FABRIC ANALYSIS.
Total Size, or Sizing Matters.

The amount of size, weighting, stiffening, or finish of cloth is determined by repeatedly boiling the sample with water, with or without the addition of substances to facilitate the solution of the starch, until a complete separation is effected. An error of some importance is sometimes made by considering all the matters removed by boiling water to have been added in course of manufacture. It has, however, been found that cotton loses about 2 per cent of its weight on repeated boiling with water. It follows that if this method of size abstraction be adopted, and no correction be made, that an absolutely pure cloth or yarn would be shown to contain 2 per cent of added size.

When the amount of size contained in a sample is relatively small, it is necessary to evaporate the washings to dryness and to weigh the residue, the purified cloth being only weighed (in the absolutely dry state) when the added size exceeds, say, 50 per cent. This procedure reduces the error due to the difficulty of obtaining exact results when weighing such a hygroscopic substance as absolutely dry cotton. In support of the statement that such a difficulty does exist, it may be noted that when a small quantity of absolutely dry cotton is exposed to the air, it may readily take up as much as 3 per cent of moisture in as many minutes.

The amount of fibre mechanically removed from cotton cloth during the scouring is usually very small, even when flannelettes are used. In the process, if any doubt exists as to the complete removal of mineral matter by washing, it is well to ascertain the ash of the washed cloth, and, if necessary, to correct the result accordingly. In calculating the amounts of mineral substances present in cloth, it is necessary to subtract one per cent from the result found, to make due allowance for the natural ash of the cotton, the one per cent being calculated upon the weight of fibre present.

It is doubtful whether there are any substances extensively used in warp sizing that are not removed by boiling with water alone, but it is well to remember that soap is used in removing zinc or magnesium salts that an insoluble mass is obtained, which may, however, be easily treated by adding small quantities of hydrochloric acid. Large quantities of paraffin wax, cellulose deposits, alumnen, and perhaps some other materials will require special treatment. Some methods of dyeing introduce considerable quantities of mineral matter into the cloth, rendering extraction a difficult matter, or necessitating a comparative blank test on pure cotton. This shows what allowance must be made for the action of the reagent or chemical selected to effect removal.

Analysis of Size, Sizing Compositions, Finishes, Etc.

The usual analysis of the composition of size comprises determinations of starch (flour), grease (tallow or paraffin), China clay or other minerals, zinc chloride, magnesium chloride and moisture. Gray cloth may occasionally contain in addition one or more of the following substances: Glucose, dextrin, irish moss, glycercine, calcium sulphate, glauber's salts, epsom salts, oleine oil, common salt, soap, chloride of calcium.

The peculiar finish which distinguishes the production of some firms is not always capable of imitation when based on purely analytical grounds, owing to some peculiarity in the mechanical treatment (hot calendering, open steaming, beating, raising, etc.) so that it is impossible in many cases for the analyst to imitate a finish from the results of his analysis alone.

As an instance may be given the well-known appearance of "Epsom finish," the characteristic hardness of which may be almost entirely removed by what is sometimes known as "breaking down," in this case the crystals entangled amongst the fibres are merely crushed, but this entirely alters the handle or feel of the cloth—analysis would not show any difference.

Stained, Tendered or Otherwise Damaged Goods.

We have no hesitation in admitting that it is sometimes impossible to state the exact cause of damage to textiles, particularly when information has to be based upon the results of analysis of a single sample. All traces of the cause of the damage are sometimes absent, while, again, the indications may be so obscure that the cost of examination would be beyond all reason.

Mildew.

Chloride of zinc has been extensively used for the prevention of mildew, chiefly perhaps for goods that are to be shipped to warm climates. It has often been said that all sized goods sent to warm climates should contain this substance, and it is undoubtedly true so long as the additional use of chloride of magnesium, or packing in a moist state, is a necessity. Chloride of zinc has, in fact, gained so important a place as an antiseptic that there seems to be a danger of forgetting that so long as goods are packed in a sufficiently dry state, mildew is an impossibility. Several cases have been known where unsized or bleached cloth or pure yarn has been returned from abroad in a mildewed condition, and wherever it has been possible to ascertain the amount of moisture when packed, it has been abundantly evident that the mildew has been due to an excess of such moisture; further, it has been shown that isolated packages from the same consignments have remained sound, owing to normal or deficient moisture. This is, perhaps, one of the best reasons for resisting any increase of the existing standard of moisture.

When goods are packed in bale form, it frequently happens that the mildew is more distinct towards the
sides or edges than at the centre, and this has often been taken as evidence of "external damage" from water. If we consider the greater amount of pressure present at the outer parts of the bale along with the well-known preference which mildew has for growing in enclosed air spaces, we shall see that it is easy to attach too much importance to the distribution of mildew throughout the whole of the bale. The enclosed air spaces are found at the ends or edges of pieces, at the headings of knots in bundles of yarn, alongside string used in making-up separate parcels, and these places provide the best conditions for mildew growth. Such spaces, moreover, are the very places where mildew grows most luxuriantly whenever this defect has attacked the whole package to some extent.

It is almost impossible, from an examination of a damaged sample, to distinguish between rain water that has penetrated through the packing to the goods in transit, and water already contained when packed; but sea water can generally be identified with certainty. If the goods contain antiseptics, however, it may in some cases be impossible to say whether sea water is present.

The amount of chloride of zinc required to prevent mildew is stated to be 8 per cent of dry chloride, calculated upon the weight of organic matter added in sizing. This amount is accepted as a standard, and cloths are only assumed to be mildew-resisting when they contain this or a greater amount of chloride. The above does not apply when magnesium chloride is present.

In deciding upon the cause of damage, it is not always to attribute stains to mildew merely because they have the appearance common to this growth, but it is necessary to identify the mildew by observation of the fructification and filaments seen under the microscope. Stains caused by iron or grease frequently simulate mildew to a remarkable degree. The common acidiy of mildew stains has frequently been overlooked, and we have known cause and effect to be transposed through failure to grasp this.

When goods are returned mildewed from abroad, it is advisable to have an unopened bale or case returned so that some idea may be gathered of the excessive moisture present in the goods at the time of packing.

The use of excessive quantities of paste for fastening tickets may also be mentioned as an occasional source of the excessive moisture and consequently a cause of the mildew growth.

Tendered Cloth or Yarn.

Difficulty frequently arises in deciding whether a sample of cloth or yarn is tender, the buyer and the seller holding entirely different views upon the particular case in point. They can seldom agree upon the definition of the word, and it is not surprising, since it admits of a comparative meaning, that both may have some grounds for their position. A broad trade meaning to the term is "below the strength common to the goods in question" but others will maintain that the meaning is "of such weakness that the buyer is entitled to reject the goods or to claim an allowance." Whatever meaning may be attached to tenderness, the only reliable ground upon which an opinion can be based or a conclusion arrived at as regards any particular instance, must be the strength test; this may be arrived at by ascertaining the breaking strain of the woven cloth, or where a comparison of tearing strain is more to the point, the separate threads of the cloth should be tested. This latter means of testing is frequently more valuable than the cloth test, because the results are directly comparable with the hand tests or rule-of-thumb tests practiced by buyers.

In testing cloth or yarn supposed to have been tendered by chemical action on the fibres, it is advisable to note the elasticity or extension of the sample, these figures frequently showing large differences between sound and tender yarn or cloth. It is, of course, necessary to compare the strength of the suspected sample with that of a sample admittedly sound, since it would be impossible in the present state of the industry to have standards for all kinds of cloth and yarn, sized, bleached and dyed goods. This is a branch of testing requiring much further investigation, particularly so in view of the greatly-increased importance attached in recent years to the value of the test.

Cloth is frequently tendered in the singeing process previous to bleaching or dyeing. A determination of the amount of chloride of magnesium present in the grey cloth will at once show whether this substance has contributed to or caused the damage. We have known at least one case where the manufacturer was quite unaware that chloride of magnesium was present in his size-mixing until it was pointed out that one of his sizing compositions contained this substance without his knowledge. It must be mentioned that the ash of pure cotton naturally contains calcium and magnesium chlorides to a small extent. The quantities natural to cotton have been carefully ascertained, and the quantities found by analysis have, of course, to be reduced by the amounts natural to the cotton in order to find the amounts of added salts.

The tendering of bleached goods is frequently attributable to the imperfect removal of acid liquors, and it is taken for granted, so long as any mineral acid can be found in the cloth, that this is the cause of damage. It is frequently impossible to state the amount of acid found, since it is too small to be estimated by any means with which we are acquainted. By the special methods, however, it is not difficult to ascertain with certainty the presence of mere traces of acid. It frequently happens that goods have been tendered during some particular process, and that owing to a subsequent alkaline treatment or thorough washing, no acid remains; examination of the tender sample can then, of course, furnish no clue to the cause of damage. If the amount of acid left in bleached goods is small, no tenderness may be apparent for some time, but on protracted exposure to conditions of warmth and dryness the tendering may become very pronounced. Cloth has very frequently been found to be tendered when exported to warm climates, while the reference sample kept in this country has remained apparently or actually sound.

Testing Cotton Bleached for Gun-cotton.

Cotton waste and linters are bleached thoroughly previously to nitration for the production of gun-cotton; it is of great importance that the thoroughness of the bleaching must be of a high order, making it necessary to submit the bleached cotton to careful examination before it can be allowed to pass on to be nitrated.

The amount of moisture present in the cotton is one feature requiring determination. This is ascertained by placing a sample of about 20 grns. of the bleached cotton in a large weighing bottle and drying it at 105
HOSIERY DYEING.

Hosiery dyeing is one of the most important branches of the textile industry, and, according to the material of which hosiery is made, naturally divides itself into three distinct groups—cotton, wool and silk.

Cotton hosiery dyeing is the most important, on account of the great volume of business done in it, and, besides, it includes goods of all qualities, from the very cheapest to the highest priced. From the point of view of the dyer, cotton hosiery is dyed according to several processes, depending upon the quality of the stock, the fineness of the yarn, or the class of trade that will handle it. The most used processes are:

1. Aniline (or Fast Black) Black Process,
2. Diazotized and Developed Process,
3. Direct Dyeing Process,
4. Sulphur Colors.

Field of Different Processes.

Of these, the most extensively used process is the aniline black process, which, when properly used, yields a black that has always commanded admiration and has, in addition, been regarded as the standard against which all other blacks have been compared and judged.

The diazotized and developed process has also been used more extensively for black than for colors. The process has been used more particularly for the finer qualities of material on account of the labor item, which always tended to increase the cost as compared with other processes. Being a three-bath process, it is readily seen how it could only be made applicable to the finer qualities of either yarn or hose.

The direct dyeing process for hosiery has been very extensively used for colors of all kinds—including blacks—but such a process could never produce shades that could be regarded as being “fast,” when compared with similar shades dyed by those other processes that gave shades of increased solidity. For dyeing fancy shades on the average grades of stockings, this direct process fills the bill most satisfactorily, but too much cannot be expected from any dye, whether of German or domestic manufacture, that is applied to cotton with only the aid of common salt or of Glauber’s salt. The direct cotton colors, on the other hand, enable the dyer to produce a very wide range of shades of considerable brilliancy which will stand reasonable exposure to light and to ordinary washing.

Sulphur Colors Important.

The sulphur colors, however, occupy a very important position in the dyeing of cotton hosiery, and, including blacks, perhaps the great portion of all the stockings dyed have been colored with dyes of this group.

The sulphur colors are particularly useful for stockings and other knitted articles that are to stand washing, because of their general good fastness. Of course, for several years the sulphur color line of dyes was somewhat limited, but for some time past the group has been considerably extended, and, besides blacks, includes blues, browns and khakis, greens and yellows. In due time, no doubt, other products of a more reddish tone will appear, and then the dyer will be in a position to cover all shades.

Aniline Black Receipt.

The aniline black process is always one of interest. It has been written about times without number and in-