This document was found in the files inlate 202 3. It may never have been issued formally and it is
not included in the Icon project document IPD138 which lists Icon technical reports.

However, it appears in the references section of the Icon history presented by Ralph Griswold
at HOPL Il (https://dl.acm.org/doi/pdf/10.1145/234286.1057830) with this entry:
[Gudeman, 1986] Gudeman, David. The T Implementation of Icon, Technical Report,
Department of Computer Science, University of Arizona, May 1986.

The T Implementation of Icon

David Gudeman

ABSTRACT

This report describes a program in the T programming language that implements a large
subset of the Icon programming language. The implementation uses a continuation semantics
of Icon. '

1. Introduction

In most programming languages, an expression returns exactly one result. The result may be a structured
type containing many values, but it is still a single result. In the Icon programming language [4], an expression
is capable of producing a sequence of zero or more results. These results are produced one at a time, as they
are required by the context in which the expression is evaluated. The sequence of results that an expression is
capable of producing is called its result sequence. For instance, the result sequence of the Icon expression ‘1
to 57 is {1, 2, 3, 4, 5}. This does not mean that “‘1 to 5°* will produce the given result sequence, only that it
can produce the sequence, depending on its context. This evaluation mechanism is a completely general part of
the Icon language. As a consequence, there is no straightforward way to interpret Icon with another language.

The evaluation mechanism in Icon is said to be goal-directed, because all combinations of the results of all
subexpressions may eventually be evaluated in an attempt to produce a result. In other words, the evaluation
mechanism will try to satisfy the goal of producing a result. For a binary operator, the operation may potentially
be performed on all possible pairs of results from the. two operands in an attempt to produce a result. If the
binary operator is a subexpression of another expression which fails on that result, the binary operator is
resumed to try to produce another result. Since all possible pairs of both result sequences may be produced, the
evaluation mechanism is often called cross-product evaluation. This report describes a T [3] program that uses a
continuation semantics of Icon [5] to implement a large subset of Icon’s expression evaluation mechanism,
meaning goal-directed, cross-product evaluation of expressions which may produce zero or more results. Other
features of Icon, such as expressions that return variables or structured data types are not implemented.

The purpose of this program is to give a small, understandable, implementation of Icon. This intrepreter
may be more easily extendible than the C implementation, and the mathematical nature of the implementation,
may suggest useful extensions to Icon.

2. Notations and Conventions

The syntax of Icon is given in reference [4]. Icon objects are represented in open-face brackets ([I), with
Icon words and symbols given literally, and syntactic variables given with single capital letters, possibly sub-
scripted. For instance, [E] refers to an arbitrary Icon expression, and [if E, then E,] refers to an Icon if
expression, where [E,] and [E,] are arbitrary expressions. There is no possibility of confusing literal objects
with syntactic variables because there are no literal objects in Icon that use capital letters, except for program
variables. Only lower-case letters are used in this report for program variables.

The open-face brackets can be thought of as quotes, so that literal Icon text is always ‘‘quoted’’. The differ-
ence between the open-face brackets used in this report and normal quotes, is that variables may appear inside
of the open-face brackets. But these variables always represent text that would be quoted if the variable were
not used in its place. Bound variables of a lambda-expression that represent syntactic objects are given in bold-

This document was found in the files in late 2023. It may never have been issued formally and it is
not included in the Icon project document IPD138 which lists Icon technical reports.

However, it appears in the references section of the Icon history presented by Ralph Griswold
 at HOPL II (https://dl.acm.org/doi/pdf/10.1145/234286.1057830) with this entry:
[Gudeman, 1986] Gudeman, David. The T Implementation of Icon, Technical Report,
Department of Computer Science, University of Arizona, May 1986.

face without brackets. For example, a function that takes an expression as its only argument would be written
as AE. <exp > rather than as ATE]. <exp >.

Domain names are two or three letters long. They are given in bold for syntactic domains and italic for
semantic domains. For instance, Exp is the domain of Icon expressions, and Rea is the domain of real numbers.
The syntactic and semantic domains needed for a denotational description of Icon expressions are listed in
Appendix A. Listed with the domain names, are single-letter variable names. These variables are always used
(possibly with subscripts and primes) to represent a member of the given domain. For example, in the expres-
sion AL (s I), I represents an identifier, and s represents a store.

_ There is some difficulty in discussing Icon expressions because it is not always clear whether a given expres-
sion controls or is controlled by a related expression. For example, in [E, +E,], [E,] controls whether
[E, 1 is evaluated or not, but [E,] can cause [E,] to be resumed by failing. To help avoid confusion the fol-
lowing terminology is adopted. An expression [E,] is defined to be a post-expression of [E,] if the failure of
[E,] will result in a resumption of [E,]. Likewise, [E,] is called a pre-expression of [E,] if [E,] isa
post-expression of [E;]. Usually, a post-expression follows its pre-expression in the syntactic order of an Icon
program. For example, in [E, + E, 1, [E,] is a pre-expression of [E, I, and [E,] is a post-expression of
IE,]. ' '

Lambda notation is used as a notation to define functions. Where convenient, functions of multiple parame-
ters are defined as Ax y z. <expr >, which can be curried, since it is a short-hand for Ax.Ay.Az. <expr>. In a
lambda expression, everything to the right of the dot is part of the function.

Concatenation represents function application, and associates to the left, although parentheses can be used to
force a given interpretation. Thus, f g x = (f g)x, not f (g x). Binary mathematical operations (+, X, etc) are
used in their normal infix form. For example, plus ‘= Ax y. x+y.

Another notation used to define functions uses the symbol, =, which should be read as *‘is defined to be”’.
This notation is related to lambda notation in that f = Ax y. <expr >, where <expr> is some equation in x and
Y, is the same as f xy = <expr>, and is the same as f x = Ay. <expr>. Note that = is not a predicate, it is
used only to introduce definitions. If x =y (x is defined to be y) then it is the case that x = y, but not con-
versely

It is often convenient to introduce symbols to represent functions, instead of writting out the lambda expres-
sion to describe it. Then it is necessary to define the symbol in a where clause [6]. For instance, the function,
J =Ax. x+(Ay. x+y) 5 would be defined as:

fxex+g5

where g y =x+y

Variable names that occur at two different levels (such as x above) refer to the same thing at all levels. Notice
that the function g had to be defined with the argument y, to avoid confusing it with the x used to define the
function f.

Lambda notation and where notation may be freely mixed, so the above equation could have been written as

fx=x+¢g5

where g =Ay. x+y

The where part may have a nested where, for instance

fx=x+g5
wheregy=x+hx

where h z =x+y

defines f = Ax. x + (Ay. x + (Az. x+y)x)5. The xs all refer to the same value, no matter how deeply nested.

The where may also be followed by and, which is used to define a second (or third, etc.) function that is left
. undefined in the previous equation. For example:

fx=hx+g5
where h y =xXy

and gz=x

Notice that both the where and the and parts can use variables from the equation they are defining,

The where notation also allows the definition of recursive functions. The binomial coefficient (©) can be
defined by

Choose n k = fact n | (fact k X fact(n—k))

where fact m = if m = Q then 1 else n X fact(m-1)

The if-then-else notation has the usnal meaning. In this report, where notation is used almost exclusively
except where it is desirable to define an unnamed function, in which case lambda notation is used.

It is important not to confuse syntactic expressions with mathematical expressions. When something is given
in open-face brackets, what is being represented is the literal character string inside the brackets (except for syn-
factic variables, which are used to represent a set of literal strings). All other expressions are mathematical
notation, which represent mathematical objects. For instance, the symbol ["5" represents the actual syntactic
string *“"5™** used in an Icon program to represent an Icon string. The symbol [5] represents the syntactic
string *“5** used in an Icon program to represent the integer five, and the symbol 5 represents the actual integer
Jfive. In the expression

FIE+5]1=F[E]+5

F represents a mathematical function that maps from Icon expressions to numbers. E represents a set of syntac-
tically legal Icon expressions. The symbols + and 5 in the brackets are characters that occur literally in an Icon
program, while the right hand + represents a mathematical function and the right hand 5 represents an integer.

A variable that takes its values from domain A is said to be of type A. A function f that maps domain A
to domain B is said to be of type A — B and the set of all functions of type A — B form the domain
[A - B). A function g = Axy.<expr> where x and y are of types A and B respectively and <expr> is of
type C, is of type AXB — C. Note that the function can be curried, so g a is a function of type B — C. This
implies that the type of g could equivalently be written as (A — B) — C. It is natural to allow —» to associ-
ate to the left, so that a function, Ax,x, - - - x,.<expr> isof type A, 9 A, » -+ = A, - B if x; is of type
A; and <expr> is of type B. Also, the type A= A,> -+ A > B is equivalent to the type
ApAXx---xA — B. Types are generally given in the first form to emphasize the possibility of currying.

3. The Denotational Method

In denotational semantics, programming language expressions are defined in terms of their syntactic com-
ponents. That is, they are defined t0 denote mathematical objects, which are the meanings of the expressions.
So the Icon expression [E, + E,] is defined in terms of [E,J, [E,1, and the operator [+ J.

The meaning of an expression in a programming language is not absolute, of course, but depends on the
state of the machine when the expression is evaluated. This is handled by defining expressions as functions that
act on a machine state, returning not only a value, but also another machine state for the next expression. The
state of the machine is considered here to be the contents of the memory. The mathematical version of a
. machine memory is a store s, which is a function mapping syntactic identifiers into semantic values. So, if 19 4]]
is an Icon identifier, s[I] = v where v is the value stored in the program variable [I]. Stores are functions
of type Ide — Sv, where Ide is the domain of identifiers and Sv is the domain of storable values. (Ide is writ-
ten in boldface because it is a syntactic domain,) The set of all possible stores forms the domain, Sto, of stores.
If E is a function that maps Icon expressions into their meanings. Then E[I] should be equal to v. This is
represented by the equation _

E[IDs =017 ' G
which could just as well be written as
E[I]=As. s[IT
Assignment is nearly as easy. Let
update vis s Al'. if I =1 thenv else s I’ (3.2

So update is a function that returns a function of type Ide — Sv; therefore, update is of type
Sv — Ide — Sto — (Ide — Sv). Notice that Ide — Sv is the type of Sto, so update is of type
Sv — Ide — Sto — Sto. Given a storable value, v, an identifier, I, and a store, s, update returns another store
that is the same as 5 except that I has the value v. Then

E[I :=E]ls = update(ETEIs)II1s 3.3)
The assignment of the value of one variable, [I,], to another variable, 01,1, is represented by

EQL, :==L]1s = update (E[L 1s)II, Is
reduce by (3.1)

= update (s[L, LI, Is
reduce by (3.2)

=ALifI=[I,] thens[L] elsesI

The statement [E, ; E,] produces the store as changed by the evaluation of [E,] followed by the changes
caused by [E,]. This is written as

E[E;;E,Is = E[E,IELE, Is) (G4)

In (3.3) and (3.4), E maps one store into another, rather than mapping a store into a value as in (3.1). This
corresponds to the difference between a statement (assignment) and an expression (identifier). Since Icon has
only expressions, a different form of E is needed, one that can can produce a value and a changed store at the
‘same time.

4. Continuations

Another problem with the form of E given above is that the evaluation of [E]] may fail. What value would
the function E[E] retumn in that case? Mathematics does not have any provision for the failure of a function
to produce a result, so some other method is needed. One possibility is to create a special value, fail, that
would be returned when a function fails. Then

E[1:=E]s = f E[E] = fail then fail else update (E[[ED)II11s @.1n

All functions would then have to know what fail means. There are three reasons not to use this approach.

First, it adds a great deal of repetitive complication to the semantics. Every denotation of a compound syntactic
~ object would have to have some version of the if expression in (4.1), and generators would add even more prob-
lems. Second, it is very dissimilar to Icon’s expression evaluation mechanism, in which failure specifically
corresponds to not returning a value. Since one of the major purposes of this semantics is to gain insight into the
evaluation mechanism, this is clearly undesirable. Third, there are problems with extending the simple approach
outlined in Section 3 to gotos, returns, coroutines, and other constructs found in other languages, that are usu-
ally handled by a type of function called a continuation. Continuations also serve to solve the problem of Icon’s
generators.

A continuation is a function that maps one store into another. But unlike E[I :=E] in (33)orE [[El;li,]]
in (3.4), which mapped the current store into the next store, a continuation maps the current store into the Jinal
store of the eatire program. So a continuation must somehow contain the effect of the entire rest of the pro-

gram. In this sense, a continuation may be thought of as a confext in which an expression is evalvated. The
function E[[E] applies its continuation to whatever store is produced by evaluation of [EJ.

Let E be a semantic function that takes a statement (not an expression), a continuation ¢, and a store s, and
returns the meaning of executing the statement in the context of ¢ with the store s. Let V be a semantic func-
tion that returns the value of an expression. Then

E[I:=Elcs = c(update VIED)[IDs) @42

This definition says that if [I ;= E] is executed in a context in which the rest of the program is c, the result is
equivalent to executing ¢ with the store produced by doing the assignment. *‘Executing’’ ¢ means applying it
to a store. Notice that the continuation is applied to the store by E. All E[E] are defined to do something like
this, so in some sense, EI := E] is actually being passed as an argument to c¢. This can be made clearer
using [E; ;E,] as an example.

In [E,;E,] the continuation of [E,] is a function that executes E[[E,] in the store produced from the ,
execution of [E,]I, in the context of [E;E, I.

E[E;E,lc s =E[E,Ic,s

where ¢,5, =E[[E,Jc s,

E[E;;E,Ics = EIE,I(As,.ELE, Ic s,)s @3

Compare this to (3.4), in which the order of [E,] and [E,] is reversed. In continuation semantics, the rever-
sal is implicit in the definition of E, since the evaluation of E[E,] will apply ¢, to the store produced from
execution of [E, 1. If [;] associates to the left, then

E[E;E;;Ey3°3E llc s = E[E, Iic,s
where ¢;s, =E[[E, Iic,s,

where c, is the continuation of [E,;E,]. The continuation of [E, ;E,] is E[E,; ** * E_Jc, so

E[E,;E,;E 3+ 3E Ic s =E[E, Ic,s
where ¢,s, = E[[E, llc,s,

where c,5,=E[[E,Jic,s,

wherec, s, ,=E[E Ic s, ,

In order to find the meaning of [E,;E,;E;; *+* ;E_ 1, it is necessary to first find the meaning of [E,D,
then of [E,_, 1, etc., going backward and ‘‘unwinding”’ the equation. The continuation ¢, being defined in the
where clauses is called (applied to the original store s) to produce the final store.

Another way to think about continuations is as a list of functions *‘strung together’’, where the store is
passed from one continuation to the next. Each continuation evaluates the expression it represents, then changes
the store accordingly. But even though continuations appear to be chained together, notice that ¢, is in fact
defined as a part of c,, so that ¢, contains c, as part of its definition. In general ¢, is defined as a part of €y
so each continuation contains all of the subsequent continuations. Since ¢, calls ¢, and since ¢ is an encoding
of the rest of the program, it follows that ¢, was the previous encoding of the rest of the program, and the same
for each other c;.

An expression must return a result, so its continuation must *‘pass on’’ the result to the rest of the program.
To do this, the continuation must take the result as an argument. Let k be a function that takes as arguments an
expressible value (a value that may be expressed in the language) and a store, and produces a store. The type of
k is Ev — Sto — Sto. As an example of the use of k, the addition operator is defined as

E[E;+E,Jk s =E[E, Ik,s
where k,v,5, = E[[E, Ik,s,

where kv, 5, =k (v, +v,)s,

This says that the continuation of [E,] in the context of [E, + E, I, is a function (k,) that takes as argu-
ments the value of [E,] (v,) and the store produced by the evaluation of [E,] (s,) and applies the meaning of
IE, 1 (meanings are functions and can therefore be applied to arguments) to a continuation, k,. The meaning of
[E,] applies k, to the value and store produced by the evaluation of [E,]. The continuation k, applies the -
sum of the two values to the continuation of the outer expression, k. In lambda notation, the definition is

E[E, +EJks s ELE J(Av,s, ELE, J(Av 5.k (v, + v,) s)s,)s

5. Denotations in Icon

Tennent [8] described the semantics of SNOBOLA in terms of a pair of continuations instead of a single con-
tinuation. This is necessary because expressions in SNOBOLA can effect the flow of control of the program by
failing or succeeding. So a failure of an expression causes the failure continuation to be called, and a success
causes the success continuation to be called. In Icon, E is a semantic function that maps Icon expressions into
their denotations. Denotations are functions that map an expression continuation k, a failure continuation ¢, and
a store s into the final store of the program. So E is of type Exp — Ec — Fc — Sto — Sto. The remainder
of this report is dedicated to defining E for expressions in Icon.

The two kinds of continuations result from the fact that Icon expressions may fail or succeed in a manner
similar to SNOBOLA. In Icon, however, success or failure corresponds simply to producing a result or not pro-
ducing a result. If an expression does not produce a value, then its denotation simply calls the failure

continuation. It obviously does not need to pass on a value like the k-continuation described, so the only argu-
ment a failure continuation needs is a store. A failure continuation, then, is a function mapping one store into
another, and is of type Sto — Sto. Failure continuations are represented by the variable name, c.

If the expression produces a value, then its denotation calls the expression continuation. An expression con-
tinuation needs both a value and a store as arguments, like the k-continuation described above, but it needs
something else as well. Suppose the part of the program represented by the continuation fails. Any expression
can fail, and the failure must be handled by the expression that called the continuation. This is most easily con-
trolled by passing to the expression another continuation that encodes the *‘rest of the program®’ on a failure,

: This continuation is referred to as a resumption continuation, because it is called to resume a pre-expression.

Note that no results are passed 70 a resumption continuation; it is called by an expression that has failed, so
there is no value to be passed to it. Likewise, an expression cannot resume a post-expression (it can re-evaluate
a post-expression), so a resumption continuation does not have to be passed a resumption continuation of its
own. This leaves only the store as an argument, so a resumption continuation is of type Sto — Sto, the same
type as a failure continvation. This makes sense, since it is the continuation called by post-expressions when
they fail. Finally an expression continuation is a function that takes a value, a failure continuation, and a store,
and produces a store. It is of type Ev — Fc — Sto — Sto, and is represented by the variable name, k. Notice
the k can be curried, giving a type: Ev X Fc — (Sto — Sto) or Ev X Fc — Fec.

ETEJk ¢ s is the meaning of the Icon expression [E] in a context in which the rest of the program is k if
TE] produces a value, or ¢ if [E] does not produce a value, and where the current store is s. E can be cur-
ried so that it has type: Exp X Ec X Fc — (Sto — Sto) or Exp x Ec x Fc — Fc.

6. The T Version of Icon’s Continuation Semantics

Rather than a function, T makes use a more convenient association list to represent the store. Since there is
o store to pass around, failure continuations are functions of no arguments, which return no useful value. The
initial failure continuation is

(define (cstart) *fails)

which returns the symbol, FAILS.

The function E is conveniently defined in its curried form, (E exp k c) returns a failure continuation, which -
must be called to produce the result of exp. Expression continuations are also defined in their curried form: kv
c) produces a failure continuation. This convention allows (E exp k ¢) to return ¢, or to return the result of
evaluating (k v1 c1) for some v1 and k1. The starting expression continuation is

(define (kstart v c) (lambda () (list "retums v)))

All Icon expressions are given in a lisp-like prefix form. Where symbols representing Icon operators and
Teserved words are written as lisp function names. Sometimes, this requires use of a backslash to prevent T
from treating characters as read macros. Unary operators that use the same symbol as some infix operator, are
prefixed with a ““U’’. For example, [-a] is written (U- a) and [/a]) is written (U/ a) but [ta] is written (a).

To get the result of an Icon expression, type (icon exp), without quoting exp. (icon ...) is a macro:
{define-syntax (icon exp) ‘(pp ((E *.exp kstart cstart))))

There are actually two variables used to make a complete Icon store. Global-store is a simple association list,
which is used to hold the values of global variables. Another macro is provided to install variables in this list:

(define-syntax (global . varlist)
“‘(block (append! global-store S
(map (lambda (a) (cons a *&null)) * varlist)) 'DEFINED))

The other variable is Icon-store, which is actually a stack of association lists, used to represent local stores.
There is one empty list on the stack at the beginning. Local variables are produced by referencing them.,

Icon stores procedures as global variables, and the user can create one by using the macro:

(define-syntax (procedure name args . body)
‘(block (push global-store *(,;name procedure ,args (; ,@body)))
*DEFINED))

Notice that both "global and *procedure are defined to return the symbol, "DEFINED. This is to prevent them
from returning (and writting out to the screen) the eatire list, global-store.

Three more macros are defined to make it easy to create new expression and failure continuations:

(define-syntax (newk v ¢ . exp) ‘(lambda (,v) @exp))

»» exp has to be called in newc to produce an object of the right type
(define-syntax (newc . exp) ‘(lambda () ((block ,@exp))))

(define-syntax (recurse args . body) ‘(labels ((.args .@body)) ,(car args)))

Newk returns an expression continuation which produces the evaluation of exp. Newc produces a failure con-
tinuation which evaluates exp and then calls the last value produced. This means that exp must produce a
failure continuation. Recurse is not actually specific to continuations, it simply produces a recursive function,
where args is the form of a function call, and the function variable (car args) represents the same thing at all
- points within the form,

Several type conversion functions had to be written to make T types work with Icon types, these functions
are not discussed further.

The rest of this report describes the function, E, along with auxiliary functions to make E interpret Icon
expressions. The following macros are defined to help break expressions into parts within E:

(define-syntax (expr-type Is) “(car ,Is))
(define-syntax (argl ls) *(cadr ,Is))
(define-syntax (arg2 Is) ‘(caddr ,Is))
(define-syntax (arg3 Is) ‘(cadddr ,Is))
(define-syntax (arglist Is) “(cdr ,1s))

Notice that the first argument is actually the second element of the expression.

7. Elementary Expressions

Elementary expressions are expressions without components. They include [&fail], [&null]), identifiers,
and literals, and are defined in the outer 'cond expression of E. The expression [&fail]) is the simplest expres-
sion in Icon, in terms of its denotational description. It does not produce any value, so it ignores the expression
continuation. All it does is apply the failure continuation to the store:

(define (E expkc)
(cond
((eq? *&fail exp) ¢)

In this expression, [&fail] denotes a function that takes the following arguments: an expression continua-
tion k, which is the *‘rest of the program® after the expression, if the expression produces a value (which it
does not), and a failure continuation ¢, which is the rest of the program if the expression does not produce a
value. The result of applying the denotation to the arguments is the failure continuation. This means that the
. expression executes the part of the program that was supposed to be executed on failure.

The next simplest expression is [[&null]], because all it does is retumn the value *null. For an expression to
return a value, means that the expression’s expression continuation is applied to that value:

The resumption continuation that [&null]) passes on to its post-expressions is the failure continuation, c,

it received from its pre-expression. That is, [[&null]| does not produce another value if it is resumed, so a

resumption causes a failure to the original failure continuation, c. -
The value of an identifier is found in the store. To make use of T’s association lists, a function is

defined to get the value of the symbol as a variable. Since update (as defined earlier) has a somewhat
different meaning, this function is given a different name:

(define (value id)
(let ((x (assq id (car icon-store))))
(@f x (cdr x)
(et ((x (assq id global-store)))
(if x (cdr x) *&null)))))

Value looks in the local store first (the first element of icon-store), and if the variable is not there, it looks in
the global store. If the symbol is not found in either location, it is an un-initialized local variable, and its
value in *&null. As for [&null], the value produced is given to k as an argument:

((symbol? exp) (k (value exp) c))

The similarity between this and [&null] arises because identifiers and [&null] are both simple
expressions that return exactly one value. The only difference in semantics is the value. [&null] always
retumns the value null, and an identifier must find its value in the store. ‘

Icon literals are similar enough to T literals to use T’s value directly:

((atom? exp) (k exp ¢))

All other legal atomic expressions have been tried by this point. There are several other atomic
expressions that are related to control stuctures, they will be considered with their corresponding control
structures.

8. Unary Operators

If exp is not atomic, it must be a list. The rest of E is based on the value of the first element of exp, its
expr-type. The first operator is the unary [/] operator which produces null if its operand evaluates to
null, otherwise it fails:

(t (case (expr-type exp)
N
(E (argl exp)
(newk v1 c1 (if (eq? v1 *&null) (k v1 c1) c1))
<))

This definition produces c if exp fails, otherwise it produces the result of newk. Newk produces v1, is it is
&null, otherwise, it calls v1’s expression continuation. C1 may produce another result, or it may simply
callc.

Next is the [\]] operator, which returns the value of its operand if it is not nll, and fails if it is null. It
seems reasonable that the definition should be in some sense the converse of the definition of [/ J:

@
(E (argl exp) ~
(newk v1 c1 (if (neq? v1 "&null) (k v1 c1) c1))
<))

Notice that *eq? has been replaced with *neq?.

9. Monogenic Unary Operators

The unary operators, [+—2"*.] all produce exactly one result for each result produced by their
operand. Such operators are called monogenic. These are all grouped together into a function, UOP:

(U+U-U2U0°U*U)
(E (argl exp)
(newk v1 c1 (k (UOP (expr-type exp) v1) c1))
©)

Exp is evaluated with an expression continuation that applies the appropriate function to its value, then
passes the result to k. UOP has a simple case-by-case definition: ‘

(define (UOP op v)
(case op

((U+) (->number v))
((U-) (- (->number v)))
((U?) (error "random operation not handled %"))
((U) (->cset v))
((U*) (string-length (->string v)))
((U.) Gf (symbol? v) (value v) v))))

The conversion functions cause error exits if conversion is not possible.

The [—E] operator, produces &null if [E] fails, and fails is [E] produces a value. This is done
very simply by forcing c to act as the expression continuation, and forcing k to act as the failure
continuation to the operand:

((not)
(E (argl exp)
(newk viclc)
(newc (k *&null ¢))))

-10-

10. Element Generation

The unary operator [!] presents more difficulties than many other operators, because it may produce
multiple values. This means that when E[!E] calls its expression continuation, it must provide a
resumption continuation that will produce the next element in the sequence, calling the expression
continuation again.

()]
(E (argl exp) (element-gen k) c))

All of the work has been put into the function *element-gen.

(define (element-gen k)
(recurse (k1 vl cl)
(set v1 (->string v1))
(if (string-empty? v1) c1
(& (string-slice v10 1)
(newc (k1 (string-tail v1) c1))))))

This function returns an expression continuation, k1, that is defined recursively to apply elements of its
value to k. First k1 converts its argument to a string. Then if there are characters, it applies k to the first
element, passing a resumption continuation which does the same for the tail of the string,

11. Statement Separator

The semicolon in Icon can be thought of as an infix control structure with certain syntactic restrictions
on where it may appear (only in braces or the outer level of a function). It evaluates its left operand, then
produces the result of evaluating its right operand

(8]
(bounded-eval (arglist exp) k c))

Bounnded-eval evaluates all of the arguments, making k and ¢ be the continuations of the last arguments:

(define (bounded-eval Is k c)
(case (length Is)

((0) (k *&null c))

(@) E (carls) k)

(else

. (E (carls)

(newk v1 cl (bounded-eval (cdr Is) k c))
(newc (bounded-eval (cdr Is) k c))))))

An empty list evaluates to &null. A list with one expression is the same as the expression alone.
Otherwise, each element is evaluated with both continuations leading to evaluation of the next element.

-11-

12, Alternation

The alternation control structure, infix [| I, produces the result sequence of its left operand followed
by the result sequence of its right operand. In terms of continuations, the expression continuation is applied
to the evaluation of the left argument, with a resumption continuation that evaluates the right argument,
passing the result to the expression continuation.

(0]
(Ek(argl exp)

(newc (E (arg2 exp) k c))))

13. Infix Operators

A monogenic infix operator is an operator that returns exactly one result for each pair of results
produced by cross-product evaluation of its operands. A function BOP, similar to UOP for unary
operators, is required to map monogenic infix operators into binary functions. In direct correspondence
with unary monogenic operators:

+-*/% " +=+-*™1&)
(E (argl exp)
(newk vlcl
(E (arg2 exp)
(newk v2 ¢c2
1))(k (BOP (expr-type exp) v1 v2) c2))

c

<))

Notice that if (argl exp) produces a result, it passes it to newk as the argument v1. Likewise, v2 is
result of (arg2 exp). BOP produces the result of combining the two operands.

A conditional infix operator produces one or zero results for each pair of results of its operands. COP is
a predicate mapping Icon conditional operators and two values into t or nil, to control which of the two
continuations is called.
(< <==>=>"=<< <= =>>=>> "=n e=="==
(E (argl exp)
(newk vl cl
(E (arg2 exp)
(newk v2c2
(if (COP (expr-type exp) v1 v2)
(k v2 c2) c2))
cl))

c)

Just as for monogenic operators, v1 is the result of (argl exp) and v2 is the result of (arg2 exp). The
difference between this definition and that for monogenic infix operators is in the second newk, k2. In k2,
monogenic operators always produce a result (by calling the expression continuation), but conditional
operators test some relation between v1 and v2, then call either the expression continuation (with v2) or the
failure continuation. As for monogenic operators, the failure continuation attempts to resume the second
operand, which supposedly tries to resume the first operand if there are no more values.

-12-

14, Integer Generation

The Icon expression [E, to E,]| produces the sequence of integers from [E, J to [E,]. Like infix and
conditional operators, this operator needs to evaluate two arguments, so it calls E twice:

((t0)
(E (argl exp)
(newk vl cl
(set vl (->int v1))
(E (arg2 exp)
(newk v2 c2
(integer-gen k c2 v1 (->int v2) 1))
cl)
)

Again, v1 and v2 are the results of (arg1 exp) and (arg2 exp). All k2 does is call integer-gen,

(define (integer-gen k ¢ v1 v2 v3)
(set v3 (->int v3))
(let* ((past? (cond ((>0? v3) (set past? >))
((<0? v3) (set past? <))
(t (error "value error, by 0°%")))))
((recurse (k1 vcl)
(if (past? v v2) cl
(k v (newc (k1 (+ v3 v) cl)))))
vlc))

Like element-gen, integer-gen returns an expression continuation defined recursively to call k with a
resumption continuation that produces further values. 'Past? is used for the predicate, because the sign of
v3 determines wether the function is counting up or down.

Extending the definition above to [E, to E,by E,] only involves getting the result of [E,] and
incrementing by that value instead of 1.

((toby)
(E (argl exp)
(newk vl cl
(set vl (->int v1))
(E (arg2 exp)
(newk v2¢c2
(set v2 (->int v2))
(E (arg3 exp)
(newk v3 c3 (integer-gen k ¢3 v1 v2 v3))
c2))
cl))
)

-13-

15. Assignment

To simplify assignment to its essentials, assume that all assignments are of the form [I :=E]}, where
[XI] is an identifier. Then

=)
(E (arg2 exp)
(newk vl c1 (k (store-v v1 (argl exp)) c1))
c)

Store-v is a function similar to update except that it works on T data structures.

(define (store-v v id)
(cond
((assq id (car icon-store))
(push (car icon-store) (cons id v)))
((assq id global-store)
(push global-store (cons id v)))
(t (push (car icon-store) (cons id v))))
v)

Store-v looks in the same sequence of stores for the variable.

A reversible assignment, [I <— E]), is the same as an assignment unless it is resumed. If resumed, the
expression has to replace the old value of the variable and resume [E]

(<)
(fet* ((id (argl exp)) (oldv (value id)))
(E (arg2 exp)
(newk vl cl (k (store-v v1 id)
(newc (store-v oldv id) c1)))
o

The failure continuation of k is newc, so any attempt to resume the expression causes the old value to be
restored.

16. Control Structures

The [if E, then E,] control structure has a very simple interpretation: if [E, I produces a value then
produce the result sequence of [[E, 1], otherwise fail,

(€19)
(E (argl exp)
. (newk v1 c1 (E (arg2 exp) k c))
c)

Adding the else-part is as easy as changing the failure continuation of E[E,]1 to something that
evaluates the else-part. Notice that the then-part does not use either argument of its expression
continuation, so it is not difficult to adapt the function to a failure continuation by simply dropping those
two arguments:

-14-

((ifelse)
(E (argl exp)
(newk v1 c1 (E (arg2 exp) k ¢))
(newc (E (arg3 exp) k ¢))))

The expression [every E] produces every result of [E]. In other words, it calls [EJls resumption
continuation every time [[E] produces a value

((every)
(let ((c (exit-loop c)))
(E (argl exp)
(set-up-loop k ¢ (newk v1 ¢l cl))
c)))

Set-up-loop pushes three continuations onto the stack, icon-loop-stack for use with [break]] and [next]]
expressions, then returns its last argument.

The expression [while E] evaluates [E] once. If it produces a value, then it is re-evaluated (not
resumed). This implies a recursive function:

((while)
~ (et ((c (exit-loop c)))
(E (argl exp)
(set-up-loopk ¢
(recurse (k1 v1 c1) (E (argl exp) k1 ¢)))
)]

~

The failure continuation c1 passed to k1 is ignored. If k1 were to simply pass on its own resumption
continuation, then when an iteration failed, it would resume (argl exp) from the previous iteration. This is
an interesting idea, but is not Icon,

It is convenient to think of [[do] as an infix control structure with the syntactic restriction that it may
only appear as the immediate sub-expression of a while or every loop. It can then be given a semantics
that describes its effect. In both types of loop, the expression [E,doE,] evaluates [E, J. If it produces a

value, then [E,] is evaluated and the value of [E,]l is returned. If [E,]| does not produce a value, then
the expression fails:

((do)
(E (argl exp)

(newk vl cl (E (arg2 exp)
(newk v2 c2 (k vl cl))

(mewc (k vl cl))))
©)

The expression [break] exits the innermost enclosing loop, producing the value &null. It is an
elementary expression: .

((eq? 'break exp) (k-break "&null ¢))

K-break pops the last set of continuations pushed onto icon-loop-stack, calling the k-break continuation
with values v and ¢ passed toit. In this case v is &null, and ¢ doesn’t matter because it will not be called.

-15-

As a unary operator, [breakE] causes the value of [E] to take the place of the loop. If [E]
produces a value, it should pass it to k-break, otherwise, it should call the ¢ continuation on icon-loop-
stack:

((break)
(E (argl exp) k-break c-break))

C-break just calls the ¢ break continuation, it does not pop the stack, because the continuations pushed onto
the stack are defined to pop the stack:

(define (c-break) (cadar icon-loop-stack))

The expressions [next] restarts the loop at die top. This currenty only works for /fIwhile/fP-loops
because there is no clear way to get a hold of the correct continuation to restart an every-loop:

((eq? "next exp) (k-next))

‘Where k-next simply calls the next-continuation on the loop stack:

(define (k-next) ((caddar icon-loop-stack) nil nil))

17. Procedure Calling

The arguments to procedures are called with mutual evaluation of the actual parameters. In the
degenerate case, there is no function, and the last value is returned, this is done by the comma operator:

©
{mutual-eval
(arglist exp) .
(newk v1 cl (k (car v1) cl))
c
*(&null)))

The newk returns the car of the list, v1. The list *(&null) will be the tail of the list, v1, so if the arglist is
empty, the value &null will be returned.

Mutual-eval is similar to bounded-eval, except that that a list is kept of all results, and the failure
continuations retry previous expressions:

(define (mutual-eval Isk ¢ v)
@f (null? Is) (k v ¢)
E (carls)
(newk v1 c1 (mutual-eval (cdr Is) k cl (cons v1 v)))
)

If Is is nil, the initial value is returned. Otherwise, the first expression in Is is evaluated with an expression
continuation which will evaluate the rest of the expressions in 1s. The failure continuation resumes the
previous expression in Is.

-16-

The only implemented built-in function is write:

((write)
(mutual-eval (arglist exp)
(newk v1 c1 (k (or (icon-write (reverse v1)) ") c1))
c
nil))

Since icon-write knows about T lists, the tail of the list is nil. If the result of icon-write is nil, then the
argument list to [write]] was empty, so an empty string is produced.

(define (icon-write Is)
@f (null? 1s)
(block (format t "“%") nil)
(et ((v Gf (eq? *&null (car s)) " (->string (car 15)))))
(formatt""A" v)
(or (icon-write (cdr Is)) v))))

This function returns the last element of Is, writting out all elements.
If (expr-type exp) is none of the above operators, it must be a user-defined function:

(else
(let ((p (value (expr-type exp))))
(if (and (list? p) (eq? "procedure (car p)))
(mutual-eval
(arglist exp) (proc-caller p k) ¢ nil)
(error "Unknown Icon operator™%"))))))))

P is defined to be the value of (expr-type exp) as a variable. If it is a list, and the first element of the list is
the symbol, executed by doing a mutual-eval of the arguments, using (proc-caller p k) as the expression
continuation. Proc-caller returns an expression continuation which sets up a stack of return continuations,
similar to icon-loop-stack:

(Iset icon-return-stack Q)

(define (proc-caller p k)
(lambda (v ¢)

(push icon-store (bind-formal-parameters (cadr p) (reverse v)))
(push icon-return-stack (cons k ¢))
(E (caddr p) (kfail c) (cfail c))))

(define (kfail c) (lambda (v1 c1) (pop icon-store) (pop icon-return-stack) c))

(define (cfail c) (lambda ((pop icon-store) (pop icon-retum-stack) (c)))

Kfail and Cfail are continuations to pop icon-return-stack and icon-store, and fail the procedure if it falls
off the end. Both call the failure continuation passed to the procedure call.

The icon expressions, [[return] [suspend]} and [fail] cause a return from a procedure, suspending
of a procedure, or failing a procedure respectively. The first two may be unary operators, or elementary
expressions, in which case, they produce &null: -

-17-

((eq? 'fail exp) (pop-c-fail))
((eq? "return exp) ((get-k-return) *&null (pop-c-fail)))
((eq? "suspend exp) ((pop-k-suspend) *&null c))

((return)

(E (argl exp) (get-k-return) (pop-c-fail)))
((suspend)

(E (argl exp) (pop-k-suspend) c))

Pop-c-fall returns the procedure failure continuation, get-k-return and pop-k-suspend return the procedure
expression continuation. Pop-c-fail and pop-k-suspend both pop icon-return-stack and icon-store,

(define (get-k-return)
(let (ke (car icon-return-stack)))
(if ke
(tambda (v ¢) ((car kc) v (cdr kc)))
kstart)))
(define (pop-c-fail)
(let ((kc (pop icon-return-stack)))
(if kc
(block (pop icon-store) (cdr kc))
cstart)))
(define (pop-k-suspend)
(tet (ke (pop icon-return-stack)) (env (car icon-store)))
(if ke
(et ((k (car ke)))
(pop icon-store)
(lambda (v c)
kv
(lambda
(push icon-return-stack kc)
(push icon-store env)
(9))))
kstart)))

Pop-k-suspend also remembers the top elements of icon-return-stack and icon-store, and supplies a
resumption continuation which will restore the two stacks before resumming,

The [return] expression without an argument does not work properly. Notice the difference between
the [return] and [suspend]) expressions. Return passes on the procedures failure continuation, and
suspend passes on its own failure continuation.

18. Conclusions

The program described here elements a large subset of Icon expressions. Those parts of Icon that are
not implemented generally straightforward extensions. There are difficulties with the limitation operator
and the repeated alternation operator, because they both need some mechanism to count results. It is not
clear what the best way is to count results, though one possibility is to add a count stack which all
expressions would have to know about. It is interesting that these two control operations would require
special additions to the T implementation, because they each require a special instruction in the Icon
machine (the virtual machine that Icon is *‘compiled’’ into for the C implementation) [9].

The idea of implementing a continuation semantics is not mew, and the problems with such
implementations is well known. It is just very difficult to make such implementations efficient. No effort

-18-

has been expended to make this implementation efficient, but there are several things that could be done.
One possibility is to write the interpreter to produce as much lisp code as possible during an interpretation
phase, then the lisp code could be compiled.

References

1. A. DeBruin, Operational and Denotational Semantics Describing the Matching Process in
SNOBOLA, Afdeling Informatica, Mathematisch Centrum, Amsterdam, 1980.

2. A.C.Fleck and R. S. Limaye, *‘Formal Semantics and Abstract Properties of String Operations and
Extended Formal Language Description Mechanisms®’, Siam J. on Computing 12, 1 (Feb. 1983), .

3. D.P.Friedman, C. T. Haynes, E. Kohlbecker and M. Wand, Scheme 84 Interim Reference Manual,
Technical Report No. 153, Indiana %C Bloomington, IN, January, 1985.

4. R.E. Griswold and M. T. Griswold, The Icon Programming Language, Prentice-Hall, Inc.,
Englewood Cliffs, NJ, 1983.

5. D. A. Gudeman, A Continuation Semantics For Icon Expressions, The Univ. of Arizona Tech. Rep.
86-15, The Univ. of Arizona, Tucson, AZ, Apr. 1986.

6. P.J.Landin, ‘“The Next 700 Programming Languages®’, Comm. ACM 9, 3 (1966), .

7. J. E. Stoy, Denotational semantics: The Scott-Strachey Approach To Programming Language
Theory., MIT Press, Cambridge, 1977.

8. R. D. Tennent, Mathematical Semantics of SNOBOLA, Technical Report No. 73-16, Queen’s
University, Kingston, Ontario, 1973,

9. S.B. Wampler, Control Mechanisms for Generators in Icon, The Univ. of Arizona Tech. Rep. 81-18,

The Univ. of Arizona, Tucson, AZ, Dec. 1981.

-19-"

-Appendix B — T Source Code

(herald E)
;» definitions needed to run ticon
(define-syntax (icon exp) ‘(pp ((E ',exp kstart cstart))))
(define (kstart v ¢) (lambda () (list 'returns v)))
(define (cstart) ‘fails)
(define-syntax (global . varlist)

‘(block (append! global-store

(map (lambda (a) (cons a "&null)) *,varlist)) 'DEFINED))

(define-syntax (procedure name args . body)

‘(block (push global-store '(,name procedure ,args (\; ,@body)))

‘DEFINED))

+» New continuation forms

(define-syntax (newk v ¢ . exp) ‘(lambda (,v ,c) ,@exp))

;» exp has to be called in newc to produce an object of the right type
(define-syntax (newc . exp) ‘(lambda () ((block ,@exp))))

(define-syntax (recurse args . body) ‘(labels ((,args ,@body)) ,(car args)))

; definitions for handling an implicit store
;(define icon-store (make-empty-locale ‘icon-locale)) doesn't work

(Iset global-store *((- . -))) ; t doesn’t do "append!" comectly
(Iset icon-store '(()))
(define (value id)
(let {(x (assq id (car icon-store))))
(if x (cdr x)

(let ((x (assq id global-store)))
(if x (cdr x) ‘&null)))))
(define (store-v v id)
(cond
((assq id (car icon-store))
(push (car icon-store) (cons id v)))
((assq id global-store)
(push global-store (cons id v)))
(t (push (car icon-store) (cons id v))))
v)

+» stack of "break” and "next" continuations
(Iset icon-loop-stack ()
(define (set-up-loop k-break c-break k-next)
(push icon-loop-stack (list k-break c-break k-next))
k-next) ‘
(define (exit-loop ¢)
(newc
(or (pop icon-loop-stack)

(error "break or next not in a loop™%"))

(define (k-break v ¢)
{(or (car (pop icon-loop-stack))
(error "break not in loop™%"))
vc))
the c-break continuation is already defined to pop the stack
(define (c-break) (cadar icon-loop-stack))
;;the k-next continuation is actually of type K. It must be evaluated,
1» and must not pop the stack.
(define (k-next) ((caddar icon-loop-stack) nil nil))

s» "return”, "suspend” and "fail" continuations for procedure calling
(Iset icon-return-stack ()
{define (kfail ¢) (lambda (v1 c1) (pop icon-store) (pop icon-return-stack) c))
{(define (cfail ¢) (fambda () (pop icon-store) (pop icon-return-stack) (c)))
(define (get-k-return)
(let ((kc (car icon-return-stack)))
(if kc
(lambda (v c) ((car ke) v (cdr kc)))
kstart)))
(define (pop-c-fail)
(tet ((ke (pop icon-return-stack)))
(if ke
(block (pop icon-store) (cdr kc))
cstart)))
(define (pop-k-suspend)
(tet ((kc (pop icon-return-stack)) (env (car icon-store)))
(if kc
(tet ((k (car kc)))
{pop icon-store)
{lambda (vc)
kv
(lambda 0
(push icon-return-stack kc)
(push icon-store env)
©M
kstart)))

s type conversion functions
(define (->number n)
(cond
((number? n) n)
((string? n)
(let* ((Is (read-objects-from-string n)) (m (car Is)))
(if (or (cdr Is) (not (number? m)))
(error ""S not a number"%" n)
m)))
(t (exror ""S not a number" n))))
(define (->real n) (->float (->number n)))
-(define (->int n) (->integer (->number n)))
(define (->string s)
{cond
{(string? 5) 5)
{(number? s) (format nil "“S" s))
(t (error ™S not a string™%" s))))
{(define (->cset c) (error "csets not implemented™%"™))

3w definitions for “parsing” expressions
(define-syntax (expr-type Is) ‘(car ,Is))
(define-syntax (arg1 ks) ‘(cadr ,Is))
(define-syntax (arg2 ls) “(caddr ,1s))
(define-syntax (arg3 Is) ‘(cadddr ,Is))
(define-syntax (arglist 1s) *(cdr ,Is))

s» the program when exp in is evaluated with continuations k and ¢
»» kisof type Vx C-> Cand c is of type C.
(define (E expk)
(cond
((eq? *&fail exp) c)
((eq? *&null exp) (k *&null c))
((eq? ’break exp) (k-break *&null c))
((eq? 'next exp) (k-next))
((eq? "fail exp) (pop-c-fail))
((eq? "return exp) ((get-k-return) *&null (pop-c-fail)))
((eq? "suspend exp) ((pop-k-suspend) *&null c))
((symbol? exp) (k (value exp) ¢))
((atom? exp) (k exp c))
(t (case (expr-type exp)
n
(E (argl exp)
(newk vl cl (if (eq? v1 *&null) (k v1 c1) c1))
c)) :
(LY
(E (argl exp)
(newk v1 cl (f (neq? v1 "&null) (k v1 c1) c1))
c))
U+U-7UU*U)
(E (argl exp)
(newk v1 c1 (k (UOP (expr-type exp) v1) c1))
c))
{(mot)
(E (argl exp)
(mewk vl clc)
(newc (k *&null c))))
()
(E (argl exp) (element-gen k) c))
((break)
(E (argl exp) k-break c-break))
)
(bounded-eval (arglist exp) k c))
(V)
(Ek(argl exp)

(newc (E (arg2 exp) k c))))
((+-*/%"++—-**] &\)
(E (argl exp)
(mewk vl cl
(E (arg2 exp)
{(newk v2c2
(k (BOP (expr-type exp) vl v2) ¢2))
cl))
c))
((c<==>=>"=<<<<=== > 5> " o= o
(E (arg1 exp)
(newk vl cl1
(E (arg2 exp)
{newk v2 ¢c2
(if (COP (expr-type exp) v1 v2)
(k v2c2)c2))
cl))

c)
(0) .
(E (argl exp)
(newk vl cl
(set vl (->int v1))
(E (arg2 exp)
(newk v2 c2

c1))
)
((toby)
(E (argl exp)
(newk vl cl
(set vl (->int v1))
(E (arg2 exp)
(newk v2 c2
(set v2 (->int v2))
(E (arg3 exp)
(newk v3 c3 (integer-gen k ¢3 vl v2 v3))
c2)) '
cl))
)
=)
(E (arg2 exp)
(newk v1 cl (k (store-v v1 (argl exp)) c1))
<)
(<)
(let* ((id (argl exp)) (oldv (value id)))
(E (arg2 exp)
(newk vl cl (k (store-v v1 id)
(newc (store-v oldv id) c1)))
)]

(@

(E (argl exp)

(newk vl cl (E (arg2 exp) k ¢))
c))
((ifelse)

(E (argl exp) : :
(newk v1 cl (E (arg2 exp) k ¢))
(newc (E (arg3 exp) k c))))

((every)
(tet ((c (exit-loop c)))
(E (argl exp)
(set-up-loop k ¢ (newk vl c1 cl1))

)]
((while)
(et ((c (exit-loop c)))
(E (argl exp)
(set-up-loopk ¢
(recurse (k1 v1 cl) (E (argl exp) k1 c)))
o))
((do)
(E (argl exp)
(newk vl cl (E (arg2 exp)
(mewk v2¢c2 (kvlcl))
(newc (k vl cl))))
o)
)
(mutual-eval
(arglist exp)
(newk vl c1 (k (car vl) cl))
c
*(&null)))
((return)
(E (argl exp) (get-k-return) (pop-c-fail)))
((suspend)
(E (argl exp) (pop-k-suspend) c))
((write)
(mutnal-eval (arglist exp)
(newk v1 cl (k (or (icon-write (reverse v1)) ") c1))
c

(else
(let ((p (value (expr-type exp))))
(if (and (list? p) (eq? *procedure (car p)))
(mutual-eval
(arglist exp) (proc-caller p k) ¢ nil)
(error "Unknown Icon operator"%"))))))))

+» Evaluate unary operation and return the result.
(define (UOP op v)
(case op
((U+) (->number v))
((U-) (- (>number v)))
((U?) (error "random operation not handled"%"))
((U) (->cset v))
((U*) (string-length (->string v)))
((U.) Gf (symbol? v) (value v) v))))

+» Evaluate the binary operation and return the result.
(define (BOP op v1 v2)
(case op
((+) (+ (->number v1) (->number v2)))
(((- (->number v1) (->number v2)))
((*) (* (->number v1) (->number v2)))
(7))
(set v1 (->number v1))
(set v2 (->number v2))
(if (and (integer? v1) (integer? v2))
(divvlv2)
(vlv2))
((%) (mod (->number v1) (->number v2)))
() (expt (->number v1) (->number v2)))
((4+ — **) (->cset v1))
(() (string-append (->string v1) (->string v2)))
(&) v2))

+» Evaluate the conditional operation and return the result.
(define (COP op v1 v2)
(case op

((<) (< (->number v1) (->number v2)))
((<=) (<= (->number v1) (->number v2)))
(® (= (->number v1) (->number v2)))
((>=) (>= (->number v1) (->number v2)))
() ¢ (->number v1) (->number v2)))
(=) (N= (->number v1) (->number v2)))
((==) (string-equal? (->string v1) (->string v2)))
((<< <<===>>=>>"==) (error "lexical comparisons not implemented"))
((==="===) (error "general comparison not implemented"))))

(define (element-gen k)
(recurse (k1 v1 cl)
(set v1 (->string v1))
(if (string-empty? v1) cl
(k (string-slice v101)
(newc (k1 (string-tail v1) c1))))))

{define (integer-gen k c v1 v2 v3)
(set v3 (->int v3))
(let* ((past? (cond ((>0? v3) (set past? >))
((<0? v3) (set past? <))
(t (error "value error, by 0°%")))))
((recurse (k1 vcl)
(if (past? vv2) cl
kv (newc (k1 (+ v3 v) cl)))))

(define (bounded-eval Is k c)
(case (length Is)

((0) (k *&null c))

((1) (E (carls) kc))

(else

(E (carls)

(newk v1 cl (bounded-eval (cdr Is) k ¢))
(newc (bounded-eval (cdr Is) k ¢))))))

(define (mutual-eval Isk ¢ v)
(if (nuli? Is) (k v c)
(E (carlks)
(newk v1 c1 (mutual-eval (cdr Is) k c1 (cons v1 v)))
o))

(define (icon-write Is)
(if (null? k)
(block (format t "~%") nil)
(let ((v (if (eq? *&null (car Is)) ™ (->string (car Ls))))) -
(formatt ""A" v)
(or (icon-write (cdr Is)) v))))

55 Teturn an expression continuation that takes a backwards list of
5 arguments as v, and calls p with the arguments bound to the formal
s paramaters. The continuation to return or suspend to is k, and
3% the continuation to fail to is the expression continuation’s c.
(define (proc-caller p k)
(lambda (v ¢)
(push icon-store (bind-formal-parameters (cadr p) (reverse v)))
(push icon-return-stack (cons k c))
(E (caddr p) (kfail c) (cfail c))))

(define (bind-formal-parameters vars vals)
(cond
((null? vars) nil) -
((null? vals) (cons (cons (car vars) *&null)
(bind-formal-parameters (cdr vars) nil)))
(t (cons (cons (car vars) (car vals))
(bind-formal-parameters (cdr vars) (cdr vals))))))

