Baling Press. Two continuous baling presses took high honors in Paris in 1878, those of Dederick and Dodge.

The former has a plunger or piston in connection with a reciprocating feeder, which drives a bunch of hay within the range of the plunger before each stroke of the latter. A certain quantity being thus compressed into a compartment at the end of the chamber, is tied with wire and dropped from the machine.

In the Dodge machine the hay is thrown loosely on the feed-table or trough in front of the press, whereas iron teeth carry it right into the open mouth of the machine, when it is seized by the revolving cones in the head-piece and drawn in from the feed-table in two continuous streams, and built up into a bale 20" in diameter. The diameter of the bale is never increased, but the bale grows longer as layer after layer is built up. In doing this the density of the bale is regulated by the friction-clutch, which has been previously made tight. After the bale is built such length the bale is compressed endwise and shortened about one-fourth or one-fifth its length without increasing its diameter. While the compression is going on, the man attending the press is passing around and fastening the two wires. When this is done, the pressure is released, the bale dropped out, and the press set for another bale.

Fig. 183 represents a baling press, made by Mahlles Fekes of Ambosse, and worked by horse-power. The rotation of the hand-wheels is transferred by bevel gears to the vertical shaft, and thence by spur gears to the system of gearing on the top of the machine, which is of different speeds and powers for rapid work at the first of press working followed by slower and more powerful condensation as the mass approaches its final dimensions.

A multitude of small baling presses are used in France, both for packing rations for cavalry and for stowing away in convenient form for handling, the straw or hay of a farm.

One of the smaller kinds is that made by Guittion of Oerbell, France. It has three pliable steel bands, which are

Fig. 184.