii in
the contour plot: the empty area near the bottom left handezor 0 : ‘ : ‘ ‘ ‘ ‘
and the area near the center. Sensors on these areas wilbatat 0 50 100 150 200 250 300 350 400
a lot of values which are close to each other. These featassk | Message Size
to two peaks (at 0 and 22K) in the histogram which are very well
captured by our aggregation scheme. Figure 7: Measured percentage error in median vs message siz

. (in bytes) for an 8000 node network.

5.2 Accuracy and Message Size

In an 8000 sensor network, we measured the accuracy of our al-
gorithm in evaluating the median for different messagessiZéne correlation in data values er (the number of sensors), to achieve
error in this experiment is defined as the ratio of rank error i 2% accuracy our maximum message size needs to be no bigger
the median estimated from g-digest and number of valaes- ( than400. For random data, the size flist increases steadily with
(‘“72/2‘)). The results are shown in Fig 7. As expected, the graph n. Since the sensor values for the random case can be any inte-
shows that the error declines very rapidly with growing rages ger betweerd and 65535, the number of distinct sensor values is
size and with a message sizelél bytes, we already are down to  roughly proportional to the number of different sensorsr the
5% error. There is no significant difference in error for random correlated case, the number of distinct values in the inpainly

correlated data. about1500. So the maximum message size fist plateaus with
We also calculated the confidence factdsfor median calcu- increasing number of sensors.

lation with varying message sizes. This data is shown in€Tabl A more detailed view of the distribution of message sizes is

It is clear that the theoretically estimated accuracy isipeistic shown in Fig 9. Given a message size we ask the question

compared to the actual accuracy achieved. . what fraction of total nodes transmitted messages of simgget

Now we turn to a comparison of the message sizes required by thanm? This quantity is plotted in the vertical axis. We compare
g-digest and those required ligt. From Fig 7 itis clear thatames-  this distribution forlist and g-digest (size 400 bytes) for random
sage size of 400 is sufficient to achieve accurac®%%f Compared input values. For message sizes less than 400 byteBstlaad g-
to this, how much do we need to pay for exact answers? The com-digest the distribution is identical. For g-digest there ao nodes
parison is shown in Fig 8 which shows maximum message size for which transmit message of size larger than 400 bytes. In aomp
g-digest andist for different numbers of sensors. Regardless of the son, about 5% (400 nodes) of nodes for lisescheme do transmit
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Figure 8: Maximum message sizes for different numbers of sen
sors for naive unaggregated algorithm and our aggregation la
gorithm. We fixed message size at 400 bytes which gives about
a 2% error (see Fig 7).

messages larger than this. 5% might look like a small nunidogr,
we immediately realize that these nodes actually bear asuatiy
heavy load. 1% of nodes transmit messages of size biggeBttan

and some nodes transmit messages of size up to 30K! Thesg node

represent nodes closer to the base station. In any rougegiost

of the nodes are near the leaf levels and such nodes are gbtly li
loaded compared to nodes near to the base station. Q-diyestd
much better job at distributing load by requiring no nodeamsmit

more than 400 bytes.

5.3 Total Data Transmission

In Fig 10 we show the total amount of data transferred for g-
digest andist. As expected, since the number of distinct values
is less for correlated scenario, the amount of data tranesfas
lower for correlated data. For a network sizel6b0, our scheme
outperforms thdist algorithm by a factor o, while for network
size of8000, this factor increases to abotit This shows that our
scheme is highly scalable, and has significant performaeceftis
in the case of larger networks.

5.4 Residual Power

Data transmission is very closely tied up with power consump
tion in sensor networks. There are two common metrics for-mea
suring power consumption which we shall consider in turn.

e Total power consumption This is the total power spent by
all nodes in the network and is roughly proportional to total
amount of data transmitted in the network (Fig 10). In rgalit
power consumption increases super-linearly with totaa dat
transmitted. This is because with increasing number of data
packets, there is more contention for the wireless medium
and a lot of power can be spent in packet collisions.

Lifetime: A more appropriate power consumption metric is
the lifetime of the network. This is the time at which network
partition occurs because of nodes running out of power. A
slightly different definition of lifetime can be taken as the
time required for the first node to run out of power. For a
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Figure 9: Cumulative Distribution of number of nodes as a
function of message size. On the horizontal axis we have mes-
sage sizen, while on the vertical axis we have number of nodes
which transmitted messages of size larger tham. Total num-
ber of nodes is 8000.

and hence runs out of power fastest. Thus in general, ligetim
is a more useful indicator of the usable life of the network
than total power consumption.

With g-digest, even nodes close to the base station tranemjit
small amounts of data and the transmission burden is dis&db
much more equitably. So we can expect the usable life timbeof t
network to be vastly extended with our data aggregationraehe
compared to thdist scheme. We experimentally demonstrate this
by considering theesidual powenf sensor nodes after a query. Let
us assume that all nodes in the network start with the samartmo
of battery power. After a query has been processed, differtes
will have different amounts of power left depending on howcimu
data each node transmitted. This power left is known as wabid
power. Residual power is a measure of the load distributiché
network.

We simulated the effect of a single query on an 8000 node net-
work where all nodes started out with equal power of 4000@suni
We assumed that for every byte transmitted, one unit of pasver
depleted. The results are shown in Fig 11. On the horizowial a
we plot residual power fractio® which is defined as

__Residual Power
~ Initial Power

On the vertical axis we plot the number of nodes which havetes
ual power fraction less thaR. From Fig 11 we see thatst does

a very bad job of distributing load. More than one node (0.@#%
8000) have residual power fraction less thaf2, i.e. one query
drained half the battery power available for these nodes'thist
consumption rate, after two queries usligg, there will be at least
one exhausted node. On the other hand g-digest performsiell
maximum message size for g-digest was set to 400; hence ®o nod
spent any more than 400 units of power. Thus all nodes had-resi
ual power fraction better than 99%. In the worst case, qsdigl

be able to perform 100 queries before any node runs out of powe

6. DISCUSSION AND FUTURE WORK

network which is geared towards data aggregation, the nodes We have presented g-digest : a distributed data summanizati
near the base station shoulder the bulk of data transmissiontechnique for approximate queries using limited memoryach
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Figure 10: Total data transmitted plotted as a function of taal
number of sensors for both random and correlated input. The
message size for the aggregated scheme was set at 160 bytes.

curately preserves information about high frequency alubile
compressing information about low frequency ones. As siticha
good approximation scheme when there are wide variatiofrgin
quencies of different values. Our experimental resultecate that

orders of magnitude savings in bandwidth and power can He rea
ized by g-digest compared to naive schemes for both randam an

correlated data. We note that g-digest is easily extensiteulti-
dimensional data. For example to handle two dimensional, e
need to extend the binary tree representation of g-digestgtead
tree.
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Figure 11: Cumulative distribution of nodes with residual
power fraction. The inset shows a magnified view of the right
hand edge of the graph. The total number of nodes is 8000,
g-digest message size is 400.

Composite Vapor Detector Arrays As a Function of Array
Size and Detector and Compositi@ensors and Actuators,
B, vol. 87 , pp 130-149, 2002

[3] L. Chen, D.W. McBranch, H.-L. Wang, R. Helgeson, F.
Wudl, and D. G. Whitten. Highly sensitive biological and
chemical sensors based on reversible fluorescence qugnchin
in a conjugated polymeRroc. National. Acad. of Science
vol. 96, pp 12287-12292, 1999

We have shown how a g-digest can be computed in a distributed [4] J. Considine, F. Li, G. Kollios and J. Byers. Approximate

fashion once a query is made. In a continuous query settiraty, &
digest will become outdated as sensor values change. Isshje

to build a new g-digest by sending in a new query; but a more
efficient way would be to send small updates such that the old q

digest can be refreshed with new information.

In the current work, we have not taken into account the effect

of lost messages. The effect of lost messages can be mdigmate
some extent in a continuous query setting where the digesinis
tinuously updated. In that case the parent can cache thgestdi
received from its children and if a g-digest from a child ist|dt
can replace that g-digest by the older one.

As presented in this paper, g-digest provides informatiooua
the distribution of data values, but not information comieg where
those values occurred. Since g-digest is easily extenwibiaulti-
dimensional data, we are currently working on a multi-disienal
g-digest where spatial information will be preserved anacleehe
user would be able to query not only about data values, buggae
tial locations of those values as well. We envision that asyjog

architectures for sensor network become more and moresephi

cated, the use of efficient approximate algorithms will beewery
common.
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