
Design and Analysis of a Connected Dominating Set

Algorithm for Mobile Ad Hoc Networks

by

Kan Cai

M.Eng., Northeastern University, 2000

B.Eng., Northeastern University, 1998

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

Master of Science

in

THE FACULTY OF GRADUATE STUDIES

(Department of Computer Science)

We accept this thesis as conforming
to the required standard

The University of British Columbia

April 2004

c© Kan Cai, 2004

Abstract

Wireless technology such as IEEE 802.11b allows a set of devices to communicate
with each other in a peer-to-peer manner by dynamically forming mobile ad hoc
networks. Routing in such networks is challenging due to node mobility, low power,
constrained bandwidth and limited radio range. Most of the previous works are
based on strategies that combine flooding and caching to discover routes proactively
or on demand. But these algorithms suffer from scalability problems when there
exist many spontaneous and short-term connections. This thesis describes the design
and implementation of a backbone routing scheme, DCDS, which is inspired by the
previous CDS and DSR algorithms. Like other CDS algorithms, it constructs and
proactively maintains a backbone across the network; like DSR, it discovers routes
on-demand and uses source routing.

However, DCDS makes significant improvements on each of the algorithms
on which it is based. It differs from the previous CDS work in that three key
assumptions have been removed to make DCDS truly deployable in an IEEE 802.11
network: reliable broadcast, accurate neighbouring information, and a static setup
phase. It differs from DSR in that route discovery is restricted to the backbone
instead of flooding the entire network and data packets are delivered via multiple
paths on the backbone. We have implemented the DCDS algorithm and simulated
it using Glomosim. The evaluations clearly show that DCDS achieves significantly
better scalability than DSR in a moderately dense network with reasonable mobility
settings.

ii

Contents

Abstract ii

Contents iii

List of Tables v

List of Figures vi

Acknowledgements vii

1 Introduction 1

2 Related Work 6

2.1 IEEE 802.11 DCF . 6

2.2 Flood-and-Cache Routing Algorithms 7

2.3 DSR . 8

2.4 Previous CDS Protocols . 10

2.5 Problems in the Previous CDS Algorithms 12

3 DCDS Algorithm 15

3.1 Reactive Backbone Routing . 16

3.1.1 Route Caching . 17

3.1.2 Route Discovery . 18

3.1.3 Routing Errors . 20

iii

3.2 Proactive Backbone Maintenance . 21

3.2.1 Heartbeat Messages . 23

3.2.2 Constructing the Graph . 25

3.2.3 An example . 26

3.2.4 Multi-path Backbone Routing 28

4 Evaluation 29

4.1 Simulation Setup . 29

4.2 Backbone Scalability . 31

4.3 Varying the Number of Hot Spots 34

4.4 Varying Connection Lifetime . 40

4.5 Varying the Network Load . 42

4.6 Varying the Mobility . 44

5 Conclusion and Future Work 49

5.1 Conclusion . 49

5.2 Future Work . 50

Bibliography 51

iv

List of Tables

4.1 DCDS Protocol Settings . 30

v

List of Figures

3.1 Example of Route Discovery. 19

3.2 The Fake Partition Problem . 22

3.3 The Failed Merge Problem . 23

3.4 Example of a Simple Backbone. 27

4.1 Backbone Scalability on the Dominator Growth Aspect 32

4.2 Backbone Scalability on the Dominator Degree Growth Aspect . . . 33

4.3 Scalability by Varying the Number of Hot Spots 35

4.4 Cache Hit Ratio . 36

4.5 Signal Collisions in Radio Layer . 36

4.6 Packets Dropped in Mac Layer . 37

4.7 Packets Dropped Due to IP Queue Overflow 37

4.8 Scalability by Varying the CBR Lifetime 41

4.9 Scalability by Varying the Number of CBR Connections 43

4.10 Packet Delivery Ratio by Varying Mobility 45

4.11 Mobility Effects on Caching and Source Routing 48

vi

Acknowledgements

I would like to express my gratitude to my supervisor, Dr. Mike Feeley, for his
continuing guidance, support and inspiration, without which I would have given up
somewhere in the middle and not been able to complete my thesis this far.

I’m so grateful to have Dr. Norm Hutchinson involved in my project. I would
like to express my thanks to him for his valuable comments and encouragement
throughout my research, and specially for his bearance with my persistent bothers.

I would also like to thank all the DSG group members, Dr. Charles Krasic,
Dima, Geoffrey, James, Joseph, Chamath, Joon, Ritesh and Suprio. They are not
only my good friends, but also help me understand many things along the course.

Finally, I’d like to thank my family for their endless support and bearance
with the long-term separation.

Kan Cai

The University of British Columbia
April 2004

vii

Chapter 1

Introduction

Wireless networking has hit its heyday. Personal computing is increasingly shifting

from desktops to laptops and from Ethernet to wireless local-area networks. PDAs

and cell phones are merging to provide computing, web-access, email and instant

messaging services along with standard voice telephony. The developed world may

soon be at the point where most people carry wireless-networking devices virtually

everywhere they go.

One interesting feature of mobile devices based on 802.11 and similar tech-

nologies is their ability to form ad-hoc networks without the aid of wired infrastruc-

ture. Such a network could provide local-area communication to support service

discovery, instant messaging, game playing and other activities among a geographi-

cally co-resident set of nodes. It could also extend the range of a wired infrastructure,

by providing multiple wireless hops to reach a wired node.

To exploit this potential, an effective protocol is needed to route packets

between nodes that are not in direct radio range of each other. Multi-hop routing

protocols for this environment face a twin challenge. First, discovering a multi-hop

route connecting the source node to the destination from scratch usually requires an

expensive, global flooding of the network. Second, ad-hoc networks are very volatile:

nodes are mobile and communication is unreliable. As a result, routing information

1

gathered by a costly broadcast can quickly become out-of-date.

Numerous wireless, ad hoc routing protocols have been proposed and evalu-

ated that address this problem from one of two perspectives. Proactive algorithms,

such as DSDV [1] and TBRPF [2], use periodic control messages to maintain up-to-

date routing information and are ready to send a packet anywhere at anytime. This

approach has the advantage that global discovery broadcasts are avoided. However,

there are two main potential disadvantages. First, proactive algorithms impose a

fixed message overhead for control messages, even when the network is idle. Second,

they can be relatively slow to adjust to topology changes, because they often must

wait until a regularly scheduled message exchange to discover that a node has moved

or failed.

Reactive algorithms such as DSR [3] and AODV [4], on the other hand, follow

a flood-and-cache approach. Nodes discover routing information on demand using

global broadcast and then cache this information for subsequent use. They have the

advantage that their on-demand nature can make them quick to detect and adapt to

topology changes. In addition, they have no periodic control messages and are thus

cheaper than proactive approaches when most packets use cached routes or when

the network is mostly idle.

The main disadvantage of reactive approaches is that caching is less effective

when nodes move and fail, because this behaviour invalidates cached routes. Invali-

dating a cached route creates two problems. First, reactive algorithms discover bad

routes only when using them to deliver packets, typically at the cost of dropping

those packets. Second, discovering new routes from scratch is extraordinarily costly,

and so the cache must be put to the best use possible. Otherwise, injudicious use

of flooding can clog the shared airspace, creating message storms that render the

network temporarily useless [5]. Our simulations show that it is precisely this issue

that causes considerable problems for the flood-and-cache algorithms exemplified by

DSR.

2

These two problems frame a classic tradeoff for the current-generation of re-

active algorithms [6, 7, 8]. Some algorithms such as DSR aggressively cache as much

routing information as possible each time they perform costly global communica-

tion. Others such as AODV are much more conservative. When mobility and failure

invalidate cached routing information, AODV may perform more route discovery

broadcasts than DSR and will thus have higher overhead. DSR, on the other hand,

may drop more packets, because its caches may be filled with more invalid routes

as time goes by.

Others have observed that each class of algorithm performs well for some

workloads and mobility patterns, and poorly for others [9, 10]. As a result, a third

class, hybrid algorithms, such as ZRP [11] and SHARP [12], attempt to strike useful

compromises between pro-activity and reactivity. These algorithms typically use

proactive routing within local clusters of nodes and reactive routing among clusters.

This thesis describes the design and evaluation of a new hybrid protocol called

Deployable Connected Dominating Set (DCDS). It is inspired by the previous CDS

and DSR algorithms. The key idea of our approach is to use a low-level proactive

protocol to maintain a communication backbone that organizes the network into

clusters and links neighboring clusters to each other. As suggested in the previous

CDS algorithms [13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27], our algorithm

reduces broadcast overhead by basing routes on a shared-backbone spanning graph.

Instead of setting up and maintaining a separate route for each source-destination

pair, DCDS selects a subset of nodes, called the Dominating Set (DS), to build up a

backbone across the network. On the other hand, DCDS uses a reactive backbone

scheme that delivers packets from the source to the destinations via the cluster

leaders.

As the name suggests, DCDS improves all the previous CDS algorithms by

removing three unrealistic assumptions: reliable broadcast, accurate neighbouring

information, and a static setup phase. Therefore, DCDS is the first CDS algorithm

3

we are aware of that can be truly deployed in an IEEE 802.11 network.

The reactive part of our algorithm is very similar to DSR. However, the

routing caches are stored only on cluster leaders and routes are confined to the

backbone. As a result, we are able to cache as aggressively as DSR, while efficiently

maintaining cache consistency. We achieve this benefit by limiting the total number

of caches and the number of different routes that can be invalidated by movement

or failure of a single node. Another benefit of our approach is that route discovery

is cheaper than in other reactive algorithms, because we flood only the backbone,

not the entire network.

Another improvement on DSR is that DCDS uses a multi-path routing scheme.

The data packets originated from a source node can be sent to different dominators

in its neighbourhood. Therefore, these packets can be delivered via different routes.

Also, the route provided in the packet header is incomplete, which lists only a se-

quence of all the intermediate dominators. This allows each dominator to choose a

dominatee on its own to forward a message to the next dominator specified in the

header. Since there are multiple dominatee candidates that connect two neighbour-

ing dominators, DCDS has the potential to use multiple paths for local recovery in

case a message delivery fails.

In addition to showing the backbone scalability while increasing the network

scale and node density, we evaluated our protocol and compared it to DSR using sim-

ulation. These experiments are conducted to evaluate performance by varying node

density, mobility, network load and traffic patterns respectively. Our results show

that DCDS can provide significantly better performance and generate lower over-

head by eliminating network-wide broadcast and aggregating routing information,

especially when dealing with short-term CBR connections.

The rest of the thesis is organized as follows. We first briefly discuss DSR and

the previous CDS algorithms as well as their problems in Section 2. Then, we detail

our DCDS algorithm and the backbone routing scheme in Section 3. In Section 4,

4

we present the detailed simulation results of DCDS against DSR and also provide a

thorough analysis. Finally a conclusion and some ideas for future work are offered

in Section 5

5

Chapter 2

Related Work

2.1 IEEE 802.11 DCF

There are many MAC/PHY protocols that have been proposed to support wireless

communication in mobile networks, among which IEEE 802.11 [28] is the most

widely accepted. However, at this point, communication among wireless devices

using 802.11 is typically based on a wired infrastructure. That is, the access points

organize nearby wireless devices and handle all of their communication.

This infrastructure approach has many advantages, but it has two main

weaknesses. First, a wireless network can only exist in places where wired access

points have been established. Second, even where this infrastructure is in place, it is

vulnerable to being overloaded if too many wireless devices are operating within its

radio range. While the first problem may improve over time, as wireless networking

becomes more popular, the second is likely to get worse as the density of wireless

devices increases.

On the other hand, IEEE 802.11 also offers a tantalizing but largely unuti-

lized alternative – Distributed Coordination Function (DCF), which allows nodes to

self organize to form ad-hoc networks without the aid of any wired infrastructure.

Such a network could provide local-area communication to support service discov-

ery, instant messaging, game playing and other activities among a geographically

6

co-resident set of nodes. It could also extend the range, but not the bandwidth, of

a wired infrastructure, by providing multiple wireless hops to reach a wired node.

Finally, it could increase the aggregate bandwidth among densely populated regions

of wireless devices by allowing devices to attenuate transmission power to reduce

interference and then connecting the emasculated devices by an ad hoc network.

However, avoiding signal interference and message collision is inherently dif-

ficult for such ad hoc networks. The fundamental challenge involves management

of the shared airspace around each wireless device without a central arbitrator.

To address this problem, IEEE 802.11 provides a Carrier Sense Multiple Access /

Collision Avoidance (CSMA/CA) scheme. This scheme asks each node to check the

medium activity and backoff accordingly before it transmits any packets. Further, it

specifies a Request-To-Send (RTS) / Clear-To-Send (CTS) / Data / Ack procedure

for sending each unicast packet. The exchange of RTS and CTS messages not only

acts as a fast collision/interference check, but also enables the sender to reserve the

shared medium for its usage. If a sender does not receive its receiver’s CTS or ACK

message, it will retry the transmission until it receives the correlated ACK or until

a retry limit is reached. Therefore, utilizing such a procedure enables IEEE 802.11

to provide a reliable unicast function. However, the broadcast function can not take

advantage of this scheme because a broadcast packet may be intended for any num-

ber of receivers and the RTS/CTS/DATA/ACK scheme does not easily generalize.

Therefore, the reliability of broadcast is reduced due to the increased probability of

lost frames from interference, collisions, or time-varying channel properties [28].

2.2 Flood-and-Cache Routing Algorithms

Although wireless nodes can talk to each other within a one-hop distance using

MAC layer protocols, they require routing algorithms to accomplish end-to-end

communication across multiple hops. We can divide the existing mobile, ad-hoc

routing algorithms into two classes based on how they create and manage routing

7

information. The first class, which includes AODV, DSR, and DSDV, generally uses

a flood-and-cache approach to discover and maintain each individual routes across

the network. These algorithms can be further subdivided based on how they handle

topology changes: proactively or reactively. Proactive algorithms such as DSDV

require nodes to periodically flood routing updates to the rest of the network. This

approach has two main problems. First, route updates are sent to every node,

though only a subset may need this information. Second, the repair of a broken

route is delayed until the receipt of the next update message; packets sent along

the broken route in the meantime are lost. Reactive algorithms such as AODV, on

the other hand, fix broken routes on demand as they are detected. Once a reactive

algorithm sets up a link, no further broadcast is required until a link on the route

breaks. Broch et al. [9] demonstrate that reactive algorithms generally outperform

proactive ones in terms of delivery ratio and routing overhead for long-lived end-to-

end connections. The following section briefly discusses the DSR algorithm, one of

the routing schemes on which DCDS is based.

2.3 DSR

The dynamic source routing algorithm (DSR) [3] enables a source node to set up and

maintain a multi-hop route to a destination. Each node has a routing table which

maintains a set of destination nodes and the complete paths to reach them. It uses

an on-demand route discovery and maintenance process using the RREQ, RREP and

RERR control messages.

When a mobile node tries to communicate with an unknown destination, it

broadcasts a route request message (RREQ) to discover such a route. Each node

receiving this packet has to rebroadcast the request exactly once unless it is the

destination node or it knows a route to reach the destination. Such nodes report

the route information to the source by sending back a route reply message (RREP).

DSR requires each forwarding node to keep track of its next-hop connection

8

along the route, using any available link or network layer mechanism. In IEEE 802.11

networks, in particular, DSR may utilize the explicit link layer acknowledgements to

determine the link availability. If a packet delivery fails, the upstream node regards

the link as broken and initiates a route error message (RERR). A RERR packet

is relayed by reversing the path indicated in the packet header until the src node

receives it. Then, the source node may restart the discovery process if there is no

alternative route in its cache.

Compared to other relative algorithms such as AODV, DSR has several major

differences and optimizations. First, a source node in DSR uses the source routing

scheme to deliver packets. If a forwarder along the path finds a broken link, it

attempts to salvage the packet using its own routing information, in addition to

unicasting a RERR message back to the source.

Second, DSR takes a very aggressive route caching approach. The source

routing scheme not only helps the source node learn the routing information to

reach every other node along the path, but also enables an intermediate node to

complete its own routing table when forwarding a packet. Further, route discovery

in DSR is able to find multiple paths to the target node since the destination node

replies to all the requests even if they are actually duplicates from different paths.

Finally, DSR takes advantage of the promiscuous function of the network interface.

This optimization enables nodes to learn potentially useful routing information by

overhearing messages from its one-hop neighbours.

Last, DSR deploys gratuitous RREP and gratuitous RERR messages to im-

prove its performance. The gratuitous RREP message is used to shorten an existing

route when a node overhears a message not addressed to itself. If it finds that the

source route header includes its address and it has not yet received this message,

it removes those intermediate nodes from the route and sends a gratuitous reply

message to the source reporting this shorter path. A DSR source node also uses the

gratuitous RERR message to propagate stale link information to the rest of network.

9

If a source needs to initiate a RREQ message, it piggybacks the latest broken link

that it knows into the request. Therefore, each node receiving this route request

updates its routing table, and thus will not generate route replies containing the

broken link.

Recent work [8, 7] shows that aggressive caching seems to be a good design

choice with certain mobility and traffic patterns by alleviating network congestion.

However, it has its own problem, i.e., cache staleness. In a dynamic wireless network,

any broken link invalidates an entire path. Sending data packets through a outdated

path may not only cause packets to be dropped, but also potentially pollute the

route caches in other nodes. A number of previous works [29, 30] have shown that

the stale cache entries can adversely affect DSR performance. They also proposed

some solutions to fix this problem, including packet salvage, gratuitous route repair,

wider error notification, time-based or epoch-based route expiry, etc., and some of

them have been adopted by the current DSR implementation. However, this thesis

shows that aggressive caching with indefinite lifetime is still problematic if there

exist many short-lived CBR connections since DSR is not able to detect a broken

link promptly with such a traffic pattern.

2.4 Previous CDS Protocols

The previous works [9, 6] have clearly demonstrated that DSR can provide a satis-

factory packet delivery ratio for long-term end-to-end CBR connections. However,

it is still questionable to deploy such reactive algorithms in scenarios where many

spontaneous communications exist. This random and short-lived network traffic can

generate heavy overhead and easily trigger a flooding storm [5] due to the broad-

casted route discovery messages.

The connected dominating set (CDS) protocol is dedicated to reducing the

overhead and addressing this scalability problem. Its distinguishable characteristic

is to select only a subset of routing nodes which deal with packet delivery on behalf

10

of the others. These nodes should connect to each other, organizing a backbone that

can reach the remaining nodes in the network. By doing so, a CDS algorithm only

needs to retain the aggregated backbone’s connectivity using local-scale broadcast

within a one-hop distance, instead of maintaining individual routes for each source

and destination pair using flooding.

A Dominating Set (DS) of a graph G(V,E) is a vertex subset V ′ of V , such

that each node in V is either in V ′ or adjacent to a vertex in V ′. Two nodes are

adjacent when they are in radio range of each other; we also say that these nodes

are within one hop of each other. If the set V ′ is a connected subgraph, it is called

a Connected Dominating Set (CDS). When using the CDS as a routing backbone,

the smaller the number of CDS nodes is, the more benefit this routing scheme

can provide. It has been proven, however, that finding a Minimum Connected

Dominating Set (MCDS) is an NP-Complete problem [31]. Previous CDS research

has thus focused on heuristics for finding a small CDS. The quality of such a graph

is measured by the ratio of the graph size it produces compared to the theoretical

Minimal CDS for a given topology. This ratio is referred to as the algorithm’s

approximation ratio.

An intuitive way to obtain a CDS is to first identify a dominating set, and

then grow it into a CDS by adding connector vertices. Gerla et al. [18, 24] present

distributed algorithms that follow this approach by using the lowest node ID or

the highest node degree to select nodes into the dominating set. These results are

generalized by Basagni [19] to use an abstract weight to determine membership.

Das et al. [20, 23, 25] decentralize Guha and Khuller’s algorithm [26] and come up

with a series of algorithms for setting up a network backbone. Wan et al. [14] point

out, however, that these algorithms require global synchronization and suffer from

exponential time and message complexity.

Chen and Liestman formalize the idea of a weakly-connected dominating

set (WCDS) [15, 17], where two dominators can be separated by a two-hop dis-

11

tance. Based on Guha and Khuller’s centralized spanning tree algorithm [26], their

greedy approximation algorithms can generate a WCDS for a static ad hoc network.

Although they propose distributed versions of the centralized algorithms, these algo-

rithms still require a node (the tree root) to have the accurate topology information

of its own network partition [17], and to control the growth of the spanning tree.

Wu and Li [13] present a localized distributed CDS algorithm. In contrast to

previous methods, their algorithm first generates a big CDS, and then removes the

redundant vertices to reduce the size of the CDS. To complete their algorithm, Wu et

al. [22, 27] propose a scheme to address topology changes in mobile networks. Even

though these algorithms are simple and intuitive, they are not able to generate a

small-size CDS with a constant approximation ratio [14]. Furthermore, the mobility

scheme requires nodes to detect mobility and keep an up-to-date list of two-hop

neighbours, which makes it hard to deploy.

Alzoubi, Wan and Frieder [14, 16, 21] propose a series of distributed al-

gorithms for finding small connected dominating sets. Compared to previous algo-

rithms, the approximation ratios of these algorithms are bounded by constants. The

Message-Optimal CDS algorithm [16] is purely localized and is able to achieve both

linear message complexity and linear time complexity. They also apply the CDS

algorithm locally within a three-hop distance to address network topology changes.

2.5 Problems in the Previous CDS Algorithms

The MCDS problem has received much attention and a number of algorithms [13,

14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27] have been proposed to achieve

a small CDS subset with good approximation quality. These algorithms provide

useful insights on how to construct and maintain a CDS backbone in mobile ad hoc

networks. However, they also share the same unrealistic assumptions that prevent

implementation with the existing wireless technologies, IEEE 802.11 in particular.

The first assumption is that each node should have accurate topology in-

12

formation gathered from broadcast messages. Generally speaking, these algorithms

either designate some centralized nodes that identify all the topology changes in the

network or require each individual node to keep track of all its neighbours. Such

“omniscient” topology information enables nodes to build a backbone and adjust it

in a dynamic environment.

Second, a reliable MAC-layer broadcast scheme is assumed to effectively send

control messages. This is because a node has to synchronize with all the other corre-

lated nodes, at least its neighbours, before it accommodates any topology changes.

For example, a node can declare itself as a cluster leader only when it receives the

implicit or explicit consent of all its neighbours. The process may fail if any such

message delivery fails. Worse, it could even end up in a situation with all the nodes

trapped into deadlocks.

Third, the previous CDS algorithms assume that there is a distinction be-

tween the backbone construction phase and maintenance phase. The construction

phase requires a global static snapshot, where no topology change is allowed, to es-

tablish the initial backbone. Afterwards, only a local static neighbourhood is needed

to maintain the graph connectivity.

These assumptions facilitate theoretical analysis on these CDS algorithms in

terms of approximation ratio, time complexity and message complexity; but also

because of them, it is hard to deploy a backbone routing scheme for wireless ap-

plications. Obtaining accurate and complete topology knowledge is fundamentally

complicated in a mobile ad hoc network without support from any outside infras-

tructure. Depending on an unreliable broadcast function to propagate and aggre-

gate such information makes it even worse. IEEE 802.11 cannot provide reliable

broadcast, and thus it is also difficult to synchronize with other nodes, a node’s

neighbours for example, as required by the second assumption. Furthermore, the

normal case for an MANET is not to start from scratch with a large number of static

nodes. Instead, the typical case is to add new nodes into an existing network, where

13

topology changes and node exceptions are inevitable. Hence, it is inappropriate to

assume a static global-scale or local-scale snapshot for backbone construction and

maintenance.

14

Chapter 3

DCDS Algorithm

Similar to other hybrid algorithms, DCDS is partly proactive and partly reactive.

Its proactive component acts to maintain a single spanning graph for the network.

Routing is performed reactively in a manner similar to DSR, but where routes are

confined to follow the spanning graph.

The graph is constructed using a variant of the Message-Optimal Connected

Dominating Set Algorithm [16], modified to work incrementally and to be resilient to

communication failures. The algorithm selects certain nodes to act as dominators;

all other nodes are called dominatees. The dominators cover the network so that

every dominatee is within radio range of a dominator and no two dominators are in

range of each other. The graph links dominators together using two- and three-hop

links.

The role of the graph is to confine routing to a small subset of the network.

This approach has two key advantages. First, it lowers the cost of route discovery.

DCDS discovers new routes by flooding the spanning graph, not the entire network.

Second, it improves the mobility-failure resilience of route caching. DCDS reduces

the number of cached routes invalidated when a node moves or fails by using fewer

caches and fewer routing nodes, compared to DSR and similar algorithms.

In DCDS, caching and routing are handled exclusively by dominators, a rel-

15

atively small subset of the network. When a non-dominator moves or fails, the only

routes that might break are routes to that node. In DSR, on the other hand, the fact

that every node is a routing node means that a similar failure can invalidate many

more routes: routes to the failed node and routes that pass through it. Similarly,

DSR caches routes on every node and thus it potentially stores many more copies of

each route somewhere in the network.

Our approach does present a fairness problem. Much of the network load is

focused on nodes in the backbone. If the network is comprised of peers, a node pays

a high price if it is selected to be part of the backbone. This is a well known problem

with connected dominating set algorithms like ours. But addressing this issue is left

for future work. Note, however, that our approach does not cause the network to

be underutilized. Even though we confine routes to the spanning graph, this graph

will cover virtually the entire airspace of the network and will thus efficiently utilize

available bandwidth.

This chapter describes the design of the DCDS algorithm in two parts corre-

sponding to the two abstract layers of which it is composed. We begin by describing

the upper layer that reactively routes packets among arbitrary nodes using the span-

ning graph. We then describe the lower layer that proactively maintains the span-

ning graph and supports communication between a dominator and its neighboring

dominators or in-radio-range non-dominators.

3.1 Reactive Backbone Routing

The basic operation of the routing protocol is to deliver payload packets from source

nodes to their targets. To send a message, a source node assembles a packet consist-

ing of target-node ID and payload, and sends it to an in-radio-range dominator; if

multiple dominators are in range, it chooses one arbitrarily. The receiving domina-

tor checks its cache for the target and initiates route discovery if necessary, buffering

the packet in the meantime. Once the dominator has a route to the target, it adds

16

this sequence of dominator-node IDs to the packet and hands the packet to the

backbone layer for delivery to the first dominator on the path. At each dominator,

the lower layer upcalls the routing layer and then delivers the packet to the next

dominator on the path. The lower-layer on the last dominator delivers the packet

to the target node.

We now cover the key features of the routing layer — caching, discovery and

error handling — in more detail.

3.1.1 Route Caching

The nature of the underlying backbone suggests the two-part caching scheme we fol-

low. Routing consists of two steps: locating a dominator in range of the target node

and planning a backbone route to that dominator. These two steps are supported

by distinct caches stored on each dominator. The dominatee routing table, DRT,

caches dominatee-dominator pairings; the backbone routing table, BRT, caches back-

bone topology information. Dominators maintain their DRT and BRT reactively by

observing the content of messages they receive, either as the target or as a routing

node.

The DRT is indexed by dominatee ID and lists one dominator and a times-

tamp for each dominatee in the table. It is updated by route reply messages, which

typically include a list of multiple dominatee-dominator pairings and corresponding

timestamps, as described in the next section. When a dominator receives such a

message, either because it requested the discovery or because it is forwarding the

reply to another dominator, it adds the pairing information in the message to its

DRT. Timestamps ensure that newer pairings replace older pairings. For simplicity,

each dominatee in the table is listed with a unique dominator, even though it may be

in range of several simultaneously, and entries are never deleted, though timestamps

could be used to prune old entries if the table grows too large.

The BRT stores a set of backbone paths. It is updated by every packet

17

a dominator receives and thus normally captures the current backbone topology

quite accurately. When a dominator receives a packet, it merges the path-traveled

information the packet contains into its BRT. The routing layer adds this information

to packets as it routes them from dominator to dominator along the backbone; reply

messages also include the path traveled from requesting to replying node. When a

dominator receives an error packet that invalidates a particular backbone link, it

deletes the link from paths in its BRT.

3.1.2 Route Discovery

As mentioned above, routing begins with a source sending a data packet to a dom-

inator. This dominator checks its DRT for a dominator in range of the target node.

If found, it then checks its BRT for a route to this target dominator. If either of

these two cache lookups fails, the source dominator buffers the packet and initiates

a route discovery for the target node. If it does not receive a corresponding route

reply within a timeout period, it drops the packet.

The source dominator multicasts a ROUTE DISCOVERY message to the entire

backbone. This multicast delivery is implemented by the lower backbone layer,

which uses unicast messages to flood the packet to every dominator reachable from

the source.

When a dominator receives a discovery message, it checks a dominatee own-

ership table, DOT, maintained by the lower level to see whether the target node is

in its radio range. If not, it then checks its DRT and BRT to see whether it knows

which dominator the target node belongs to. Finally, if it knows nothing about

the target, it adds itself to the path-traveled information in the packet header and

instructs the lower layer to continue flooding the request to nearby dominators.

When a dominator locates the target, it sends a ROUTE REPLY packet back

to the requesting dominator. This packet is routed by reversing the path-traveled

information encoded in the request, and has the complete backbone information

18

D2�D1�

Dominator Node� Dominatee Node�

D3�

X (src)�

Y (dest)�

1�
Route Discovery Msg�

1�

1�1�

2�

2� 2�

2�
Route Reply Msg�

Figure 3.1: Example of Route Discovery.

from the requesting dominator to the target dominator. The reply also includes a

timestamp, extracted from its DOT or DRT, that indicates when the target domi-

nator first discovered the target dominatee. As explained in the previous section,

the requesting node compares this timestamp to information already in its DRT to

ensure that it stores the most recent dominator for the dominatee.

Figure 3.1 shows a simple example of the route discovery process initiated

when node X attempts to send a packet to node Y . The network consists of three

dominators: D1, D2 and D3; circles around the dominators indicate their radio

range. Directed edges indicate message sends: requests are labelled “1” and replies

19

“2”. If we assume that the BRT and DRT of every node are initially empty, then

when D1 receives the message from X, it multicasts a ROUTE DISCOVERY message

looking for the node Y . In the first step of the multicast, the backbone sends the

request to nodes D2 and D3. Both check their DOTs for Y. D3 finds it and thus sends

a ROUTE REPLY packet back to D1. D2 does not not find Y and so it continues the

multicast by sending the request to D3. D3 replies to D1 again, but this time along

the path that includes D2. As a result, D1 and D2 update their DRTs to record that

Y is in range of D1. D1 and D3 update their BRTs to reflect the complete backbone

topology, while D2 is only missing the path D1 − D3.

Finally, as an optimization, route reply packets are padded to piggyback

dominator information for multiple dominatees. The target dominator uses an open-

ended vector of timestamps in the route request along with its DOT timestamps to

determine which of its dominatees are unlikely to be in the requester’s DRT. It

appends the IDs and timestamps of these dominatees to the reply packet, if there is

room. The vector of timestamps is encoded by the requesting node to summarize the

current state of its DRT with respect to other dominators. We treat the timestamp

vector as an optional heuristic. If the target does not find a matching entry in the

vector, it pads the reply with as many DOT entries as will fit, starting with the

newest. Other dominator nodes on the reply path repeat this process as long as

room remains in the reply packet.

3.1.3 Routing Errors

The routing layer relies on the backbone to determine which nodes are domina-

tors, which links exist between dominators, and which dominatees are in range of

each dominator. The backbone only updates this information periodically based on

heartbeat messages, as will be described in Section 3.2, and is thus sometimes out of

date. Some errors are thus discovered only when the routing layer is attempting to

send a message. In two cases the routing layer performs corrective action on-the-fly

20

in an attempt to salvage an otherwise errant message send.

The first case occurs when a packet is routed over a backbone link between

two dominators that are no longer connected. When this occurs, the backbone

delivers a ROUTE NACK message to the dominator that attempted to use the faulty

link. This dominator deletes the bad link from its BRT, forwards the ROUTE NACK

backward to the source dominator, and attempts to salvage the packet. Dominators

buffer a fixed number of recently sent packets for this purpose. If the packet is

buffered, the dominator checks its BRT for an alternate backbone route to the target

node. If it finds one, it updates the route information in the packet header and

resends the packet, decrementing a SALVAGE header field to limit the number of

times the packet can be redirected in this way.

The second case occurs when a source dominator has outdated DRT informa-

tion for a target node. To deal with this case, every dominator on the packet’s route

checks its DRT to determine whether its entry for the target is more recent than

that used to route the packet; packets include their target node’s DRT timestamp

for this purpose. If a dominator does have more recent information, and it has a

BRT path to the target’s new dominator, it updates the packet’s route information

before forwarding it.

3.2 Proactive Backbone Maintenance

We now turn to the lower-layer of the protocol which proactively maintains the span-

ning graph used to route messages. The basic idea is to group nodes into clusters

around a cluster-head (i.e., a dominator) chosen according to some globally consis-

tent formula; in our case the node with the lowest ID in its one-hop neighbourhood

is a dominator. A dominator uses its dominatees to connect its cluster to the nearby

clusters via either two- or three-hop paths. Periodic heartbeat messages are used to

maintain the clusters, their cluster heads, and inter-cluster links.

Any node can act as either a dominator or dominatee, with some dominatees

21

D3�

D2�

D1�

D6�

D5�

D4�

D2� D3�

D6�D5�

D4�

D1�

Normal backbone links�
To-be-broken backbone links�
To-be-connected backbone links�

Figure 3.2: The Fake Partition Problem

acting as connectors that link dominators to each other. Dominators store a list of in-

radio-range dominatees in the dominatee ownership table (DOT). As described in the

previous section, each DOT entry is timestamped when added. Dominators also store

a connectivity list containing paths to other dominators that are two and three hops

away. Similarly, dominatees store a list of in-range dominators, timestamped each

time a message is received from that dominator, and a connectivity list containing

paths to dominators that are at most two hops away. Finally, outdated information is

purged from the various local lists unless it is periodically refreshed by the messages

described below.

22

D1� D2� D3�

D4�

D5�

D6�

D1�
D2�

D3�

D4�

D5�

D6�

Normal backbone links�

To-be-connected backbone links�

Figure 3.3: The Failed Merge Problem

3.2.1 Heartbeat Messages

In a mobile wireless network, a CDS backbone faces many problems when the net-

work topology changes. For example, in the case where a connector moves away and

this causes a broken backbone link, the backbone needs to repair it with alternative

connectors. The previous works use localized CDS maintenance schemes [16, 27],

but they do not provide ways to detect topology changes or identify moving nodes.

We also attempted to define a local and reactive maintenance algorithm, which re-

pairs a backbone connection only when a dominator or connector fails to send a data

packet. However, we argue that, with real mobility settings, local reactive repair

is insufficient without support from external infrastructures, such as GPS. This is

because of two reasons. First, it is hard for a mobile node to identify itself without

23

a fixed reference point since node movement is relative to each other. Second, a

reactive maintenance algorithm does not provide a dominator with the ability to

detect new neighbouring clusters, although data delivery failures can be used to

indicate a broken backbone connection. A local and reactive CDS repair depends

on the assumption that all the other parts of a network are fully connected at any

time. But this is not necessarily true given these two limitations.

Taking the first case shown in Figure 3.2 for example, D1 and D4 move away

from each other and eventually, when they are separated by more than a three-hop

distance, the local repair can no longer link them together. At the same time, D2 and

D5 are moving towards each other, and we can potentially create a new backbone

connection between them. However, with a locally reactive maintenance algorithm,

this potential backbone link can not be detected, and this ends up with two isolated

backbones. For the same reason, we can see that in Figure 3.3, when two previously

unconnected backbone pieces move towards each other, this maintenance scheme

also fails to merge them together.

To address these problems, we come up with a proactive backbone mainte-

nance algorithm, which requires participation from all the nodes in the network to

detect topology changes. Namely, each node periodically broadcasts one-hop con-

trol messages to its neighbours. We call these one-hop periodic messages Heartbeat

messages. DCDS inherits the DOMINATOR and DOMINATEE messages from the

MOCDS algorithm as the heartbeat messages. However, it modifies their structure

so that they can piggyback the current backbone connectivity information.

The heartbeat messages can provide the following functions. First, they

enable a node to speculate the topology changes in its neighbourhood and react

to them accordingly. Each node applies an individual timer for each entry in its

Dominators list and Dominatees list , and these heartbeat messages are responsible

for refreshing them. If any timer expires, a node believes that the corresponding

neighbour has left and invalidates all the related routing information. Second, these

24

heartbeat messages provide a dominator node with the ability to fully connect to

any other neighbouring dominators within a three-hop distance. Every time a non-

dominator node receives a heartbeat message, it learns the connectivity status of

its neighbouring dominators, and thus potentially is able to create new backbone

connections. Last, the heartbeat messages help each node to adapt itself to the dy-

namic surroundings individually without any synchronizations with its neighbours.

A node assumes that the information it collects from the heartbeat messages is ac-

curate enough and makes decisions only based on its current state and the ongoing

event, such as a timeout or a packet reception. Although it is possible that a heart-

beat message may contain inaccurate or incomplete topology information, or even

might not be delivered successfully, the successive heartbeats can eventually fix all

the consequences.

3.2.2 Constructing the Graph

The graph is constructed inductively. By default every node is a dominator until it

discovers another dominator in its radio range that has a lower ID.

Each dominator periodically broadcasts a DOMINATOR message that is re-

ceived by every node in its radio range. This message includes the dominator’s ID

and a list of its one-hop neighbors in its connectivity list, which is initially empty.

When a dominator node receives a DOMINATOR message with an ID lower than

its own, it changes its state to dominatee. When a dominatee receives a DOMINA-

TOR message, it records the dominator in its local list and updates the dominator’s

timestamp.

Each dominatee periodically broadcasts a DOMINATEE message that is re-

ceived by every node in its radio range. This message includes the dominatee’s ID

and its lists of one- and two-hop dominators, which are initially empty. These mes-

sages are sent much less frequently than DOMINATOR messages and constitute the

major message overhead of this proactive approach.

25

When a dominator receives a DOMINATEE message, it does several things.

First, it adds the dominatee to its DOT, if it is not there; it timestamps new DOT

entries with the current time. Second, it adds the dominators listed in the message

to its connectivity list. For the two-hop-away dominators, the dominatee is the

two-hop connector. For the three-hop-away dominators, the dominatee is the first

hop of a three-hop connection. The second hop is selected at the dominatee from

its local connectivity list.

When a dominatee receives a DOMINATEE message, it adds only the one-hop

dominators in the message to its connectivity list; the initiating dominatee is the

connector for these links.

If a dominatee node fails to receive any DOMINATOR messages for a sufficient

interval, it may need to initiate an election to select a new dominator. The failure

to receive a DOMINATOR message, however, is not a sufficiently strong indicator

that there are no dominators in range. The reason for this is that 802.11 gives

priority to unicast messages and thus broadcast messages such as DOMINATOR can

be drowned out during periods of sustained congestion.

Therefore, before initiating a dominator election, the dominatee sends unicast

ping messages to check whether any of the dominators in its local list are reachable.

Those that fail to respond to the ping are deleted from the list. Only if none of

them responds does the dominator change its state to dominator and broadcast a

DOMINATOR message.

3.2.3 An example

Figure 3.4 shows an example of a simple backbone that consists of three nodes that

will eventually become dominators — D1, D2 and D3 — and three that become

dominatees — C1, C2 and C3. The circles around the dominators represent their

radio range. The boxes summarize the information stored at each dominator once

the protocol has reached steady state.

26

Dominator Node�

D2�D1� C1� C2�

Dominatee Node�

D3�

C3�

Local Backbone Topology�
[D2, C1, 3-hop], T(�C�2D2�)�

[D3, C1/C3, 3/2-hop], T(�C3D3�)�

Local Backbone Topology�
[D1, C2, 3-hop], T(C1D1)�

Local Backbone Topology�
[D1, C3, 2-hop], T(C3D1)�

Figure 3.4: Example of a Simple Backbone.

In the first round of messages C1, C2 and C3 transition to dominatee when

they receive DOMINATOR messages from one of the other nodes. C1’s dominator

list contains D1, C2’s contains D2, and C3’s contains D1 and D3. All other lists are

empty until C1, C2 and C3 send their DOMINATEE messages. When they do, the

dominators update their DOTs and D1 and D3 add each other to their connectivity

lists, with C3 as the two-hop connector. In addition, C1 adds D2 to its connectivity

list and C2 adds D1, each listing the other as the connector. Finally, in the next

round of DOMINATEE messages, C1 includes D2 as a two-hop dominator and C2

includes D1. These messages allow D1 and D2 to establish a three-hop backbone

link through C1 and C2.

27

3.2.4 Multi-path Backbone Routing

While the routing layer treats backbone links between dominators as single paths

when constructing routes, in reality each link is a multi-path connection involving

one or two connector nodes. Where there are multiple low-level connections that can

instantiate a upper-level path, the low-level routing protocol is afforded flexibility

when dealing with link failures.

The basic backbone routing between two dominators works as follows. An

upstream dominator checks its connection list for connections to the next dominator.

If two-hop connections exist, it chooses the one with the most recent timestamp,

otherwise it chooses the most recent three-hop link. In either case, the result is that

a connector node in range of the dominator is chosen. The dominator then sends a

unicast message containing the payload to the connector. A two-hop connector di-

rectly sends the packet to the target dominator, while a three-hop connector repeats

the process to select a second connector.

If a dominator or connector is unable to send the packet, it receives a MAC-

protocol-level error; connectors forward the error to the upstream dominator. When

nodes receive such an error, they immediately delete the errant connection from their

connectivity lists. The upstream dominator, which buffers recently sent packets,

selects another connection and tries again. Only when the retry limit is reached or

all available connections have been deleted is the error reported to the upper routing-

level protocol. Recall that this error triggers an attempt to salvage the packet at

that level if alternate backbone routes exist to the packet’s ultimate destination.

28

Chapter 4

Evaluation

Previous CDS work [13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27] evaluates

a CDS backbone by its approximation ratio, and a good CDS algorithm should have

its approximation ratio bounded by a constant.

However, these evaluations have failed to conduct CDS performance analysis

with practical mobility settings due to some unrealistic assumptions they have made,

as discussed in Section 2.4. In contrast, the goal of our simulations is to offer

such analysis, and further, to reveal the advantages and disadvantages of our DCDS

algorithm in an IEEE 802.11 ad hoc network with a reasonable mobility and traffic

model.

4.1 Simulation Setup

We conduct the simulation using Glomosim [32], a scalable simulator with accurate

physical layer and radio propagation models. In our simulations, the bandwidth is

set to 2 Mbps with 2.4 GHz radio frequency and the transmission range is set to

250m. Table 4.1 lists the main constants used in our DCDS

Our evaluation compares DCDS to DSR. To ensure our comparison was as

faithful as possible to previously reported DSR results, we imported the ns2 DSR

code from the Monarch project [33] and modified it to work with Glomosim. We

29

Table 4.1: DCDS Protocol Settings
DOMINATOR Heartbeat Interval 0.5 Second
DOMINATEE Heartbeat Interval 5 Seconds

Dominator Timeout 5 Seconds
Dominatee Timeout 30 Seconds

Retry limit for local recovery 4
Retry limit for salvage 2

Time to hold packet awaiting routes 40 Seconds
Timeout for buffering a packet after forwarding 5 Seconds

Timeout for awaiting for a dominator AYA ping response 1 Second

verified that this implementation closely matches the ns2 version when physical

values are set as suggested by [34]. implementation.

The evaluations are conducted with a total of 200 nodes that are randomly

distributed in an area of 1500m x 750m. We choose an area that is 3 times as large

as that used in the previous work [9, 6] in order to avoid a chain-like backbone,

which would tend to favour a backbone approach such as ours. By using static

mobility settings and varying the seed value provided by Glomosim, we are able to

accurately evaluate the backbone topology with different node distributions in this

network. With 10 trials, there are approximately 14 dominators in the network, and

each dominator is on average connected to 7 neighbouring dominators.

We use Random Waypoint [3] to model mobility as is common. Using this

model, each node randomly chooses a destination and moves towards it with a

velocity chosen randomly from [Vmin, Vmax]. Each simulation lasts 910 seconds.

The minimum speed is set to 1.0 m/s and the pause period is set to 60 seconds.

Since the evaluation is mainly intended to investigate performance in scenarios with

human mobility, we set the maximum speed to 5 m/s in most of the simulations.

However, in section 4.6, we give DCDS performance for a variety of faster mobility

settings.

30

We adopt a multi-destination CBR traffic pattern similar to that used in the

SHARP paper [12]. This pattern randomly selects a set of destinations to act as

communication hot spots. The number of hot spots is a parameter that we vary.

Source nodes are chosen randomly from the network and destination nodes are

chosen randomly from the list of hot spots. The duration of each CBR connection is

a parameter that we vary. When one ends, another is chosen to take its place. We are

thus able to simulate a variety of wireless environments by varying the connection

duration. The size of each CBR packet is 256 bytes and packets are generated at the

fixed rate of one packet per second. We vary network load by changing the number

of concurrent CBR connections.

To eliminate startup and shutdown effects, each CBR source starts sending

data 50 seconds into the simulation, and stops at 900 seconds, 10 seconds before the

end of the simulation. The start time of every CBR source is perturbed randomly

by at most one second to reduce the probability that their synchronization causes

unnatural congestion.

Finally, the main metrics we use in our comparison are packet delivery ratio

and message overhead. Delivery ratio, a common metric, gives the fraction of packets

successfully delivered compared to the number sent.

4.2 Backbone Scalability

Before we show DCDS routing performance in mobile ad hoc networks, we investigate

the backbone scalability in two aspects. The first aspect we measure is the growth of

the number of dominators as we increase the network size or the node density. The

second aspect we measure is the growth of the dominator degree, i.e., the average

number of neighbouring dominators that each dominator has. The smaller the two

aspects are, the more advantages the DCDS can achieve.

It’s worth noting that since the DCDS algorithm is based on the unit disk

graph, it has a constant approximation ratio. This has been theoretically proven by

31

1500x250 1500x500 1500x750 1500x1000 1500x1250 1500x1500
6

8

10

12

14

16

18

20

22

24

Simulation Area (m x m)

Nu
m

be
r o

f D
om

ina
to

rs

(a) With 200 Nodes and Increasing Network Area

100 200 300 400 500
0

2

4

6

8

10

12

14

16

18

20

Number of Nodes

Nu
m

be
r o

f D
om

ina
to

rs

(b) With Inceasing Nodes in a 1500m x750m Area

Figure 4.1: Backbone Scalability on the Dominator Growth Aspect

32

1500x250 1500x500 1500x750 1500x1000 1500x1250 1500x1500
2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

Simulation Area (m x m)

Do
m

ina
to

r D
eg

re
e

(a) With 200 Nodes and Increasing Network Area

100 150 200 250 300 350 400 450 500
0

1

2

3

4

5

6

7

8

9

10

Number of Nodes

Do
m

ina
to

r D
eg

re
e

(b) With Inceasing Nodes in a 1500m x750m Area

Figure 4.2: Backbone Scalability on the Dominator Degree Growth Aspect

33

Alzoubi et al. in [16]. However, as mentioned earlier, our experiment is to verify the

backbone size and scalability in practice. It is conducted only within static wireless

networks where we can easily verify a backbone’s correctness, and each data point

in Figure 4.1 and Figure 4.2 corresponds to a mean of 30 repeated measurements

with different seeds of the random number generator. These different seeds are able

to generate different random node distributions in the simulation area.

Figure 4.1 shows how the number of dominators grows as we increase the

simulation area and node denstity. It is not surprising that the growth of dominators

is linear with the increase of simulation area. As shown in Figure 4.1(a), the number

of dominators increases from 6 to 24 while we expand the area by 6 times from 1500m

x 250m to 1500m x 1500m. On the other hand, we can see from Figure 4.1(b) that

the number of dominators is barely affected by the factor of node density, given the

fixed simulation area and radio range.

Figure 4.2(a) shows that the inital increase of simulation area from 1500m x

250m to 1500m x 750m has an obvious impact on the dominator degree, increasing

from 3 to 7. However, as we continue increasing the area, the dominator degree

remains constant around 7.3. This is because the initial rectangular areas have a

relatively small width, which can easily result in a chain-like backbone topology

given the 250m radio range. As we increase the width, the backbone turns into a

more complicated graph in which each dominator has neighbouring dominators in

all directions. However, as soon as the chain-like backbone no longer exists, the

increase of simulation area no longer affects the node degree that much even though

it still causes the backbone complexity to grow. We can also see from Figure 4.2(b)

that the node density has little impact on the dominator degree.

4.3 Varying the Number of Hot Spots

Our second set of simulations give the performance of DCDS as the number of hot

spots increases. The network load is fixed to 40 pkts/sec and the CBR lifetime is set

34

10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Number of Hot Spots

Pa
ck

et
 D

eli
ve

ry
 R

at
io

DCDS
400−entry Cache
64−entry Cache

(a) Packet Delivery Ratio

10 20 30 40 50
0

0.5

1

1.5

2

2.5

3 x 106

Number of Hot Spots

Pr
oto

co
l O

ve
rh

ea
d 64−entry DSR

400−entry DSR
DCDS

(b) Protocol Overhead

Figure 4.3: Scalability by Varying the Number of Hot Spots

35

10 20 30 40 50
0.5

0.6

0.7

0.8

0.9

1

Number of Hot Spots

Ca
ch

e
Hi

t R
at

io

DCDS
400−entry DSR
64−entry DSR

Figure 4.4: Cache Hit Ratio

10 20 30 40 50
0

2

4

6

8

10

12 x 106

Number of Hot Spots

64−entry DSR
200−entry DSR
DCDS

Figure 4.5: Signal Collisions in Radio Layer

36

10 20 30 40 50
1

2

3

4

5

6

7 x 104

Number of Hot Spots

64−entry DSR
200−entry DSR
DCDS

Figure 4.6: Packets Dropped in Mac Layer

10 20 30 40 50
0

0.5

1

1.5

2 x 106

Number of Hot Spots

64−entry DSR
200−entry DSR
DCDS

Figure 4.7: Packets Dropped Due to IP Queue Overflow

37

to 10 seconds. We vary the number of hot spots from 10 to 50, which corresponds to

5% to 25% of the nodes in the network. We compare DCDS with two DSR versions,

the standard DSR with a 64-entry routing cache and the modified DSR with a 400-

entry routing cache. The 400-entry routing cache is about six times the size of the

routing caches in a dominator including BRT, DOT, and DRT.

Figure 4.3 shows the weaknesses of both DSR algorithms. The DSR with

a 64-entry routing cache performs consistently the worst among the three. It only

provides a 6.9% packet delivery ratio, even when there are as few as 10 hot spots in

the network. On the other hand, the DSR with a bigger cache performs very well

with a small number of hot spots. However, its performance decreases dramatically

as the number of hot spots increases, dropping from nearly 99% to 14.5% as we

increase the number from 10 to 50.

The mobility is not a major factor in these results. Instead, DSR’s poor

performance is due mainly to network congestion. We can see from Figure 4.4 and

Figure 4.3(b) that the performance decline is coupled with a corresponding decline

in cache hit ratio and increase in protocol overhead. The smaller the number of

hot spots in the network and the larger the routing cache, the more likely a node

is to locate the destination node in its own routing table and thus avoids expensive

discovery broadcast that creates congestion.

DSR with a 400-entry route table performs better than DCDS when there are

only 10 hot spots in the network. It also has a smaller protocol overhead since it

sends no proactive, periodic control messages. As the number of hot spots increases,

however, the 400-entry cache is too small to accommodate the routes to all the des-

tinations. The cache hit ratio thus declines and more route discovery messages are

required. These messages are broadcasted in the network and interfere with all the

other messages in the airspace. Once the protocol overhead exceeds the limit the

network can accommodate, the carrier-sense mechanism and random backoff proce-

dure provided by IEEE 802.11 is no longer effective and the performance declines.

38

As seen from the figures, the cache hit ratio drops to 81% when we increase the

number of hot spots to 30, which results in more protocol overhead and causes the

performance to fall off dramatically. The situation is even worse for the DSR with

only a 64-entry routing cache.

Bigger caches improve DSR performance, up to a point. To test the limits of

this approach, we simulated a version of DSR with an 800-entry cache. This change

improved the packet delivery ratio to around 90% for 40 hot spots and 200 nodes.

If we increase the number of nodes to 300, however, the packet delivery ratio drops

sharply to 8%. DCDS, on the other hand, consistently delivers 95% of its packets

no matter how many hot spots exist, as shown in Figure 4.3(a).

Finally notice in Figure 4.4 that DCDS dominators achieve a 97% cache-hit

ratio, independent of the number of hot spots. As a result, DCDS performs the

fewest route discoveries and consequently has the lowest congestion and highest

delivery ratio. To further explain the consequences of network congestion, we show

detailed collision and interference information in the radio, MAC and IP layers in

Figure 4.5, Figure 4.6 and Figure 4.7 respectively. Figure 4.5 shows the number of

signal collisions in the radio layer. This happens when a node receives more than

one signal at once, which is well known as the “Hidden Terminal Problem” [35].

Figure 4.6 shows the number of packets dropped in the MAC layer. This occurs when

a unicast packet delivery exceeds its retry limit. Moreover as shown in Figure 4.7,

there are a large amount of packets dropped in the IP layer due to IP queue overflow.

This is because of the congested airspace, where a node can hardly determine an

idle medium when it attempts to send a packet out. Thus, many packets are stuck

in the IP queue resulting in overflow.

It is interesting to see that DSR with a larger routing cache starts to drop

more packets in the MAC layer than DSR with a smaller cache with 30 or more hot

spots. There are two reasons for this behaviour. First, DSR with a larger routing

cache is able to send more unicast packets into the MAC layer instead of dropping

39

them in the IP layer. Second, while having larger network topology information can

alleviate network congestion, sending the packets via an outdated route causes more

delivery failures in the MAC layer due to topology changes.

4.4 Varying Connection Lifetime

We conduct the third set of simulations to show performance when varying the

duration of CBR connections. We set the network load to 40 pkts/sec and fix the

number of hot spots to 40 in these simulations.

The results shown in Figure 4.8 clearly match our expectation that the DSR

performance deteriorates as the CBR life time decreases. Since the network load is

fixed, reducing the CBR lifetime increases the number of CBRs in the simulation.

For example, there is a total of 2280 CBRs when the CBR lifetime is 15 seconds;

while the number increases to 3400 when we use a 10-second lifetime. As a result,

more route discovery and maintenance messages are generated.

For DSR with a 400-entry routing table, when the CBR lifetime is set to 15

seconds or longer, the total number of data and control messages has not exceeded

the network capacity. Therefore, each source node is able to successfully locate the

destinations and deliver data packets. However, when the CBR lifetime drops to 10

seconds, the 2Mbps bandwidth is no longer able to handle the increasing network

load and thus the network congestion occurs.

Moreover, if route discovery and reply messages are dropped, a source node

will generate more subsequent route discovery messages until it receives a route reply

or the timer for the reply expires. This, however, causes more protocol overhead

and further escalates the network congestion. As shown in Figure 4.8, the packet

delivery ratio of DSR with a 400-entry routing cache drops significantly from 92% to

17% as the number of protocol control messages increases from 151685 to 802417,

when we reduce the CBR lifetime from 15 seconds to 10 seconds.

Not surprisingly, the DSR with a 64-entry route table still suffers from a

40

5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

CBR Life Time (S)

Pa
ck

et
De

liv
er

y R
ati

o DCDS
400−entry DSR
64−entry DSR

(a) Packet Delivery Ratio

5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

4 x 106

CBR Life Time (S)

Pr
oto

co
l O

ve
rh

ea
d

64−entry DSR
400−entry DSR
DCDS

(b) Protocol Overhead

Figure 4.8: Scalability by Varying the CBR Lifetime

41

severe collision and interference problem and has the worst packet delivery ratio.

Nevertheless, as Figure 4.8(b) indicates, we can safely predict that it can continu-

ously improve its performance as the CBR lifetime increases due to the decreasing

protocol overhead.

Once again, DCDS shows its advantage in this experiment. For the same

reasons discussed in Section 4.3, DCDS avoids the network congestion problem and

consistently provides a good packet delivery ratio and generates low protocol over-

head. Another interesting observation from Figure 4.8(b) is that, with a 30-second

CBR lifetime, DCDS still performs a little better than DSR with a large routing table,

even though DSR generates slightly fewer control packets. This is because DCDS

handles mobility better than DSR, as described in Section 4.6.

4.5 Varying the Network Load

We now evaluate performance as we vary network load. We set the CBR lifetime

to 20 seconds and fix the number of hot spots to 40. Since the main focus here is

to point out the different ways DCDS and DSR deal with network congestion, we

increase the number of CBRs gradually from 10 to 70.

All algorithms perform well when traffic is light. We can see from Figure 4.9,

however, that the packet delivery ratios start to decline dramatically with increasing

network load. The DSR with a smaller routing table is the first to break, while DCDS

is the last to break.

It is obvious that DSR with a larger routing cache outperforms the DSR with

a smaller one, since the former results in more route discovery messages. Hence,

it saturates the network bandwidth first when the CBR traffic is only 30 pkts/sec.

There appear to be two main reasons for DCDS’s performance advantage over both

DSR versions. First, DCDS’s route discovery messages are confined to the backbone

and thus each discovery involves fewer message sends. Second, DCDS is able to repair

broken paths locally, in the lower-layer backbone protocol, by choosing alternate

42

10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1

Number of CBR Connections

Pa
ck

et
 D

eli
ve

ry
 R

at
io

DCDS
400−entry DSR
64−entry DSR

(a) Packet Delivery Ratio

10 20 30 40 50 60 70
0

0.5

1

1.5

2

2.5

3 x 106

Number of CBR Connections

Pr
oto

co
l O

ve
rh

ea
d

64−entry DSR
400−entry DSR
DCDS

(b) Protocol Overhead

Figure 4.9: Scalability by Varying the Number of CBR Connections

43

connectors to link two dominators. In contrast, DSR’s repair is more global, requiring

that the route itself be modified and thus involving an error packet sent back to the

source node.

All these aspects enable DCDS to generate the lowest overhead and provide

the best performance as the number of CBR connections increases. However, Fig-

ure 4.9(a) also shows that DCDS starts to break when the number of CBRs increases

to 60. As we increase network traffic, the number of packets sent via the backbone

will eventually exceed the limit the backbone can handle. Once this point is reached,

the local recovery no longer deals with congestion effectively since resending results

in more packets and worsens the situation. Moreover, a dominator assumes a back-

bone link is broken once the local recovery fails, which may cause the backbone

to fall apart. A disconnected backbone inevitably leads to more protocol overhead

making the network congestion problem even worse, and significantly affects the per-

formance. Figure 4.9(a) shows that packet delivery ratio drops from 95% to 78% as

the CBR traffic increases from 50 pkts/sec to 60 pkts/sec, along with a 25% increase

of protocol overhead from 125655 pkts to 156210 pkts. The situation unsurprisingly

gets worse when we raise the number of CBRs to 70.

4.6 Varying the Mobility

The last set of simulations measures performance with various mobility settings. We

fix the CBR lifetime at 10 seconds, and set the maximum speeds to 0m/s, 5m/s,

15m/s and 20m/s respectively in order to simulate different scenarios from a static

network to a highly dynamic network with vehicle mobility settings. In the mean

time, we keep the minimum speed and the pause time unchanged. To focus our

analysis on mobility, the CBR traffic is fixed at only 10 pkts/sec to minimize the

impact of network congestion and interference.

As shown in Figure 4.10, DCDS continues to outperform the other two algo-

rithms throughout all the simulations. Its performance drops from almost 100% to

44

0 5 10 15 20
0.75

0.8

0.85

0.9

0.95

1

Maximum Speed (m/s)

Pa
ck

et
 D

eli
ve

ry
 R

at
io

DCDS
400−entry Cache
64−entry Cache

Figure 4.10: Packet Delivery Ratio by Varying Mobility

91% as we increase the maximum speed from 0m/s to 20m/s. On the other hand,

the performance of the DSR algorithms, which is the same as DCDS in the static

environment, declines at a relatively faster rate, dropping to 80% for the highest

mobility settings. Network congestion and interference are not a problem here. As

a matter of fact, when setting the maximum mobility to 20m/s in our DSR ex-

periments, there was never more than 100 failed data packet transmissions due to

network congestion.

Instead, DSR’s performance disadvantage is caused by the staleness of its

caches. DSR uses aggressive caching in order to achieve low overhead and alleviate

network congestion, however this is at the risk of using outdated routes. With short-

term CBR connections, a node is not able to keep track of path connectivity after

delivering all its data. Therefore, it is likely that, at some point later when the

node tries to reuse the path, the path has already broken. This not only potentially

causes data packets to drop, but can also pollute the caches of other nodes. Worse,

45

such a node can propagate the obsolete path to the other source nodes if it receives

requests for any node on a broken path.

Therefore, we can see from Figure 4.11 that, even though DSR has a relatively

high cache hit ratio, source routing with an inaccurate path causes a large number

of data packets to drop. The larger the DSR routing cache is, the more data packet

transmissions fail. When we increase the maximum speed to 20m/s, sending 8500

CBR packets actually causes 10207 failed data transmissions in the network. How-

ever, the DSR with a bigger cache is still able to provide better performance than the

DSR with a smaller cache, because the source node and the intermediate nodes on

the path can have more network topology information with a bigger routing table,

and thus it can effectively salvage more packets by retrying other alternative paths.

On the other hand, DCDS adopts several optimizations to address this prob-

lem. First, a DCDS dominator uses timestamps to keep track of the last hop infor-

mation in its DRT. For example, a dominator A has a DRT entry (B,X, T1), which

means the dominator B has dominated X since T1. Later, if A receives a route reply

including an entry (B,X, T2), it compares the T1 with T2 and keeps the latest one

in its DRT. As a result, it can select the best dominator to reach the destination

node.

Second, the periodic heartbeat messages and timeouts enable a dominator

to maintain a relatively accurate view of its neighbourhood topology. Therefore, as

discussed in Section 3.2, the timestamps in the connectivity information list help a

dominator to heuristically choose a dominatee which is the most likely to reach its

neighbouring dominator. Moreover, it is able to recover a data packet immediately

after detecting a transmission failure by using another dominatee.

Finally, the backbone is in use as long as there exists data traffic in the

network. Therefore, the dominators are able to detect a broken backbone link

quickly, and thus the BRT information is pretty much up-to-date. Furthermore,

since the backbone is fully connected and each dominator tries to keep track of all

46

the dominatees in the network, an intermediate dominator is more likely to salvage

a data packet when it fails to transmit a packet to the next dominator.

47

0 5 10 15 20
0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Maxmium Speed (m/s)

Ca
ch

e
Hi

t R
at

io

DCDS
400−entry Cache
64−entry DSR

(a) Cache Hit Ratio

0 5 10 15 20
0

2000

4000

6000

8000

10000

12000

Maximum Speed (m/s)

400−entry DSR
64−entry DSR
DCDS

(b) Packet Dropped Due to Mobility

Figure 4.11: Mobility Effects on Caching and Source Routing

48

Chapter 5

Conclusion and Future Work

5.1 Conclusion

This thesis presents DCDS, a hybrid algorithm that combines proactive clustering

and reactive routing for mobile ad hoc networks. The proactive component builds

a connected-dominating-set backbone that groups nodes around cluster heads. The

reactive component uses techniques similar to DSR, but confines caches to cluster

heads and routes to the backbone.

The costs for maintaining the spanning graph are small compared to the

benefits. DCDS can discover routes by flooding only the backbone, not the entire

network as required by the other algorithms. DCDS can cache routes as aggressively

as DSR, while efficiently maintaining cache consistency. It achieves this benefit by

using fewer caches and fewer routing nodes than the other algorithms, where any

node can act as a routing node. Therefore, in the other algorithms, when a single

node moves or fails, it potentially invalidates not only routes to that node but also

routes that go through it to other nodes. In DCDS, on the other hand, only a small

fraction of nodes are routing nodes and thus most nodes only invalidate routes to

themselves when they move or fail.

Our simulation results show that our hybrid approach yields significant per-

formance benefits compared to DSR, the reactive algorithm upon which it is based.

49

5.2 Future Work

There are three main directions for future work. The first is to further improve

upon the scalability of our DCDS routing algorithm. We plan to investigate the

performance of a spanning tree backbone routing scheme, where each dominator

uses a spanning tree rooted at itself to propagate route discovery messages. This

can certainly reduce the number of messages that are unnecessarily forwarded in the

backbone. However, it is also challenging to make sure each tree topology is accurate

and complete so that a route discovery message can reach all the dominators in the

network.

Second, with a shared backbone like DCDS, load balancing becomes an in-

triguing issue to look into. The dominators in the backbone are going to handle

significantly more traffic than the nodes not in the backbone. Therefore, it is also

important to come up with a fairness algorithm based on DCDS, which can spread

out traffic and share routing responsibilities among nodes in the network.

Another intriguing topic we are looking into is to further investigate the

backbone quality and how it depends on the mobility of the nodes. This can be

measured in two ways: backbone coverage and backbone connectivity. Backbone

coverage is a measure of how well the backbone can reach all the dominatees in the

network; Backbone connectivity is a measure of backbone partitioning, i.e., if there

are any dominators that are not connected to each other.

50

Bibliography

[1] C.Perkins and P.Bhagwat, “Highly dynamic destination-sequenced distance-

vector routing for mobile computers,” in Proceedings of ACM SIGCOMM’94,

Aug. 1994, pp. 234–244.

[2] R. Ogier, F. L. Templin, B. Bellur, and M. G. Lewis, “Topology broadcast

based on reverse-path forwarding,” IETF MANET Internet Draft, Nov 2002

(work in progress).

[3] D.Johnson and D.Maltz, “Dynamic source routing in ad hoc wireless networks,”

in Chapter 5, Mobile Computing. Kluwer Academic Publishers, 1996, pp. 153–

181.

[4] C.Perkins and E.Royer, “Ad-hoc on-demand distance vector routing,” in Second

IEEE Workshop on Mobile Computing Systems and Applications, Feb. 1999, pp.

90–100.

[5] S.Ni, Y.Tseng, Y.Chen, and J.Sheu, “The broadcast storm problem in a mobile

ad hoc network,” in Proceedings of the ACM/IEEE International Conference on

Mobile Computing and Networking (ACM MOBICOM’99), 1999, pp. 151–162.

[6] S.Das, C.Perkins, and E.Royer, “Performance comparison of two on-demand

routing protocols for ad hoc networks,” in Proceedings of the IEEE Conference

on Computer Communications (INFOCOM 2000), Tel Aviv, Israel, Mar. 2000,

pp. 3–12.

51

[7] F.Bai, N.Sadagopan, and A.Helmy, “Important: a framework to systematically

analyze the impact of mobility on performance of routing protocols for adhoc

networks,” in Twenty-Second Annual Joint Conference of the IEEE Computer

and Communications Societies (INFOCOM 2003), Mar. 2003, pp. 825–835.

[8] ——, “Brics: A building-block approach for analyzing routing protocols in ad

hoc networks - a case study of reactive routing protocols,” in USC-CS-TR-02-

775, Nov. 2002.

[9] J.Broch, D.Maltz, D.Johnson, Y.-C.Hu, and J.Jetcheva, “A performance com-

parison of multi-hop wireless ad hoc network routing protocols,” in Proceedings

of The 4th ACM International Conference on Mobile Computing and Network-

ing (Mobicom ’98), Dallas, TX, Oct. 1998, pp. 85–97.

[10] P. Johansson, T. Larsson, N. Hedman, and B. Mielczarek, “Routing protocols

for mobile ad-hoc networks - a comparative performance analysis,” in Proceed-

ings of the 5th International Conference on Mobile Computing and Networking

(ACM MOBICOM’99), Tel Aviv, Israel, Aug. 1999, pp. 195–206.

[11] Z. J. Haas and M. R. Pearlman, “The performance of query control schemes

for the zone routing protocol,” in SIGCOMM, 1998, pp. 167–177.

[12] V. Ramasubramanian, Z. J. Haas, and E. G. Sirer, “Sharp: a hybrid adaptive

routing protocol for mobile ad hoc networks,” in Proceedings of the 4th ACM

international symposium on Mobile ad hoc networking & computing. ACM

Press, 2003, pp. 303–314.

[13] J.Wu and H.Li, “On calculating connected dominating set for efficient routing in

ad hoc wireless networks,” in Proceedings of the 3rd ACM International Work-

shop on Discrete Algorithms and Methods for Mobile Computing and Commu-

nication, 1999, pp. 7–14.

52

[14] P.-J. Wan, K. Alzoubi, and O.Frieder, “Distributed construction of connected

dominating set in wireless ad hoc networks,” in Proceedings of the IEEE Con-

ference on Computer Communications (INFOCOM’02), June 2002.

[15] Y.Chen and A.Liestman, “Approximating minimum size weakly-connected

dominating sets for clustering mobile ad hoc networks,” in The Third ACM

International Symposium on Mobile Ad Hoc Networking and Computing (Mo-

biHoc’02), June 2002, pp. 165–172.

[16] K.Alzoubi, P.-J. Wan, and O.Frieder, “Message-optimal connected dominating

sets in mobile ad hoc networks,” in The Third ACM International Symposium

on Mobile Ad Hoc Networking and Computing (MobiHoc’02), June 2002, pp.

157–164.

[17] P.Chen and A.Liestman, “A zonal algorithm for clustering ad hoc networks,”

International Journal of Foundation of Computing Science, vol. 14, pp. 305–

322, Apr. 2003.

[18] M.Gerla and J.Tsai, “Multicluster, mobile, multimedia radio network,” Wire-

less Networks, vol. 1, pp. 255–265, 1995.

[19] S.Basagni, “Distributed clustering for ad hoc networks,” in Proceedings of the

1999 International Symposium on Parallel Architectures, Algorithms, and Net-

works (I-SPAN’99), June 1999, pp. 310–315.

[20] B.Das and V.Bharghavan, “Routing in ad-hoc networks using minimum con-

nected dominating sets,” in Proceedings of the IEEE International Conference

on Communication, June 1997, pp. 376–380.

[21] K.Alzoubi, P.-J. Wan, and O.Frieder, “Distributed heuristics for connected

dominating set in wireless ad hoc networks,” IEEE ComSoc/KICS Journal on

Communication Networks, vol. 4(1), pp. 22–29, Mar. 2002.

53

[22] J.Wu and F.Dai, “On locality of dominating set in ad hoc networks with switch

on/off operations,” in Proceedings of the 2002 International Conference on Par-

allel Architectures, Algorithms, and Networks (I-SPAN’02), May 2002, pp. 85–

90.

[23] B.Das, R.Sivakumar, and V.Bharghavan, “Routing in ad-hoc networks using

a spine,” in Proceedings of the IEEE International Conference on Computers

and Communications Networks’97, Las Vegas, NV., Sept. 1997.

[24] C.Lin and M.Gerla, “Adaptive clustering for mobile wireless networks,” IEEE

J. Selected Areas in Communications, vol. 15, no. 7, pp. 1265–1275, 1997.

[25] R.Sivakumar, B.Das, and V.Bharghavan, “An improved spine-based infrastruc-

ture for routing in ad hoc networks,” in Proceedings of the IEEE Symposium

on Computers and Communications’98, Athens, Greece, June 1998.

[26] S.Guha and S.Khuller, “Approximation algorithms for connected dominating

sets,” Algorithmica, vol. 20(4), pp. 374–387, Apr. 1998.

[27] J. Wu and H. Li, “A dominating-set-based routing scheme in ad hoc wireless

networks,” Telecommunication Systems, vol. 18, no. 1–3, pp. 13–36, 2001.

[28] Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Spec-

ifications, ANSI/IEEE Std 802.11, 1999 Edition, LAN MAN Standards Com-

mittee of the IEEE Computer Society Std., 1999.

[29] Y.-C. Hu and D. B. Johnson, “Caching strategies in on-demand routing pro-

tocols for wireless ad hoc networks,” in Proceedings of the Sixth Annual

IEEE/ACM International Conference on Mobile Computing and Networking

(MobiCom’00), Aug. 2000, pp. 231–242.

[30] ——, “Ensuring cache freshness in on-demand ad hoc network routing pro-

tocols,” in Proceedings of the POMC 2002 Workshop on Principles of Mobile

Computing, Toulouse, France, Oct. 2002, pp. 25–30.

54

[31] T.Haynes, S.Hedetniemi, and P.Slater, Fundamentals of Domination in graphs.

Marcel Dekker, Inc., 1998.

[32] X. Zeng, R. Bagrodia, and M. Gerla, “Glomosim: A library for parallel simu-

lation of large-scale wireless networks,” in Proceedings of The 12th Workshop

on Parallel and Distributed Simulations (PADS’98), May 1998, pp. 154–161.

[33] CMU Monarch Group, “The CMU Monarch Project’s Wireless

and Mobility Extensions to NS,” Aug. 1998. [Online]. Available:

http://citeseer.nj.nec.com/180061.html

[34] M. Takai, J. Martin, and R. Bagrodia, “Effects of wireless physical layer mod-

eling in mobile ad hoc networks,” in Proceedings of the 2nd ACM international

symposium on Mobile ad hoc networking and computing (MobiHoc’01), Long

Beach, CA, 2001, pp. 87–94.

[35] D.Allen. (1993) Hidden terminal problems in wireless lan’s. IEEE 802.11 Work-

ing Group Papers.

55

