
27 Sep 2006

1

27 Sep 2006

Over a period of years, I've written a variety of article related to the use
of elementary mathematics and computation in weaving.

Years ago — more than I'm comfortable with admitting — I decided it
would be worthwhile to bring these articles together in a “book”. The quotation
marks indicate that it might not be a book in the ordinary sense. In any event, it
would be published on the Web, free to all.

The problem I had was how to put it all together and have a sensible,
coherent result. I‘ve not completely resolved the problem, but I've made
progress and the results, with all their flaws, are now available in draft form.

The progress toward a book has largely been the result of encouragement
and participation by two skilled weavers, Ruth Blau and Marg Coe. My longtime
friend and colleague, Gregg Townsend, has provided invaluable help with the
mathematical and computational aspects of the book. When the books is better
developed, more detailed and appropriate acknowledgments to them and the
many others who helped over the years will be forthcoming.

As to the draft status of the book, some sections are well developed and
in penultimate form. Others range from “okay” to downright awful. There are
many known errors remaining to be corrected. And many sections are missing.
Most noticeably, the “connective tissue” to bring it all together is largely lacking.

As a work in progress, changes will occur frequently and not be specifi-
cally announced unless there is a major change.

Comments, notes of errors, and so forth are welcome. But understand
that it may take some time to deal with them. Please resist the urge to make
suggestions for major changes to the book. I have neither the time nor the energy
for these, however meritorious they may be.

The book is available through links to PDFs. See the table of contents that
follows. Some links lead directly to PDFs. The links are active; you can just click
on them (if this doesn’t work, let me know and I’ll fix it). Others lead to other
links. The absence of a link indicates the section has not been written or is too
incomplete to include. Pleaase let me know of bad links.

Navigating is not easy. My priorities are in completing the book, not
making it more easily accessible in draft form. I hope, nonetheless, that what’s
there will be interesting and useful.

Ralph E. Griswold
September 20, 2006

ralph@cs.arizona.edu

Mathematical and Computational Topics in Weaving

27 Sep 2006

Mathematic and Computational Topics In Weaving 3

Contents

A. Cover

B. Front Matter

1. Acknowledgments
2. Contents
3. Preface
 http://www.cs.arizona.edu/patterns/weaving/webdocs/mo/B/Preface.pdf
4. Introduction

C. Terminology and Notation

1. Weaving Context
2. Notation

D. Some Simple Applications of Mathematics to Weaving

1. Twill Counters
 http://www.cs.arizona.edu/patterns/weaving/webdocs/mo/D/TwillCounters.pdf
2. Satin Counters
 http://www.cs.arizona.edu/patterns/weaving/webdocs/mo/D/SatinCounters.pdf
3. Sequence Drafting
 http://www.cs.arizona.edu/patterns/weaving/webdocs/mo/D/SequenceDrafting.pdf
4. Straight Draw Threading Conversion
 http://www.cs.arizona.edu/patterns/weaving/webdocs/mo/D/ThreadingConversion.pdf
5. Fabric Analysis
 http://www.cs.arizona.edu/patterns/weaving/webdocs/mo/D/FabricAnalysis.pdf

E. A Case Study of a Weaving Technique

1. Introduction
2. Name Drafting
 http://www.cs.arizona.edu/patterns/weaving/webdocs/mo/E/Name.pdf

27 Sep 2006

4 Mathematical and Computational Topics in Weaving

F. Case Studies of Specific Weaves

1. Crackle Weave
 http://www.cs.arizona.edu/patterns/weaving/webdocs/mo/F/Crackle.pdf
1. Shadow Weave
 http://www.cs.arizona.edu/patterns/weaving/webdocs/mo/F/ShadowWeave.pdf

G. Patterns

1. Pattern Substitution
2. Cellular Automata
3. Constrained Patterns
 http://www.cs.arizona.edu/patterns/weaving/webdocs/mo/G/Constraints.pdf
4. Nonlinear Grid Design
 http://www.cs.arizona.edu/patterns/weaving/webdocs/mo/G/GridLayouts.pdf
5. Operations on Patterns

 http://www.cs.arizona.edu/patterns/weaving/webdocs/mo/G/PatternOperations.pdf
6 . Pattern Tours
 http://www.cs.arizona.edu/patterns/weaving/webdocs/mo/G/Tours.pdf
7. Grid Overlays
 http://www.cs.arizona.edu/patterns/weaving/webdocs/mo/G/GridOverlays.pdf
8. Permutations
9. Line Patterns
 http://www.cs.arizona.edu/patterns/weaving/webdocs/mo/G/LinePatterns.pdf
10. Complementation
11. Pattern-Extension Schemata
12. Gaussian Primes
13. Pantactic Design
 http://www.cs.arizona.edu/patterns/weaving/webdocs/mo/G/PantacticSquares.pdf

H. Sequences

1. Introduction
 http://www.cs.arizona.edu/patterns/weaving/webdocs/mo/H/Introduction.pdf
2. Residue Sequences
 http://www.cs.arizona.edu/patterns/weaving/webdocs/mo/H/ResidueSequences.pdf
3. Simple Integer Sequences

27 Sep 2006

Mathematic and Computational Topics In Weaving 5

4. Recurrence Relations
 http://www.cs.arizona.edu/patterns/weaving/webdocs/mo/H/RecurrenceRelations.pdf

 5. The Fibonacci Sequence
6. Fractal Sequences
 http://www.cs.arizona.edu/patterns/weaving/webdocs/mo/H/FractalSequences.pdf
7. The Morse-Thue Sequence
 http://www.cs.arizona.edu/patterns/weaving/webdocs/mo/H/MorseThue.pdf
8. Signature Sequences
 http://www.cs.arizona.edu/patterns/weaving/webdocs/mo/H/SignatureSequences.pdf
9. Spectra Sequences
 http://www.cs.arizona.edu/patterns/weaving/webdocs/mo/H/SpectraSequences.pdf
10. Chaotic Sequences
11. Continued Fractions
 http://www.cs.arizona.edu/patterns/weaving/webdocs/mo/H/ContinuedFractions.pdf
12. Farey Sequences
 http://www.cs.arizona.edu/patterns/weaving/webdocs/mo/H/FareyFractions.pdf
13. Term Replication Sequences
 http://www.cs.arizona.edu/patterns/weaving/webdocs/mo/H/TermReplication.pdf
14. Algebraic Expressions
 http://www.cs.arizona.edu/patterns/weaving/webdocs/mo/H/AlgebraicExpressions.pdf
15. Meandering Sequences
 http://www.cs.arizona.edu/patterns/weaving/webdocs/mo/H/MeanderingSequences.pdf
16. Friendly Sequences
 http://www.cs.arizona.edu/patterns/weaving/webdocs/mo/H/FriendlySequences.pdf
17. Smarandarche Sequences
 http://www.cs.arizona.edu/patterns/weaving/webdocs/mo/H/Smarandache.pdf

I. Structure

1. Sound Interlacements
 http://www.cs.arizona.edu/patterns/weaving/webdocs/mo/I/ProblemDrafts.pdf
2. Color Draftability
 http://www.cs.arizona.edu/patterns/weaving/webdocs/mo/I/ColorDraftability.pdf

 3. Maximal Color Patterns
 http://www.cs.arizona.edu/patterns/weaving/webdocs/mo/I/MaximalPatterns.pdf

27 Sep 2006

6 Mathematical and Computational Topics in Weaving

4. Characterizing Weave Structure
J. Formal Approaches

1. Boolean Design
 http://www.cs.arizona.edu/patterns/weaving/webdocs/mo/J/BooleanDesign.pdf
2. L-Systems
 http://www.cs.arizona.edu/patterns/weaving/webdocs/mo/J/L-Systems1.pdf
 http://www.cs.arizona.edu/patterns/weaving/webdocs/mo/J/L-Systems2.pdf
 http://www.cs.arizona.edu/patterns/weaving/webdocs/mo/J/L-Systems3.pdf
 http://www.cs.arizona.edu/patterns/weaving/webdocs/mo/J/L-Systems4.pdf
3. Cellular Automata
 http://www.cs.arizona.edu/patterns/weaving/webdocs/mo/J/CellularAutomata.pdf
4. A T-Sequence Language
 http://www.cs.arizona.edu/patterns/weaving/webdocs/mo/J/T-Sequences.pdf

K. Examples of Advanced Applications

1. Introduction
 http://www.cs.arizona.edu/patterns/weaving/webdocs/mo/K/Introduction.pdf
2. Painter’s Weaving Language
 http://www.cs.arizona.edu/patterns/weaving/webdocs/mo/K/PWL.pdf
3. Boolean Design
 http://www.cs.arizona.edu/patterns/weaving/webdocs/mo/K/BooleanDesign.pdf
4. Color Design
 http://www.cs.arizona.edu/patterns/weaving/webdocs/mo/K/ColorDesign.pdf

 5. Sequence-Based Design
L. Conclusions

M. Appendices

1. Mathematical Notes
2. Web Resources
3. Gallery

N. References

27 Sep 2006

Mathematic and Computational Topics In Weaving 7

O. Glossary

P. Index

21 Sep 2006 B1: Preface

Preface

By title, I am a professor of computer science. My background is in
computer programming language design and implementation, software meth-
odology, and more recently program visualization and graphics programming.
I have always implemented my ideas with programs. I am, above all, a program-
mer.

I retired early to have more time for my intellectual interests, which at the
time were computer graphics and investigation of pattern-construction tech-
niques.

Until a few years ago I knew virtually nothing about weaving. There
were no weavers among my family and friends. I never encountered weaving in
my education — not even Pot Holders 101. I have never seen a loom close hand,
much less seen one being used.

I “discovered” weaving accidentally. I was exploring a computational
problem related to pattern construction. In the process, I was experimenting
with Painter®, an advanced program for graphic artists. I found its weaving
feature fascinating and was intrigued by the patterns that could be formed
within the constraints posed by weaving. But what really caught my attention
was Painter’s underlying “programming language” for creating weaving drafts.
The nature of this language fascinated me and touched on several professional
interests of mine. With this, I was inexorably drawn into weaving.

From that time my life was changed. I dug into the few weaving books
that were readily available and bought a copy of a current weaving magazine.
This launched me into an intensive effort to learn about weaving.

I found learning about weaving from books more difficult than I ex-
pected. I attribute part of this to the fact that there are technical aspects in
weaving that must be presented to weavers who may not have technical

xi

21 Sep 2006 B1: Preface

xii

backgrounds and no doubt sometimes written by weavers without technical
backgrounds either. This leads to imprecision and incompleteness where I
wanted precision and completeness. Another thing that I learned in this regard
is that most weaving books take for granted some knowledge, such as what it
means to “weave tabby” with the result that a complete novice such as I was at
the time is left puzzled by apparent omissions.

On the other hand, I learned long ago that there is some benefit in coming
new to a field without the preconceptions and presumptions that knowledge-
able persons have acquired from others — ignorance has its advantages. Also,
the critical novice can question conventional wisdom, which sometimes is
misleading if not downright wrong. Accepting conventional wisdom is easy and
convenient, but it also tends to make new ideas “unthinkable”. I tried to keep
these things in mind when learning about weaving.

In addition to reading, I also corresponded by e-mail with several
weavers who were willing to help a novice. On the recommendation of one of
these weavers, I joined Complex Weavers (with considerable trepidation),
initially to gain access to its excellent lending library. But soon I joined several
study groups so that I could learn more about some topics from experts.

I explored weaving programs, first trying free ones and demonstration
versions of commercial programs, but I finally purchased several programs to
see how capable programs worked, what kinds of features they supported, and
what their conceptual bases were.

I have learned a great deal about weaving in the last few years, and
continually learn more. All this has revealed to me how little I know and will ever
know of this vast culture and body of knowledge. But knowledge was not all I
wanted. I wanted to do things. And it was and is my perception that there were
contributions to be made in my areas of interest.

I had not been long into my learning endeavor when it seemed to me that
almost everything I had done professionally was applicable to weaving — a
hidden preparation, as it were. And that preparation was in mathematics and
computation.

With a different background and at another time in my life, I probably
would have bought a loom and taken up actual weaving with a vengeance. But
I could not do that and also explore mathematical and computational topics in
weaving. I chose the latter. I realize that by not being an actual weaver, I am
missing a great deal and that there are gaps in my knowledge and understand-
ing. I made my decision knowing this.

As mentioned earlier, throughout my professional career I have used the
process of writing programs to verify my ideas and to increase the depth of my

21 Sep 2006 B1: Preface

xiii

understanding. In fact, programming is a research technique for me. It exposes
hidden assumptions and flaws in reasoning, and almost always leads to new
ideas. A program also makes it possible to try things that are too tedious, time
consuming and error prone to do by hand.

I have written hundreds of programs related to various aspects of
weaving, ranging from simple utilities to a full-blown interactive program for
weave design, albeit unlike any of the existing commercial ones.

I started to write down my ideas and results. Like programming, writing
is a research tool for me, and for many of the same reasons.

I published my first writings in the Icon Analyst, a newsletter for ad-
vanced computer programmers. Few of the readers, if any, knew much about
weaving, so I started with tutorials, which provided an excellent way for me to
clarify my own thinking. Next I described Painter‘s weaving language, and then
went on to some of my own work.

Later I started to write short articles and publish them on the Web: easy,
convenient, and readily accessible to others. I spruced up a couple of the less
technical articles and published them in Complex Weavers Journal.

A couple of years ago, I started to think about writing a book containing
the material I had developed. (Richard Feynman, a Nobel Laureate in physics
once commented “A professor is a person who doesn’t know when to stop
talking”. I would add that a professor is a person who doesn’t know when to stop
writing.) I began to see the articles I was publishing on the Web as preliminary
drafts of material for a book. By publishing my work in separate articles, I was
free of having to worry about how things fit together. For a book, I began to
worry about this, andit, not surprisingly, has been the major difficulty I've faced
— trying to make a somewhat coherent “whole”. Of course in trying to do this,
I have learned a great deal and come upon new ideas.

One of the major problems I’ve had with the whole concept was “Who
could possibly use this book?”. Most weavers do not have a background or an
interest in mathematics and computation. A subsidiary question was to what
extent even those few weavers with the necessary background could actually
apply the ideas and methods in the book to weave design? To be useful in
practice, much of the material in the book requires computer programs —
programs that are not supplied. Many, however, are easy for an experiences
programmer to write.

Despite all these misgivings, I have decided to publish this book. If it
succeeds in giving only a few weavers ideas and inspiration, the effort will have
been worthwhile. And as time passes, there will be more weavers with the
background to use the material in it.

21 Sep 2006 B1: Preface

xiv

I have chosen to publish this book on the Web for several reasons. The
first and foremost is to make it freely and widely available. As an alternative,
paper publication has its advantages and disadvantages, and self publishing is
reasonably easy with the present technology. However, a printed book cannot
be provided free. There also are numerous administrative problems with paper
publication that I would prefer to avoid. If you are wondering why I didn’t seek
a commercial publisher, the reason is that there simply is not an adequate market
to make such a project financially viable.

Here it is, yours for the taking. Look through it, read it, and perhaps
dream of the possibilities.

Ralph E. Griswold
Otero House

Tubac, Arizona
June 5, 2002

Tucson, Arizona
September 21, 2006

08 Mar 2006 D1: TwillCounters

5

Twills are described by counters that show what shafts are raised and not
raised.

Notation

Two notations are in common use for counters. In one, there is a horizontal
line with pairs of numbers above and below, alternating, to show shafts raised
and not raised (on a rising-shaft loom). For example,

describes an 8-shaft twill counter in which the first two shafts are raised, the next
two are not, the next three are, and the last, not.

This form of stacked notation is easy to understand, but it is typographi-
cally difficult to produce and needs to be set apart from lines of text. An
alternative, linear notation uses separating slashes to indicate the over/under
sequence. In this notation, the example above would be written 2/2/3/1.

The difficulty with the linear notation is in keeping track of the over/under
order. Nonetheless, the ease with which the linear notation can be written and
used in text generally makes it the favored notation.
Twill Tie-Ups

In regular twills, the twill counter appears rotated by one for each successive
row of the corresponding tie-up. Figure 1.1 shows the tie-up for the twill counter
in the example above.

Twill Counters

Sidebar on what twill counters are by Marg/Ruth.

08 Mar 2006 D1: TwillCounters

6

Figure 1. A 2/2/3/1 Twill Tie-Up
In this example, the rotation is to the right. This is called a right twill and is

the one usually shown in examples. Rotation also can be to the left, producing
a left twill.

As the twill counter is rotated to the right, parts of it move off the right end
and onto the left end. The third row of the tie-up in Figure 1, taken as a twill
counter, would look like this:

1 2 2
1 2

This is not a valid counter because there are more terms above the line than
below. What has happened is that the 3 on the top of the original counter has been
split into two parts: 2 at the end and 1 at the beginning.

The second row of the tie-up in Figure 1, on the other hand, would look like
this as a counter:

This violates the convention that twill counters start with raised shafts.
The fourth row of the tie-up in Figure 1 corresponds, structurally, to a valid

twill counter:

This counter is, in fact, equivalent to the original twill counter in our
example:

The difference is that the 3/1/2/2 counter is a rotated version of the 2/2/3/1
counter.

08 Mar 2006 D1: TwillCounters

7

Since rotation of a counter in multiples of two produces equivalent counters,
the question is how to tell rotated counters apart, or better, how to pick a
standard form.

Most authors pick the form that is, in a loose sense, the “smallest” — the one
starting with the smallest number. Thus, 2/2/3/1 is smaller than 3/1/2/2. This
is easier to see if the slashes are removed: 2231 is smaller than 3122.

In the case of counters with more parts, the standard one can be obtained
by forming all rotations by multiples of two and picking the smallest of the
results.
The Number of Twill Counters

There are no real twill counters for 2 shafts, although 1/1, which corre-
sponds to plain weave, is an acceptable twill counter structurally. We’ll include
it in what follows so that we don’t have to make exceptions for it constantly.

For 3 shafts, there are two twill counters, 1/2 and 2/1. Four 4 shafts, there
are four: 1/1/1/1, 1/2, 2/2, and 3/1, 1/1/1/1 is simply a doubling of the 2-shaft
1/1.

As the number of shafts increases, it becomes increasingly difficult to figure
out all the possible twill counters, especially if doing it by hand. In fact, mistakes
can be found in this regard in old weaving books. For example, Posselt’s
Technology of Textile Design [1] omits some of the twill counters for 6 and 8 shafts.

Whether working by hand or using a computer, a systematic method is
needed. And, as the number of shafts gets large, the method needs to be efficient.
A Method for Determining Twill Counters

The sum of the numbers in a twill counter add up to the number of shafts
being considered. For example, for 4 is the sum of smaller numbers in six ways:
1 + 1 + 1 + 1, 1 + 1 + 2, 1 + 2 + 1, 1 + 3, 2 + 2, and 3 + 1. Of these, only the ones with
an even number of terms correspond to twill counters: 1 + 1 + 1 + 1, 1 + 3, 2 + 2,
and 3 + 1.

In mathematics, expressing a number as the sum of smaller (positive)
numbers is called a composition [2]. In compositions, as in twill counters, order
matters: 1 + 3 is different from 3 + 1. (If order doesn’t matter, so that 1 + 3 and 3
+ 1 are considered to be the same, these are called partitions.)

So the problem of finding twill counters is equivalent to the problem of
finding compositions with even numbers of terms.

A convenient way to formulate the problem is to treat the number of shafts,
n as a line with n segments of equal length, each segment amounting to one part
of n. For n = 6, the line, with diamonds connecting the segments, looks like this:

08 Mar 2006 D1: TwillCounters

8

Notice that there are five connection points, one less than the number of
segments.

A composition can be obtained by selecting connection points. For ex-
ample, the composition 2 + 2 + 1 + 1 has the selected connection points as shown
by the arrows:

Notice for m segments, only m – 1 connection points are selected.

The composition, looked at in this way, can be represented by a bit pattern
in which 0 means a connection point is not selected, and 1 means a connection
point is selected. Therefore, the composition in the example above has the bit
pattern 01011.

Note: It you’re not interested in mathematics, just skip the next few
paragraphs. They are not important.

In general, for n shafts, there are n – 1 connection points, 2n–1 possible
patterns, and 2n–1 – 1 compositions (since an all-0 pattern, which represents n
itself, is not considered to be a composition). The number of m-segment compo-
sitions of n is given by the binomial coefficient

 =
For twill counters, compositions with an even number of parts (an odd

number of connection points) are required. The number of these is given by

For example, for n = 6, the number of twill counters is

Sidebar on on mathematical notation by Ralph.

08 Mar 2006 D1: TwillCounters

9

= 1 + 10 + 5 = 16
Some of these consist of repeats of counters for a smaller number of shafts.

In terms of bit patterns, only those with 5, 3, or 1 1s correspond to twill
counters. There are few enough of these to list them here:

11111 01101
11100 01011
11010 00111
11001 10000
10110 01000
10101 00100
10011 00010
01110 00001

To convert binary pattern to a counter, proceed as follows:
1. Start at the left.
2. Remove 0s up to the first 1.
3. The corresponding counter number is the number of zeros removed + 1

(just 1 if there are no zeros).
4. Repeat steps 2 and 3 until there are no more 1s.
5. The last counter number is the number of 0s remaining plus 1 (just 1 if there

are no remaining zeros).
As an example, consider the pattern 10110.
There are no zeros before the leftmost 1, so the first counter number is 1, and

starting to construct the counter, we have 1/.
What remains is 0110. Now there is one zero before the first 1, so the next

counter number is 2, and the evolving counter is 1/2.
What remains is 10. There are no 0s before the 1, so the next counter number

is 1 and the evolving counter is 1/2/1.
All that remains is 0. Since there are no more 1s, the last counter number is

2 (one remaining 0 plus 1), and the complete twill counter is 1/2/1/2.
Note that if you just want counters with a specific number of counter

numbers, you can use patterns that have that number of 1s less 1. For example,
for 6-shaft counters with only four numbers (counters of the form i/j/m/n), you
only need to decode

11100 10101

08 Mar 2006 D1: TwillCounters

10

11010 10011
11001 01110
10110 00111

The method given here produces twill counters that are not in standard
form that duplicate ones in standard form. For example,

00111 A 3/1/1/1
11100 A 1/1/1/3

Here the first twill counter is not in standard form but is a rotation of the second,
which is in standard form.

It is necessary to remove twill counters that are not in standard form using
the method described earlier. For 6 shafts, four of the counters are not in standard
form, leaving a total of 12 twill counters:

/1/1/1/1/1/1
/1/1/1/3
/1/1/2/2
/1/1/3/1
/1/2/1/2
/1/2/2/1
/1/5
/2/1/2/1
/2/4
/3/3
/4/2
/5/1

Proper and Inherited Twill Counters

As mentioned above, some twill counters produced by this method may
consist of repeats of twill counters for a smaller number of shafts. For example,
1/2/1/2 from the worked-out example above is a repeat of the 3-shaft twill
counter 1/2.

Counters that are repeats of counters for a smaller number of shafts are
called inherited counters. The rest are called proper counters.

There is nothing wrong with an inherited counter; it’s just that it comes
from a smaller number of shafts.

The number of inherited counters depends on the divisors of the number
of shafts. For example, 6 has divisors 2 and 3. Thus, all of the (proper) counters
for 2 shafts and 3 shafts are inherited for 6 shafts.

08 Mar 2006 D1: TwillCounters

11

If a divisor itself has inherited counters, these are included in its divisors.
For example, for 12 shafts, counters are inherited from 2-, 3-, 4-, and 6-shaft
counters. The inherited 6-shaft counters are included in the proper 2- and 3-shaft
counters, which are inherited for 12 shafts by virtue of its divisors 2 and 3.
How Many Twill Counters Are There?

The number of twill counters increases rapidly with the number of shafts.
Here are the numbers through 20 shafts:

 shafts proper inherited total
2 1 0 1
3 2 0 2
4 3 1 4
5 6 0 6
6 9 3 12
7 18 0 18
8 30 4 34
9 56 2 58

10 99 7 106
11 186 0 186
12 338 12 350
13 630 0 630
14 1161 19 1180
15 2182 8 2190
16 4080 34 4114
17 7711 0 7711
18 14543 57 14600
19 27594 0 27594
20 52377 109 52486

Note that if the number of shafts is a prime, there are no inherited twill counters
because there are no divisors.

 For more than 8 or so shafts, there are so many twill counters that it doesn’t
make sense to list them all — how could they all be used?

06 Mar 2006 D2: SatinCounters

1

Satin Counters

Few aspects of weaving require more mathematics than simple arithmetic.
When a subject does require more, authors of books on weaving sometimes
provide descriptions that are anything but clear, even to a person with some
knowledge of mathematics. And sometimes the descriptions are incomplete or
even incorrect.

Part of the problem is that the authors think they are writing for an audience
most of whom not only know little mathematics beyond the most basic but also
often are hostile to or fearsome of mathematics. (Hostility is a good cover for fear,
the latter being socially less acceptable.) Of course, authors themselves may have
the same problems with mathematics. Part of the problem comes from trying to
express in words things for which ordinary language is inadequate.
How (or How Not) to Determine Satin Counters

Sidebar on what satin counters are by Ruth/Marg

Satin counters provide an example. Here are five quotations on the subject
from sources dating from 1888 to 1994.

E. A. Posselt, author of many books on weaving and textiles in the late
eighteenth and early nineteenth centuries, in 1882 writes [1]:

Divide the number of harness for the satin into two parts, which
must neither be equal nor the one a multiple of the other; again it
must not be possible to divide both parts by a third number.

Harness is used here as a collective noun.
Charles Z. Petzold, writing in 1900, gives this (incomplete) rule [2]:
The mathematical formula is found by dividing the number of
harnesses of the desired sateen into two parts. The numbers thus
found should not be equal, neither should they be a multiple of each
other.
Ann Sutton, writing in 1982, describes determining satin counters in this

way [3]:
Divide the number of ends (or shafts) on which the satin … is to be
woven into two unequal parts, so that one shall not be a measure of
the other, nor shall it be divisible by a common number.

“Measure of the other” is British English and means (I think — my problem)

06 Mar 2006 D2: SatinCounters

2

“divisible by the other”.
S. A. Zielinski, in his massive Master Weaver Library, says [4]:
Find two numbers which give a sum equal to the number of frames.
None of these numbers can be 1; the two numbers cannot divide
one another, or by any other number at the same time.

Madelyn van der Hoogt, explains what a satin counter cannot be [5]:
The satin counter cannot be 1, or the interlacement forms a twill. It
cannot be one fewer than the number in the unit … , or the inter-
lacement forms a twill in the opposite direction. The counter cannot
share a divisor with the number in the unit, or some warp threads
interlace more than once and others not at all.
Grammatical errors, tortured prose, questionable meaning, missing parts,

and definition by elimination aside, what does this all mean?
Mathematics to the Rescue (?)

A mathematician might state it this way:
For n shafts, find relatively prime i and j such that 1 < i < n, i

Integer Division and Prime Numbers

The result of the division of two integers (whole numbers) such
as 3 / 2 is usually taken to be 1-1/2 [will fix typography] or 1.5; that is 1 plus
a fractional part. In true integer division, the fractional part is omitted
and the result is just 1. If there is no fractional part, the second integer
is said to evenly divide the first. For example, in 4 / 2, 2 evenly divides
4, and 2 is said to be a divisor of 4.

A prime number is one that has no divisors other than 1 and
itself. An example is 7. The smallest prime is 2, the only even prime. The
first few primes are 2, 3, 5, 7, 11, 13, 17, … The is no limit to the number
of primes. This is sometimes stated as “the number of primes is infinite”.

Two integers are relatively prime if they have no common
divisor. For example, 5 and 12 are relatively prime, but 4 and 12 are not,
since 4 divides both 4 and 12.

06 Mar 2006 D2: SatinCounters

3

+ j = n, and 1 < j < n.
The mathematician talks in terms of “variables”— i, j, and n — and

describes the conditions they must satisfy. The condition ”1 < i < n” can be
phrased in plain English as “i is greater than 1 and less than n” and the phrase
“i + j = n” as “i and j add to n” In fact, it might seem clearer as “j = n – i”, but the
mathematician prefers to talk in terms of constraints (requirements), for which
“i + j = n” is appropriate.

All that having been said, most readers would understand the mathemati-
cal statement above except that they probably would not know what “relatively
prime” means, which is the conceptual core of the definition.

There are many variations on the so-called mathematical description.
(Actually, mathematicians are capable of and sometimes take delight in using
arcane symbols and convoluted prose to make what really is simple into
something that is incomprehensible to the layperson and requires effort even for
other mathematicians to understand [6].)

It is possible to provide a definition of satin counter in simple mathematical
terms along with an explanation of the core concept that is intelligible to most
readers. Simple examples, especially of things that work, as opposed to those
that do not, are a great help in understanding such things. Unfortunately, many
mathematicians consider it beneath them to do this in their writing. A famous
computer scientist openly stated that the use of examples is a sign of intellectual
weakness.
A Table of Satin Counters

Having spent more than a page on the problems with describing satin
counters, I’ll finish by giving a table.

In a sense, a table aren’t that bad: there are not that many different counters
for the number of shafts that are available for hand looms and there’s no need
for a weaver to compute them.

Here is a table for 2 to 24 shafts. Only the smaller of the two counter pairs
is given; the other is easy to determine by simple subtraction. For example, for
13 shafts and the small counter of 4, the large counter is 13 – 4 = 9. Incidentally,
most descriptions of satin counters say that the smaller is preferable, or at least
more often used, without saying why. Indeed, why?

shafts small counters number
2 0
3 0
4 0
5 2 1
6 0

06 Mar 2006 D2: SatinCounters

4

7 2 3 2
8 3 1
9 2 4 2

10 3 1
11 2 3 4 5 4
12 5 1
13 2 3 4 5 6 5
14 3 5 2
15 2 4 7 3
16 3 5 7 3
17 2 3 4 5 6 7 8 7
18 5 7 2
19 2 3 4 5 6 7 8 9 8
20 3 7 9 3
21 2 4 5 8 10 5
22 3 5 7 9 4
23 2 3 4 5 6 7 8 9 10 11 10
24 5 7 11 3

As is well known to weavers, true satin requires at least five shafts and
cannot be woven with six shafts. By the way, if the number of shafts is a prime,
p > 2, any number 2) i) p – 1 is a valid counter: If i + j = p, i and j must be relatively
prime — otherwise a common factor would divide p.

05 Jul 2006 D3: SequenceDrafting

77

Drafting With Sequences

Shafts and treadles in drafts are numbered for identification. The numbers
of the shafts through which successive warp threads pass form a sequence, as do
the numbers of the treadles for successive picks. Consider the following draft, in
which the arrows indicate the orientation:

The threading is an upward straight draw. The sequence is:
1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8,
1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8,
1, 2

The treadling sequence is more complicated:
1, 2, 3, 4, 5, 6, 7, 8, 7, 6, 5, 4, 3, 2, 1, 2, 3, 4, 5, 6, 7, 6, 5, 4,
3, 2, 1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1, 2, 3, 4, 5, 4, 3, 2, 1, 2, 3, 4,
3, 2

These two sequences, in combination with the tie-up, define the structure of the
weave.

Threading and treadling sequences often have distinctive patterns, as in the

��

�

�

05 Jul 2006 D3: SequenceDrafting

78 Shaft Reduction

repeat for the threading sequence above. In the case of a repeat, it’s only
necessary to know the basic unit, which is indicated by brackets:

[1, 2, 3, 4, 5, 6, 7, 8]
Modular Arithmetic

Since looms have a fixed number of shafts and treadles, the sequences
usually are most easily understood in terms of modular arithmetic, sometimes
called clock or wheel arithmetic, in which numbers go around a circle clockwise,
starting with 0. If there are 8 shafts, there are 8 equally spaced points on the circle
from 0 to 7:

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

The numbers on the inner circle are those that exist in the modular
arithmetic. Continuing beyond 7, as shown in the outer ring, the numbers wrap
around the wheel. Numbers on the same spoke are equivalent. For example, 0
and 8 are equivalent, 1 and 9 are equivalent, 2 and 10 are equivalent, and so on.
Another way to look at it is that when 9 is introduced into modular arithmetic
with 8 shafts, it becomes 1, and so on.
Shaft Arithmetic

Although modular arithmetic uses the number 0 as a starting point, most
persons count from 1. This is used for numbering shafts and treadles and can
easily accomplished by rotating the wheel counterclockwise by one position:

05 Jul 2006 D3: SequenceDrafting

Shaft Reduction 79

Notice that 1 and 9 are still equivalent, as are 2 and 10, and so on. If there
are 8 shafts, there are 8 positive numbers. 0 has gone away, but it will be back.

For sequences, shafts and treadles are handled the same way, so it is called
shaft arithmetic, with the understanding that it applies to treadles also. Of course,
most facts about shaft arithmetic hold for ordinary modular arithmetic.

In shaft arithmetic, an upward straight draw for 8 shafts is described by the
positive integers in sequence:

1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, …
and wrapped around the shaft circle to produce

1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, …
The point is that an upward straight draw comes from the most fundamen-

tal of all integer sequences, the positive integers in order.
Drafting with Sequences

The idea behind drafting with sequences is that many sequences have
interesting patterns, which often become more interesting in shaft arithmetic. In
fact, many sequences show repeats when cast in shaft arithmetic. When this is
the case, the entire sequence can be represented by the repeat. For example, the
shaft sequence for an upward straight draw for 8 and 10 shafts are represented
by

[1, 2, 3, 4, 5, 6, 7, 8]

05 Jul 2006 D3: SequenceDrafting

80 Shaft Reduction

and
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

respectively.
Note: Not all sequences produce repeats in shaft arithmetic. For example,

the prime numbers, which are divisible only by 1 and themselves, do not show
a repeat in shaft arithmetic (or in any other arithmetic).
Patterns in Sequences

Sequences may produce interesting woven patterns when they are used for
threading and treadling.

There are many, many well-known integer sequences. The Fibonacci
sequence, which has many connections in nature, design and mathematics, is
one of the best known and most thoroughly studied of all integer sequences. The
Fibonacci sequence starts with 1 and 1. Then each successive number (term) is the
sum of the preceding two:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,…
As the sequence continues, the numbers get very large. For example, the

50th term in the Fibonacci sequence is more than 12 billion. Shaft arithmetic
brings this sequence under control. For 8 shafts, the result is

1, 1, 2, 3, 5, 8, 5, 5, 2, 7, 1, 8, 1, 1, 2, 3, 5, 8, 5, 5, 2, 7,
1, 8, 1, 1, 2, 3, 5, 8, 5, 5, 2, 7, 1, 8, …

There is a repeat, so the entire sequence can be represented by
[1, 1, 2, 3, 5, 8, 5, 5, 2, 7, 1, 8]

Patterns in sequences are more easily seen if they are plotted, as in the grids
used in weaving drafts. For 8 and 12 shafts, the Fibonacci sequence looks like
this:

Here are some other simple sequences and what they look like for various
numbers of shafts.

05 Jul 2006 D3: SequenceDrafting

Shaft Reduction 81

The squares for 5 shafts:

The cubes of the Fibonacci numbers for 11 shafts:

Every third positive integer for 7 shafts:

The patterns such sequences produce in weaves depend on many factors.
To keep things simple to begin with, direct tie-ups and treadling as drawn in
(that is, the same sequence for the threading and the treadling) are used. Even
in this very limited framework, interesting woven patterns abound.

Here is a drawdown for a few repeats of the Fibonacci sequence for 4 shafts.

05 Jul 2006 D3: SequenceDrafting

82 Shaft Reduction

The pattern looks quite different for 8 shafts, although there are structures
in common:

A simple sequence that produces interesting patterns is the “multi” se-
quence, which starts with a single 1 and is followed by 2 copies of 2, 3 copies of
3, and so on:

1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, …
Note that there are no repeats in shaft arithmetic for this sequence, since the
“width” of the repeated integer blocks constantly increases.

The drawdown for the multi sequence for 4 shafts is:

05 Jul 2006 D3: SequenceDrafting

Shaft Reduction 83

One way to produce interesting sequences is to combine other sequences,
such as interleaving the terms of two sequences. For example, interleaving the
positive integers and the Fibonacci sequence produces

1, 1, 2, 1, 3, 2, 4, 3, 5, 5, 6, 8, 7, 5, 8, 5, 1, 2, 2, 7, 3, 1, 4,
8, 5, 1, 6, 1, 7, 2, 8, 3, 1, 5, 2, 8, 3, 5, 4, 5, 5, 2, 6, 7, 7, 1,
8, 8 …

The drawdown for 8 shafts is:

05 Jul 2006 D3: SequenceDrafting

84 Shaft Reduction

Other tie-ups and threading sequences and treadling sequences that are
different produce all kinds of interesting results.

Creating interesting weaves by drafting with sequences requires judicious
selection and combination of sequences, the number of shafts and treadles, and
tie-ups. An understanding of the properties of the sequences used may help, but
a little luck and some experimentation also can lead to pleasant surprises. The
process is a nice combination of artistic sense, creative talent, a modicum of
arithmetic, and finding the hidden structures that abound in integer sequences.
Finding Interesting Integer Sequences

Interesting integer sequences can come from many sources. It helps if you
have a computer with a program that can do simple arithmetic so that you can
invent your own. There also are many on-line sources of sequences. By far the
most extensive one is the “Encyclopedia of Integer Sequences” (EIS) [1]

Beware, though — this site contains a lot of esoteric mathematical material
and its vastness can be overwhelming. It’s like a “Haystack from Hell”, but the
needles to be found within are made of precious metals.
Getting Shaft Sequences

There are shaft sequences for a few integer sequences and various numbers
of shafts on Reference 2.

05 Jul 2006 D3: SequenceDrafting

Shaft Reduction 85

These sequences provide an easy way to start, but you’ll want more if you
decide you’re really interested in drafting with sequences.

You can find many integer sequences ready made, but in order to do your
own drafting, you need to be able to convert them to shaft sequences for different
numbers of shafts. The method is simple: Divide each term by the number of
shafts and take the reminder. For example, for 8 shafts, the reminder of 13
divided by 8 is 5, which is the shaft number for 13. That gives you the
corresponding term in the shaft sequence. It helps if you have a program or
calculator that can do integer arithmetic and produce remainders.

There’s one more complication — 0 and negative numbers. The way to deal
with these is indicated by looking at what happe�ns when you have negative
integers in increasing sequence as they cross over to the positive integers:

…, –7, –6, –5, –5, –3, –2, –1, 0, 1, 2, 3, 4, 5, 6, 7, 8, …
Now think of the modular wheel and what happens if you wrap this sequence
of numbers around it. For 8 shafts, it looks like this:

In other words, –1 becomes 7, –2 becomes 6, and so on. Note that 0, which
haas been been hiding, becomes 8.

Perhaps you now see the integer sequence that produces a downward
straight draw:

0, –1, –2, –3, –4, –5, –6, –7, –8, –9, –10, …
All that’s needed to convert a non-positive remainder to a shaft number is

to add it to the number of shafts. For –1, for example,

05 Jul 2006 D3: SequenceDrafting

86 Shaft Reduction

8 + (–1) = 7
Despite this long-winded discussion, getting shaft sequences from integer

sequences is not difficult at all.
The interesting part remains — trying it and designing drafts.

23 Jun 2006 D4: ThreadingConversion

Straight-Draw Threading Conversion

Views of the Problem

Suppose you have a straight-draw warp on n shafts (for example, 8) and
want to use it to weave patterns designed for fewer shafts (say 4). The crucial
point was that the pattern must come from a draft with an n-end repeat (say 8).

Observation: The pattern for any draft with a threading that has an n-end
repeat can be woven with a straight-draw threading on n shafts.

For example, given an 8-shaft straight-draw threading (which has an 8-end
repeat), patterns with drafts for 2 through 8 shafts (not just 4) can be woven,
provided the drafts have 8-end threading repeats. (Actually, this applies to more
than 8 shafts, although if a draft has more than 8 shafts and has an 8-end
threading repeat, not all the shafts are used.) Notice that any 8-shaft draft with
an 8-end threading repeat can be woven with a straight-draw threading; it’s just
a matter of rearranging the rows in the tie-up.

The problem can be turned around. Instead of assuming a straight-draw
threading on n shafts and looking for drafts with n-end threading repeats to
convert, consider the problem of converting drafts to drafts with straight-draw
threadings without knowing, a priori, how many shafts would be required.

The two views are, of course, equivalent. It is just easier to formulate the
problem by starting with a draft to convert.

Note that any draft can be converted to a draft with a straight-draw
threading — the problem is that if the repeat is not small (or if there is no repeat),
the number of shafts required may be impossibly large.
A Procedure

The first thing to do is to determine the repeat in the threading of the draft
to be converted (the original draft). This often can be done by inspection, but care
is needed to make sure the smallest repeat is found. Short of inspection,
increasingly longer initial parts of the threading can be tried to see if, when
repeated, they match the whole threading.

Suppose the repeat has length n. Then the new draft will have n shafts and
a straight-draw threading. All that’s left is to get the tie-up for the new draft (the
treadling is the same as for the old draft).

Getting the tie-up is easy. Just start at the beginning of the threading for the
original draft and add the corresponding row of its tie-up to the new tie-up,
continuing end-by-end through the repeat.

An earlier version of this article ap-
peared in Complex Weavers Jour-
nal, No. 74, January 2004.

23 Jun 2006 D4: ThreadingConversion

80 Straight-Draw Threading Conversion

An Example

Here’s a simple example: a 3-shaft draft with a threading repeat of length
6.

Original Draft
The new draft will, of course, have 6 shafts, so start with a blank 6-row tie-

up.
Putting the original tie-up and the threading repeat next to each other helps

in visualizing the process:

Original Tie-Up and Repeat
The new tie-up with the straight-draw repeat looks like this:

The Initial Setup
Start at the beginning of the repeat, looking at the first end. It is on shaft 1,

so copy row 1 of the original tie-up to row 1 of the new tie-up:

23 Jun 2006 D4: ThreadingConversion

Straight-Draw Threading Conversion 81

 new original B
Step One

Now we go on to the second end of the repeat. It is on shaft 2, so copy the
second row of the original tie-up to the next row of the new tie-up:

 new original B
Step Two

The third end is on shaft 1, so copy the first row of the original tie-up to the
next row of the new tie-up:

 new original B
Step Three

End 4 is on shaft 2, so copy row 2 of the original tie-up to the next row of
the new tie-up:

 new original B
Step Four

23 Jun 2006 D4: ThreadingConversion

82 Straight-Draw Threading Conversion

We‘re getting there. For end 5, we copy row 3 of the original tie-up to the
next row of the new-tie-up:

 new original B
Step Five

To complete the process, we copy row 2 of the original tie-up to the top row
of the new tie-up:

 new original B
Step Six

Here’s what the new tie-up and threading repeat look like:

New Tie-Up
The new draft looks like this:

23 Jun 2006 D4: ThreadingConversion

Straight-Draw Threading Conversion 83

New Draft
The Appendix contains examples of the conversion of several other drafts.

23 Jun 2006 D4: ThreadingConversion

84 Straight-Draw Threading Conversion

Conversion Examples

original new

05 Jul 2006 D5: FabricAnalysis

55

Fabric Analysis —From Drawdown to Draft

Nature uses only the longest threads to weave her patterns, so each
small piece of her fabric reveals the organization of the entire
tapestry.

 — Richard Feynman
Fabric analysis is the process of determining how a farbic was woven. The

first steps are:
• determining the interlacement of the warp and weft threads
• producing a draft from the interlacement

A particular method for doing fabric analysis may intermix these two
processes, constructing the draft as the interlacement is determined. The two
processes can be done separately, however, and there are advantages to separa-
tion:

• Determining the interlacement can be difficult. It requires a knowledge of
weaving and careful visual examination of the fabric.

• Producing a draft from the interlacement is a mechanical task of an entirely
different nature. It can be done by a person who is unfamiliar with weaving
or by a computer program. A computer program is, of course, fast, but it
offers a more important advantage: accuracy.

This section describes a method of going from a drawdown to a draft and
shows how it can be done by a program.
Drawdowns

Various systems of notation are used for describing interlacement, but for
the purposes of producing a draft, they are equivalent. The conventional
drawdown grid, in which black squares indicate intersections where warp
threads are on top and the white squares where weft threads are on top, is most
widely used. Figure 1.1 shows an example.

Such a drawdown is designed to make it easy for a person to see the
interlacement (and any patterns that may exist in it). For a computer program,
a drawdown is just a rectangular array of zeros and ones with ones indicating
where warp threads are on top and zeros indicating where weft threads are on
top, as shown in Figure 1.2.

05 Jul 2006 D5: FabricAnalysis

56 Fabric Analysis

Figure 1.1. A Drawdown
1 1 1 0 0 0 1 0 1 0 0 0 1 1 1 0 0 0 1 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 1 0 0 0 1 1 1 0 0 0 1 0 1 0 0 0 1 1
0 1 1 1 0 0 0 1 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 0 1 1 1 0 0 0 1 1 1 0 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 1 0 0 0 1 1 1
1 0 1 1 1 0 0 0 0 0 1 1 1 0 1 1 1 0 0 0 1 1 1 0 1 0 1 1 1 0 1 1 1 0 1 0 1 1 1 0 0 0 1 1 1 0 1 1 1 0 0 0 0 0 1 1 1 0
0 1 0 1 1 1 0 0 0 1 1 1 0 1 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 0 1 0 1 1 1 0 0 0 1 1 1 0 1
0 0 1 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 1 1 0 1 0 0 0 1 0 1 1 1 0 1 0 0 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 0 1 0
0 0 0 1 0 1 1 1 1 1 0 1 0 0 0 1 0 1 1 1 0 1 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 1 0 1 1 1 0 1 0 0 0 1 0 1 1 1 1 1 0 1 0 0
1 0 0 0 1 0 1 1 1 0 1 0 0 0 0 0 1 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 1 0 0 0 0 0 1 0 1 1 1 0 1 0 0 0
1 1 0 0 0 1 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 1 1 1 0 0 0 1 0 0 0 1 1 1 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 1 0 0 0 1
1 0 0 0 1 0 1 1 1 0 1 0 0 0 0 0 1 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 1 0 0 0 0 0 1 0 1 1 1 0 1 0 0 0
0 0 0 1 0 1 1 1 1 1 0 1 0 0 0 1 0 1 1 1 0 1 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 1 0 1 1 1 0 1 0 0 0 1 0 1 1 1 1 1 0 1 0 0
0 0 1 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 1 1 0 1 0 0 0 1 0 1 1 1 0 1 0 0 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 0 1 0
0 1 0 1 1 1 0 0 0 1 1 1 0 1 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 0 1 0 1 1 1 0 0 0 1 1 1 0 1
1 0 1 1 1 0 0 0 0 0 1 1 1 0 1 1 1 0 0 0 1 1 1 0 1 0 1 1 1 0 1 1 1 0 1 0 1 1 1 0 0 0 1 1 1 0 1 1 1 0 0 0 0 0 1 1 1 0
0 1 1 1 0 0 0 1 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 0 1 1 1 0 0 0 1 1 1 0 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 1 0 0 0 1 1 1
1 0 1 1 1 0 0 0 0 0 1 1 1 0 1 1 1 0 0 0 1 1 1 0 1 0 1 1 1 0 1 1 1 0 1 0 1 1 1 0 0 0 1 1 1 0 1 1 1 0 0 0 0 0 1 1 1 0
0 1 0 1 1 1 0 0 0 1 1 1 0 1 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 0 1 0 1 1 1 0 0 0 1 1 1 0 1
0 0 1 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 1 1 0 1 0 0 0 1 0 1 1 1 0 1 0 0 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 0 1 0
0 0 0 1 0 1 1 1 1 1 0 1 0 0 0 1 0 1 1 1 0 1 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 1 0 1 1 1 0 1 0 0 0 1 0 1 1 1 1 1 0 1 0 0
1 0 0 0 1 0 1 1 1 0 1 0 0 0 0 0 1 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 1 0 0 0 0 0 1 0 1 1 1 0 1 0 0 0
0 0 0 1 0 1 1 1 1 1 0 1 0 0 0 1 0 1 1 1 0 1 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 1 0 1 1 1 0 1 0 0 0 1 0 1 1 1 1 1 0 1 0 0
0 0 1 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 1 1 0 1 0 0 0 1 0 1 1 1 0 1 0 0 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 0 1 0
0 1 0 1 1 1 0 0 0 1 1 1 0 1 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 0 1 0 1 1 1 0 0 0 1 1 1 0 1
1 0 1 1 1 0 0 0 0 0 1 1 1 0 1 1 1 0 0 0 1 1 1 0 1 0 1 1 1 0 1 1 1 0 1 0 1 1 1 0 0 0 1 1 1 0 1 1 1 0 0 0 0 0 1 1 1 0
0 1 1 1 0 0 0 1 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 0 1 1 1 0 0 0 1 1 1 0 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 1 0 0 0 1 1 1
1 1 1 0 0 0 1 0 1 0 0 0 1 1 1 0 0 0 1 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 1 0 0 0 1 1 1 0 0 0 1 0 1 0 0 0 1 1
0 1 1 1 0 0 0 1 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 0 1 1 1 0 0 0 1 1 1 0 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 1 0 0 0 1 1 1
1 0 1 1 1 0 0 0 0 0 1 1 1 0 1 1 1 0 0 0 1 1 1 0 1 0 1 1 1 0 1 1 1 0 1 0 1 1 1 0 0 0 1 1 1 0 1 1 1 0 0 0 0 0 1 1 1 0
0 1 0 1 1 1 0 0 0 1 1 1 0 1 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 0 1 0 1 1 1 0 0 0 1 1 1 0 1
0 0 1 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 1 1 0 1 0 0 0 1 0 1 1 1 0 1 0 0 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 0 1 0
0 0 0 1 0 1 1 1 1 1 0 1 0 0 0 1 0 1 1 1 0 1 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 1 0 1 1 1 0 1 0 0 0 1 0 1 1 1 1 1 0 1 0 0
0 0 1 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 1 1 0 1 0 0 0 1 0 1 1 1 0 1 0 0 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 0 1 0
0 1 0 1 1 1 0 0 0 1 1 1 0 1 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 0 1 0 1 1 1 0 0 0 1 1 1 0 1
1 0 1 1 1 0 0 0 0 0 1 1 1 0 1 1 1 0 0 0 1 1 1 0 1 0 1 1 1 0 1 1 1 0 1 0 1 1 1 0 0 0 1 1 1 0 1 1 1 0 0 0 0 0 1 1 1 0
0 1 1 1 0 0 0 1 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 0 1 1 1 0 0 0 1 1 1 0 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 1 0 0 0 1 1 1
1 1 1 0 0 0 1 0 1 0 0 0 1 1 1 0 0 0 1 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 1 0 0 0 1 1 1 0 0 0 1 0 1 0 0 0 1 1
0 1 1 1 0 0 0 1 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 0 1 1 1 0 0 0 1 1 1 0 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 1 0 0 0 1 1 1
1 0 1 1 1 0 0 0 0 0 1 1 1 0 1 1 1 0 0 0 1 1 1 0 1 0 1 1 1 0 1 1 1 0 1 0 1 1 1 0 0 0 1 1 1 0 1 1 1 0 0 0 0 0 1 1 1 0
0 1 0 1 1 1 0 0 0 1 1 1 0 1 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 0 1 0 1 1 1 0 0 0 1 1 1 0 1
0 0 1 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 1 1 0 1 0 0 0 1 0 1 1 1 0 1 0 0 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 0 1 0
0 0 0 1 0 1 1 1 1 1 0 1 0 0 0 1 0 1 1 1 0 1 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 1 0 1 1 1 0 1 0 0 0 1 0 1 1 1 1 1 0 1 0 0
1 0 0 0 1 0 1 1 1 0 1 0 0 0 0 0 1 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 1 0 0 0 0 0 1 0 1 1 1 0 1 0 0 0
0 0 0 1 0 1 1 1 1 1 0 1 0 0 0 1 0 1 1 1 0 1 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 1 0 1 1 1 0 1 0 0 0 1 0 1 1 1 1 1 0 1 0 0
0 0 1 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 1 1 0 1 0 0 0 1 0 1 1 1 0 1 0 0 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 0 1 0
0 1 0 1 1 1 0 0 0 1 1 1 0 1 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 0 1 0 1 1 1 0 0 0 1 1 1 0 1
1 0 1 1 1 0 0 0 0 0 1 1 1 0 1 1 1 0 0 0 1 1 1 0 1 0 1 1 1 0 1 1 1 0 1 0 1 1 1 0 0 0 1 1 1 0 1 1 1 0 0 0 0 0 1 1 1 0
0 1 1 1 0 0 0 1 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 0 1 1 1 0 0 0 1 1 1 0 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 1 0 0 0 1 1 1
1 0 1 1 1 0 0 0 0 0 1 1 1 0 1 1 1 0 0 0 1 1 1 0 1 0 1 1 1 0 1 1 1 0 1 0 1 1 1 0 0 0 1 1 1 0 1 1 1 0 0 0 0 0 1 1 1 0
0 1 0 1 1 1 0 0 0 1 1 1 0 1 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 0 1 0 1 1 1 0 0 0 1 1 1 0 1
0 0 1 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 1 1 0 1 0 0 0 1 0 1 1 1 0 1 0 0 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 0 1 0
0 0 0 1 0 1 1 1 1 1 0 1 0 0 0 1 0 1 1 1 0 1 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 1 0 1 1 1 0 1 0 0 0 1 0 1 1 1 1 1 0 1 0 0
1 0 0 0 1 0 1 1 1 0 1 0 0 0 0 0 1 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 1 0 0 0 0 0 1 0 1 1 1 0 1 0 0 0
1 1 0 0 0 1 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 1 1 1 0 0 0 1 0 0 0 1 1 1 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 1 0 0 0 1
1 0 0 0 1 0 1 1 1 0 1 0 0 0 0 0 1 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 1 0 0 0 0 0 1 0 1 1 1 0 1 0 0 0
0 0 0 1 0 1 1 1 1 1 0 1 0 0 0 1 0 1 1 1 0 1 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 1 0 1 1 1 0 1 0 0 0 1 0 1 1 1 1 1 0 1 0 0
0 0 1 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 1 1 0 1 0 0 0 1 0 1 1 1 0 1 0 0 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 0 1 0
0 1 0 1 1 1 0 0 0 1 1 1 0 1 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 0 1 0 1 1 1 0 0 0 1 1 1 0 1
1 0 1 1 1 0 0 0 0 0 1 1 1 0 1 1 1 0 0 0 1 1 1 0 1 0 1 1 1 0 1 1 1 0 1 0 1 1 1 0 0 0 1 1 1 0 1 1 1 0 0 0 0 0 1 1 1 0
0 1 1 1 0 0 0 1 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 0 1 1 1 0 0 0 1 1 1 0 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 1 0 0 0 1 1 1

Figure 1.2. Drawdown Data

05 Jul 2006 D5: FabricAnalysis

Fabric Analysis 57

Observations

The number of treadles required is the number of different row patterns. The
number of shafts required is the number of different column patterns.

In a large, complicated drawdown, it’s difficult for a human being to
determine the different row and column patterns. That’s where a computer
program comes in.

Comment: You can rearrange the rows and columns of a drawdown or
delete duplicates without affecting the number of treadles and shafts required.
The Process

Creating a draft from a drawdown is a three-step process. The first two
steps, which are central to the approach used here, can be done in either order.

The first step identifies the different rows and assigns a treadle number to
each. The sequence of treadle numbers for the rows in the drawdown gives the
treadling sequence.

The second step does the same thing for the columns to assign shaft
numbers to the different columns and produce the threading sequence.

Comment: For the purposes of getting a workable draft, it doesn’t matter
which treadles and shafts are assigned to the different rows and columns. A
systematic method, however, such as working from right to left or left to right,
usually produces a better-organized draft.

The third step is to produce the tie-up that relates the treadles and shafts
according to the drawdown.

To see how the first two steps might go by hand, look at Figure 1.3, which
shows treadle and shaft assignments to the upper-left portion of the drawdown
we’ve been considering.

 shafts
 treadles 1 2 3 4 5 6 7 8 7 6 …
 1 1 1 1 0 0 0 1 0 1 0 0 0 1 …
 2 0 1 1 1 0 0 0 1 0 0 0 1 1 …
 3 1 0 1 1 1 0 0 0 0 0 1 1 1 …
 4 0 1 0 1 1 1 0 0 0 1 1 1 0 …
 5 0 0 1 0 1 1 1 0 1 1 1 0 1 …
 6 0 0 0 1 0 1 1 1 1 1 0 1 0 …
 7 1 0 0 0 1 0 1 1 1 0 1 0 0 …
 8 1 1 0 0 0 1 0 1 0 1 0 0 0 …
 7 1 0 0 0 1 0 1 1 1 0 1 0 0 …
 6 0 0 0 1 0 1 1 1 1 1 0 1 0 …
 … …

Figure 1.3. Treadle and Shaft Assignments
It is easy to see that the beginnings of the first eight rows are different and

05 Jul 2006 D5: FabricAnalysis

58 Fabric Analysis

therefore they are different patterns and each gets a separate treadle. The ninth
row starts out like the seventh row and looking at the complete drawdown in
Figure 1.1, they are the same. Similarly, the tenth row is the same as the sixth.
The same is true of the columns.

In this example, there are only eight different row patterns and eight
different column patterns. They can be distinguished by the first three digits
they contain. But another drawdown might be more complex, irregular, and not
so easily analyzed by hand.
Programs

In this section, we’ll show programs for determining the loom resources
required and producing a draft from a drawdown.

You don’t need to be a programmer to get an idea of what’s going on. If
you’re not a programmer, just read through what follows and ignore the details.

How easy it is to write program to analyze a drawdown depends to a
considerable extent on the programming language used. In our examples here,
we’ll use Icon [1, 2], a high-level programming language designed for the
manipulation of strings of characters (like row and column patterns) and
structures (like lists of patterns).

If you’re a programmer but not familiar with Icon, just browse through
what follows, note the comments, and imagine how you’d do it in your favorite
programming language.

First, a word about strings and data structures in Icon. Strings are sequences
of characters. A data structure is a collection of values that are organized in a
particular way. We’ll use three kinds of data structures in the programs that
follow:

A list is a sequence of values. The values may be strings or other types of
values.

A set is an unordered collection of unique values. A set can be created from
a list; any duplicate values in the list are discarded.

A table is like a set, except that it has unique keys with which values can be
associated.

Strings, lists, sets, and tables are created and modified as a program runs.
Computing Treadle and Shaft Requirements

Here’s a little program that reads a drawdown in the form of rows of zeros
and ones such as shown in Figure 1.2. It writes out the number of treadles and
shafts required.

procedure main()

05 Jul 2006 D5: FabricAnalysis

Fabric Analysis 59

 # Read the drawdown and put it in a list.

 rows := [] # empty list to start

 while put(rows, read()) # add the row patterns

 # Write the number of treadles needed.

 write(�set(rows), " treadles needed")

 # Rotate the drawdown 90 degrees to put the

 # columns in the place of rows.

 cols := rotate(rows)

 # Write the number of shafts needed.

 write(�set(cols), " shafts needed")

end

The conversion of the list rows to a set, using set(rows), creates a set of rows
without the duplicates. The operation � produces the number of members in the
set. The procedure rotate() is shown in the complete program listing in Appen-
dix A. The number of shafts required is then determined in the same way as the
number of treadles.

The output of the program for the data shown in Figure 1.2 is
8 shafts needed

8 treadles needed

Comment: A drawdown must, of course contain at least one full repeat. If it
contains more, the extra rows and columns are just duplicates and do not affect
the result.
Producing a Draft

To produce a draft, a little more work is required. Here’s a program.
procedure main()

 # Read the drawdown and put it in a list.

 rows := [] # empty list to start

 while put(rows, read()) # add the row patterns

 cols := rotate(rows) # list of columns

 # Compute the treadling sequence.

 number := 0 # treadle counter

05 Jul 2006 D5: FabricAnalysis

60 Fabric Analysis

 treadles := table() # table of row patterns

 # Build a table of the different row patterns and

 # assign a shaft number to each.

 every treadles[!set(rows)] := (number +:= 1)

 # Compute the threading sequence the same way.

 shafts := table()

 number := 0

 every shafts[!set(cols)] := (number +:= 1)

 # Create the tie–up.

 tieup := table()

 every row := key(treadles) do {

 tie_line := repl("0", �shafts)# no ties to start

 every i := 1 to �row do # go through row

 if row[i] == "1" then # tie if warp on top

 tie_line[threading[i]] := "1" # for rising shed

 tieup[treadles[row]] := tie_line # add tie-up line

 }

 # Write the treadling sequence.

 write("Treadling sequence:")

 every writes(treadles[!rows], " ")

 write()

 # Write the threading sequence.

 write("Threadling sequence:")

 every writes(shafts[!cols], " ")

 write()

 # Write the tie–up.

 every i := 1 to �treadles do

 write(tieup[i])

end

The operator ! generates the members of a set. Each one becomes a key in
a table, with which a number is associated (+:= 1 increments the value of
number). To produce the sequences, the rows and columns are generated and
used as keys to the tables, which in turn produces the numbers.

05 Jul 2006 D5: FabricAnalysis

Fabric Analysis 61

The tie-up is created using a table. key(treadles) produces the row patterns.
Each line of the tie-up starts with zeros, indicating the absence of ties. Then for
every position of the row pattern that is one, the position in the row of the
corresponding shaft is set to one to indicate a tie.

The sequences are produced from left to right, since that is the most natural
and easiest way to program the process.

The output for the data shown in Figure 1.2 is:
Treadling sequence:

1 2 3 4 5 6 7 8 7 6 5 4 3 2 3 4 5 6 7 6 5 4 3 2 1 2 3 4 5 6 5 4 3 2 1 2 3 4 5 6 7 6 5 4
3 2 3 4 5 6 7 8 7 6 5 4 3 2

Threading sequence:

1 2 3 4 5 6 7 8 7 6 5 4 3 2 3 4 5 6 7 6 5 4 3 2 1 2 3 4 5 6 5 4 3 2 1 2 3 4 5 6 7 6 5 4
3 2 3 4 5 6 7 8 7 6 5 4 3 2

Tie-up:

11100010

01110001

10111000

01011100

00101110

00010111

10001011

11000101

Note that the treadling and threading sequences are the same: The draft is
treadled as drawn.

Figure 1.4 shows a conventional draft produced from the results given by
the program above.

05 Jul 2006 D5: FabricAnalysis

62 Fabric Analysis

Figure 1.4. The Draft

Related Issues

WIFs

The program that produces the draft information can be modified to
produce a WIF [3], which can be imported into a weaving program and
exchanged with other weavers.

This is not difficult to do, but WIF is a verbose format and the code needed
to produce a WIF is considerably longer than the code to analyze the drawdown.

The Appendix A shows the complete program for going from the raw data
to a WIF. Appendix B shows the WIF for the data shown in Figure 1.2.
Drafts from Images

Any black and white image� can be considered to be a drawdown — the
black pixels (individual dots) correspond to where imaginary warp threads are
on top and the white pixels correspond to where imaginary weft threads are on
top.

To get a draft for weaving the equivalent of such an image, it only is
necessary to convert the pixels in the image to patterns of zeroes and ones as
shown in Figure 1.2.

This requires a little bit of computer graphics. In Icon, it looks like this [4]:

05 Jul 2006 D5: FabricAnalysis

Fabric Analysis 63

 WOpen("image=design.gif") # window for image

 width := WAttrib("width") # dimensions

 height := WAttrib("height")

 rows := []

 # Get the row patterns

 every y := 0 to height – 1 do {

 row := ""

 every p := Pixel(0, y, width, 1) do

 if ColorValue(p) == "0,0,0" then row ||:= "1"

 else row ||:= "0"

 put(rows, row)

 }

The value "0,0,0" corresponds to a black pixel. Other pixels are assumed to be
white. The rest of the program is the same as before.

Comment: Some weaving programs, such as SwiftWeave [5], provide a
facility for going from black-and-white images to drafts. SwiftWeave calls it a
drawup.

A draft created from an image can be used as a profile draft or a threading
draft. For a threading draft, modifications may be needed to make it weavable.

Although any two-color pattern can be converted to a draft, the problem is
the loom resources required — the number of shafts and treadles — which
exceed the capacity of your loom — or any loom (recall that the number of
treadles required is the number of different rows and the number of shafts
required is the number of different columns).

If you want to try this, pick images that are small, with straight lines, and
lots of duplicate rows and columns. Horizontal and vertical symmetry come
free.

Appendix C shows an image and the drawdown produced by this method.
On-Line Resources

The programs described here, along with sample data and images, are
available on the Web [6].

15 Apr 2006 E1: Name

Name Drafting

Many handweavers simply weave from the large number of drafts that
are available in books and magazines about weaving. These weavers may make
minor modifications, but the designs they weave are the creations of others. The
measure of “real” handweavers is the desire and ability to create their own
designs. But how to start?

A type of weaving known as name drafting often is recommended for this
situation. (Name drafting also is known as code drafting, commemorative
drafting, and personalized design.)

Although name drafting is naive in concept, it does provide an easy bridge
between copying the work of others and creating new designs.
Mapping Strings into Threading Sequences

The basic idea is simple: A string of characters — a word, or more often, a
phrase or sentence — is named to make a threading sequence. The string may be
the name of a loved one or a famous person (hence the term name drafting), a
motto, an epigram, or anything else that strikes a weaver’s fancy.

The coding assigns a shaft number to each character of the selected string.
Although any method of associating shafts with characters could be used, only
a few appear in the literature [1-7] and weavers generally are instructed to use
one of these.

Three codings commonly are used for four shafts:
 letters shaft
ABCDEFG 1 Table 1
HIJKLMN2
OPQRSTU 3
VWXYZ 4
ABCDEF 1 Table 2
GHIJKL 2
MNOPQR 3
STUVWXYZ 4

AEIMQUY 1 Table 3
BFJNRVZ 2
CGKOSW 3
DHLPTX 4

15 Apr 2006 E1: Name

2

Suppose the string chosen is
JACOB ANGSTADT

and Table 1 is used. The resulting sequence is
2, 1, 1, 3, 1, 1, 2, 1, 3, 3, 1, 1, 3

If Table 2 is used, the sequence is
2, 1, 1, 3, 1, 1, 3, 2, 4, 4, 1, 1, 4

and if Table 3 is used, the sequence is
2, 1, 3, 3, 2, 1, 2, 3, 3, 4, 1, 4, 4
Note that the blank between Jacob and Angstadt is ignored; more on this

later.
One problem in choosing a mapping between characters and shaft num-

bers is whether some shafts will be underutilized or not used at all.
In the examples above, if Table 1 is used, shaft 4 is absent in the threading

sequence.
Weavers doing name drafting often try different tables for a chosen string

to see which one gives the best results.
Using only coding tables specified in the literature is an example of the

dominating role of rote among unsophisticated weavers.
There are strong statistical patterns in the frequency in which characters

appear in written text (usually considered only in terms of letters). None of the
tables above is close to being balanced for ordinary English text. A subsequent
section will give some coding tables that use letter-frequency information in an
attempt to balance shaft usage.

Nonetheless, any predefined mapping can be defeated by a particular
string — not to mention the fact that the string chosen may not contain as many
different characters as there are shafts. In practice, strings are chosen to work
around such problems.
Modifying Sequences for Weaving

Name drafts usually are woven in overshot. A technical requirement for
overshot is that the shaft numbers alternate between odd and even, called
alternating parity. When a sequence does not meet this requirement, it is modified
by adding incidentals.

15 Apr 2006 E1: Name

3

For example, in the sequence given earlier,
2, 1, 3, 3, 2, 1, 2, 3, 3, 4, 1, 4, 4

there are four places where incidentals are needed. They could be added as
follows, where the incidentals are underlined:

2, 1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 3, 4, 1, 4, 1, 4
Of course, adding incidentals increases the length of the sequence.
There are various formulas used for adding incidentals. In this example, an

incidental is one more than the preceding value, with 4 wrapping around to 1.
Other Aspects of Name Drafting

Name drafts usually are reflected about their centers to add symmetry and
increase the visual appeal of the resulting weaves. For the example above, the
resulting threading sequence would be

2, 1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 3, 4, 1, 4, 1, 4,
 1, 4, 4, 4, 3, 4, 3, 2, 1, 2, 3, 4, 3, 2, 1
Note that the last term in the original sequence is not included in the

reflection; that would violate the alternating parity requirement.
In overshot weaves, the tie-up usually is a twill. Different tie-ups often have

a dramatic effect on the weave. Again, it is a matter of experimentation.
Examples of drafts based on the sequence above are given at the end of this

section.
Name Drafting in Perspective

Certainly name drafting is an ad hoc mechanism for producing threading
sequences. It is telling that only letters are considered and that upper- and
lowercase letters always are taken to be equivalent without anything being said.
This is akin to the problem of a person who is not familiar with computing and
has trouble with the fact that a blank is just a much of a character as X.

To weavers, however, name drafting can serve a real purpose, which is
indicated by the alternative term “commemorative drafting”. The string chosen
may have a meaning that is personal to the weaver, resulting in a weave
embodying this meaning.

15 Apr 2006 E1: Name

4

This aspect of name drafting is sometimes forgotten, however. A recent
article on name drafting [6] described the author’s attempts to find a string that
produced an attractive weave, finally settling on “The Random House Dictio-
nary” as the result of glancing at a nearby bookshelf. The resulting weave was
attractive, but it hardly carried a special meaning, as the author admitted.
Another Method of Obtaining Alternating Parity

Alternating parity can be obtained by associating odd-even shaft pairs with
the rows in a name table. For Table 3, it might look like this:

AEIMQUY 1,2 Table 3
BFJNRVZ 2,3
CGKOSW 3,4
DHLPTX 4,1
Then the appropriate shaft can be chosen as the threading sequence

develops. For our example, the result is
2, 1, 4, 3, 2, 1, 2, 3, 4, 1, 2, 1, 4
With this method, the length of the sequence is just the number of letters in

the string used. This method for obtaining alternating parity will be used in
subsequent sections.

08 May 2006 F1: Crackle

Crackle Weave

Crackle weave, a version of point twill, offers many possibilities for
interesting patterns and, if done in the standard manner, has maximum floats of
three and makes a strong cloth.
Block Design

Blocks

Conventional crackle weave design is based on blocks with 3 shafts and 4
ends. For 4 shafts, the blocks are

A 1, 2, 3, 2

B 2, 3, 4, 3

C 3, 4, 1, 4
D 4, 1, 2, 1

Adjustments at Block Boundaries

Blocks can be arranged in any sequence, although some sequences produce
better results than others. Examples of block sequences are

AAABBBCCCDDD

and
ABCDCBABCDCBA

Incidentals are inserted or ends removed to meet the structural require-
ments of crackle weave. Berta Frey [1] lists these rules (abbreviated and para-
phrased here):

1. An odd/even progression of shafts must be maintained.
2. The 3-shaft character must be maintained; incidentals can be added or ends

removed to achieve this.
3. There may be no more than three threads on two adjacent shafts (for

example, 2, 1, 2, 1 is not allowed).
4. There may be no more than 4 shafts before direction changes.

Although incidentals can be inserted and ends removed in various ways,

08 May 2006 F1: Crackle

78

the rules established by Harriet Tidball [2] are logical, systematic, and now
generally used in crackle weave design. If an incidental is needed after a block,
it is put on the shaft that is one less than the last thread of the block:

A 1
B 2
C 3
D 4 (wrapping around from 1)
If the same block is used in succession, as in AAA, no incidentals are

required. Going from one block to the next, as in AAABBB, however, there is a
problem:

The adjacent duplicates are outlined in red. There are two choices. One is to
delete one of the duplicates:

The area where the duplicate was removed is outlined in green. The other choice
is to insert an incidental, shown in yellow:

If a block is skipped, as in AAACCC, Frey's Rule 3 is violated:

Incidentals for block A and the skipped block B need to be inserted

The same principle applies for skipping two blocks, as in AAAADDDD:

where the incidentals for blocks A, B, and C need to be inserted:

08 May 2006 F1: Crackle

79

It is worth noting that only four essentially different situations occur at
block boundaries:

Either an end can be deleted or an incidental inserted
No change is needed.
An incidental is needed to connect the shafts.
Two incidentals are needed to connect the shafts.

There are, of course, the horizontal reflections of these, to which the same
rules apply.
More Shafts

Crackle weave is not limited to 4 shafts; more shafts can be used. For
example, for 6 shafts, there are six blocks:

A 1, 2, 3, 2
B 2, 3, 4, 3
C 3, 4, 5, 4
D 4, 5, 6, 5
E 5, 6, 1, 6
F 6, 1, 2, 1

The same rule for incidentals applies.
Crackle also can be woven on an odd number of shafts.
If more that 4 shafts are used, there are more different situations that may

arise at block boundaries.
Motif Along a Path

There is another way to view the design process for crackle weave.
Note that blocks B, C, and D are simply successively upwards shifted

versions of block A, with wrap-around from top to bottom. There is only one
motif, which can be taken to be block A.

This motif can be placed as successive points along a path to give the same
result as using different blocks in succession. For example, if the path is a straight
draw, as in

08 May 2006 F1: Crackle

80

the result is the same as using the block sequence ABCDABCD:

The first threads of successive motifs are shown in blue to emphasize the path.
Incidentals are, of course, handled in the same way as for blocks.
The advantage of motif-along-a-path design is that different motifs and

paths can be tried independently. For example, the motif 1, 2, 3, 2, 1, 2, 3, 4, 3 is
equivalent to the block sequence AB with the required incidental. But by using
the combination motif, design can be done in terms of a single motif.

If a motif not corresponding to combinations of blocks is used, such as 1, 2,
3, 4, 3, 2, the result may be floats longer than 3 and not true crackle. But many
more patterns are possible and if care is taken, the resulting cloths will be sound.
Tie-Ups

Crackle is a twill weave, a variety of point twill. As such, twill tie-ups
normally are used. In order to keep the maximum float length to 3, expected of
conventional crackle weaves, twill counters must be less than 3.

The following tie-ups work well for crackle:
4 shafts:

2/2

5 shafts:
1/2/1/1

6 shafts:
1/1/2/2
1/2/1/2
1/2/2/1
2/1/2/1

08 May 2006 F1: Crackle

81

7 shafts:
1/2/1/1/1/1
2/2/2/1

8 shafts:
1/1/1/1/2/2
1/1/1/2/1/2
1/1/1/2/2/1
1/1/2/1/1/2
1/1/2/1/2/1
2/2/2/2 (same as a 4-shaft twill)

9 shafts:
1/1/1/2/2/2
1/1/2/1/2/2
1/1/2/2/1/2
1/1/2/2/2/1
1/2/1/2/1/2
1/2/1/2/2/1
1/2/2/1/2/1
2/1/2/1/2/1

10 shafts:
1/1/2/2/2/2
1/2/1/2/2/2
1/2/2/1/2/2
1/2/2/2/2/1
2/1/2/1/2/2

Treadling

Traditional crackle threading uses the same treadle for all the threads of one
block, with pattern picks alternating with binding picks. Here is an example, in
which the binding picks are not shown:

08 May 2006 F1: Crackle

82

Summer and Winter is another conventional treadling for crackle, with two
treadles alternating, the first block woven on treadles 4 and 3, the second on 3
and two, the third on 1 and 2, the fourth on 1, and 4, and then repeating. Here is
an example:

Crackle also can be treadled as drawn in. This is the treadling now most
commonly used. Here is an example:

08 May 2006 F1: Crackle

83

See Reference 2 for more information on conventional crackle treadling.
Many other treadlings have been tried, including straight draws, point

twill, and advancing twills.
Crackle treadling is an area for experimentation, which may produce

interesting results.
One particularly interesting method is to use one crackle sequence for

threading and a different crackle sequence for treadling. Here is an example:

08 May 2006 F1: Crackle

84

Path Design

Except for the path, all is formular in conventional crackle weave design:
the 1,2,3,2 motif and specified ways for fixing problems that may occur between
the boundaries of the successively placed motif. The only design element is the
path.

In design, a path is not constrained to a specified number of shafts.
Adaptation to a specified number of shafts is done after the motif is placed along
the path.
Path Properties

Paths can be classified in a variety of ways. For example, a path may be
connected or disconnected, as shown in these examples:

connected

disconnected
A path may be “friendly” or “unfriendly” [2]. A friendly path is one in

which each value is one greater or one less than the preceding one. Friendly
paths are, of course, connected. Here are examples of friendly and unfriendly
paths:

friendly

(very) unfriendly
Unfriendly paths may, of course, have friendly segments, as in

08 May 2006 F1: Crackle

85

(somewhat) unfriendly
The extent of a path is the difference between its largest and smallest values,

plus 1. Without losing anything (or, as a mathematician would say “without loss
of generality”), the smallest value can be taken to be 1, so that the extent of a path
is given by its largest value.
Design Considerations

Paths with “flats”, runs of the same value, as in

produce blocky, rectilinear patterns. The path shown above produces this
drawdown for 4 shafts and a 2/2 twill tie-up, treadled as drawn in:

Friendly paths can produce varied patterns. An example is

A drawdown based on placing the motif on this path is

08 May 2006 F1: Crackle

86

Paths with large extents are capable of producing more elaborate patterns
than paths with small extents. However, the number of shafts used limits the
possibilities once the motif has been placed along the path.

Perhaps surprisingly, disconnected paths are capable of producing the
most dramatic patterns. Here is an example of a disconnected path:

Although the path is short, placing the motif along it produces a much
longer sequence because of the incidentals needed to connect separated motifs:

A drawdown with this sequence adapted to 8 shafts is

The reason disconnected paths can produce elaborate patterns is the runs

08 May 2006 F1: Crackle

87

introduced by the incidentals needed to connect separated motifs. One problem
with disconnected paths is that they may result in floats longer than 3. Nonethe-
less, they often produce sound fabrics and the marvelous patterns that can result
may more than compensate for the increased float lengths.

Horizontal reflection of a threading sequence to produce a palindrome
usually produces a pattern that is more attractive than the unreflected sequence.
However, since the motif itself is not symmetric, the result of placing a motif
along a palindromic path is not a true palindrome. Palindromic enhancement is
best done after the motif is placed along the path.
Results of Motif Placement

When the motif is placed along a path, the maximum value in the resulting
sequence is two greater than the extent of the path, since the motif goes up two
above the largest path point.

Once the motif is placed along the path, modular reduction [3] can be used
to bring the sequence within the range of the number of shafts to be used.
Experimenting with Crackle Design

The number of possible paths for all but trivial situations is very large. If the
range of a path is n and its length is k, there are nk possible paths. For example,
if n is only 4 and the k is only 8, there are 48 = 65,536 possible paths.

Even with a program to run through the possibilities, it is impractical to
create, much less evaluate, all crackle weaves drafts of even modest extent.

But that is the challenge of intelligent, artistic exploration — to find gems
in vast mountains of debris.

23 Aug 2006 F2: ShadowWeave

65

Shadow Weave

Reference 1.1, which describes the weaving language in MetaCreation’s
[get current company name] Painter application, is prerequisite to the material
that follows. An example given there is shadow weave [2, 3]. A textual form of
the Painter draft is
Shadow Op Art name
1–8–2–828–3–82128–4–8214128–5–821434128–6–8214363412878214365634128|,1 threading
1–8–2–828–3–82128–4–8214128–5–821434128–6–8214363412878214365634128|,1 treadling
KW–>183 warp colors
WK–>183 weft colors
1010101001010101101010010101011010100101010110101001010101101010 tie-up
W and K stand for white and black, respectively.
This draft produces the weave

A Shadow Weave
Weaves of this type produce the appearance of shadows (which are more

obvious on actual woven fabrics than in images) by alternating light and dark
threads in reverse orders in the warp and weft.

The threading and treadling expressions for shadow weaves typically are
the same — treadled as drawn in, as is the case here. Therefore only the threading
expression is needed.

The threading expression is a (true) palindrome. This follows from the fact
that the pattern palindrome operator, |, has very low precedence and the
expression groups like this:

((1–8–2–828 …4363412878214365634128)|,1)

The 1 concatenated at the end converts a pattern palindrome into a true one. The
weave looks better when repeated if this last character is omitted, leaving a

[The dependency of this material on Painter's Weaving Language raises serious
questions about the order of presentation in M.O.]

23 Aug 2006 F2: ShadowWeave

66 Shadow Weave

pattern palindrome.
The threading expression consists of a sequence of domain runs — “ups

and downs” — between other shaft sequences. This is easier to understand
graphically than in terms of numbers. This figure shows the threading for the
first half of the sequence. The bar at the top shows the colors.

The Threading
The operand of the pattern palindrome operator has a definite structure:

1–1–2–2–3–3–4–3–5–5–6–8214363412878214365634128

where the small numbers have their own structure: [Lost a font here and used
”small numbers” as a temporary work-around.]
1 = 8

2 = 828

3 = 82128

4 = 8214128

5 = 821434128

Note that these all are true palindromes.
After –6–, the pattern appears to break down, although there are similari-

ties with the earlier parts. In fact,
8214363412878214365634128

is equivalent to
82143634128–7–8214365634128

So the result is
1–1–2–2–3–3–4–3–5–5–6–6–7–7

with the continuation of the palindromes between:
6 = 82143634128

7 = 8214365634128

These palindromes can be represented using pattern forms, which makes
the underlying structure more evident:
1 = [!8]

2 = [8!2]

23 Aug 2006 F2: ShadowWeave

Shadow Weave 67

3 = [82!1]

4 = [821!4]

5 = [8214!3]

6 = [82143!6]

7 = [821436!5]

The sequence 8241365 runs not only across but also down the center of
these palindromic forms — patterns within patterns.

One way to view the overall pattern is as a sequence of anchors for domain
runs, which are connected by palindromes. The following figure shows the
threading draft with the anchors indicated by vertical bars and the palindromes
by horizontal bars.

Threading Draft Showing Anchors and Palindromes
There several questions at this point. The first ones that come to mind are:

• If this pattern is modified in various ways, what kinds of weaves result?
• Is the threading pattern somehow special or just one of a class of patterns

that produce interesting weaves?
• If so, how can this class be characterized?

Start with the first question, take the domain runs as given, and concentrate
on the sequence of anchors and palindromes. For this, it is easier to deal with
character sequences. Digits will be used for labeling the shafts and the letters A
though G to label the palindromes. Thus, the sequence can be represented as

1A2B3C4D5E6F7G

In terms of pattern forms, this is an interleaving:
[1234567~ABCDEFG]

More formally, label the anchor sequence A and the palindrome sequence
P, giving

[A ~ P]

Given transformations o1 and o2 on sequences, consider
[o

1
(A)~ o

2
(P)] general transformations

23 Aug 2006 F2: ShadowWeave

One possibility is coupling the anchors and the palindromes, that is o1 > o2:
[o

1
(A)~ o

1
(P)] coupled transformations

An example of this, using our original notation, is the permutation
6–6–3–3–1–1–4–4–5–5–2–2–7–7

Another possibility is using the identity transformation f on one but not the
other component:

[o
1
(A)~ f(P)] anchor transformations

or
[f(A)~ o

2
(P)] palindrome transformations

Respective examples are the permutations
5–1–4–2–3–3–2–4–1–5–7–6–6–7

and
1–5–2–6–3–7–4–4–5–3–6–2–7–1

This is not limited to permutations. Examples of transformations that are
not permutations are the coupled transformation

1–1–2–2–3–3–4–4–4–4–3–3–2–2

and this transformation, which increases the length of the sequence
 1–5–2–6–3–7–4–4–5–4–6–2–7–1–1–5–2–6

It is, of course, impossible to explore all such transformations. For permu-
tations alone, there are 14! � 8.7 × 1013 possibilities for the general case.

There are, however, only 7! = 5,040 permutations for the coupled anchor
and palindrome cases. All the anchor-sequence permutations to give a feel for
how the weaves differ.

No two of the weaves are the same, although many are so similar that the
differences cannot be detected without detailed examination. There is some
difference in the size of the weaves. This is to be expected, since the lengths of
the domain runs change when the anchors do. The size is determined solely by
the first anchor. If the first anchor is i, then the weave is 180 + 2i threads on a side.

All are visually attractive, at least to us, and the range of design variations
is relatively small. The 10 weaves that follow represent the visual extremes. The
pattern is aesthetically robust.

23 Aug 2006 F2: ShadowWeave

69

 2-3-4-5-6-1-7 2-4-1-3-5-7-6 2-4-3-5-6-7-1 3-5-1-2-4-7-5

 3-7-6-5-4-1-2 4-1-3-5-6-7-2 4-2-1-3-5-6-7 7-3-4-2-1-5-6

27 May 2006 G1: Constraints

181

Constrained Patterns
Constraints limit what is possible. With respect to interlacement patterns,

constraints impose both color and structural limitations. Constraints can take
many forms. Expressed in terms of drawdowns, examples are:

1. The number of white cells and black cells must be equal.
2. No more than four consecutive cells in any row and column can be the
 same color.
3. Every cell must have at least one adjacent cell of the opposite color.
4. Constraints 1, 2, and 3 all must be satisfied.

Constraint 1 is a global constraint and is equivalent to requiring that a
weave be balanced. This constraint cannot be satisfied by a drawdown with an
odd number of cells. That is, of all drawdowns, only ones with even dimensions
can possibly satisfy this constraint.

Constraint 2 is more local and in more familiar terms limits float length.
Constraint 3 is local; it specifies a property that all neighborhoods must

have. [Cross-reference cellular automata.]
Constraint 4 requires that three constraints be simultaneously satisfied. It

is called a constraint set. In this sense, Constraints 1, 2, and 3 are constraint sets
containing only one constraint.
Constraint Analysis

Given a pattern, it generally is easy to determine if it satisfies a given
constraint set. For example, whether or not a pattern satisfies Constraint Set 1 can
be determined just by counting black and white cells. Similarly, whether or not
a pattern satisfies Constraint Set 2 can be determined by examination or using
the float-analysis feature of a weaving program.

Constraint Set 3 requires a little more work, since it may be necessary, in
general, to examine a large number of individual neighborhoods.

And, of course, determining whether or not a pattern satisfies Constraint
Set 4 can be determined by checking each of the constraints in its constraint set.

It is important to realize that there are constraint sets that no patterns
satisfy. For example, a constraint set that contains Constraint 1 and a constraint
that patterns must have an odd number of cells cannot be satisfied — it is
unsatisfiable. In this example, it is obvious that the two constraints are mutually
exclusive. In general, it may be difficult to determine whether or not a constraint
set can be satisfied any pattern.

27 May 2006 G1: Constraints

182

Neighborhood Constraints
As far as weave structure is concerned, neighborhood constraints are

interesting, since they have a strong effect on appearance.
Neighborhood constraints can be characterized by neighborhood templates.

As with drawdown automata, there are many kinds of neighborhoods that can
be used. The von Neumann 5-cell neighborhood [2] is used in what follows. This
neighborhood is small enough to be computationally tractable but large enough
to characterize a wide range of structural characteristics.

Neighborhood constraints can be pictured like this:

None of these constraints taken alone is satisfiable, simply because they all
require every cell to be the same color (white in the first, black in the other two)
while simultaneously requiring that them to be surrounded by cells of other
colors.

Taken in combination in constraint sets, however, they may be satisfiable.
For example, the constraint set consisting of the templates

is satisfied by plain weave (and only plain weave).
On the other hand, the constraint set consisting of the templates

is unsatisfiable because it requires every cell to be black and at the time to have
adjacent white cells.

Neighborhood constraints can be looked at in several ways:
• Does a pattern satisfy a given neighborhood constraint set?
• What neighborhood constraint set does a given pattern satisfy?
• What patterns satisfy a specific neighborhood constraint set?

The first question is easy to answer: as mentioned above, it’s only necessary
to compare the cell neighborhoods to the templates in the constraint set.

 The second question also is generally easy to answer by cataloging the

27 May 2006 G1: Constraints

183

neighborhoods of all cells, although there are some issues to be addressed, such
as how to handle cells at the borders that do not have complete neighborhoods.

The third question is, in general, much harder to answer. It is, nonetheless,
interesting. For example, it would be interesting to know what patterns satisfy
the same neighborhood constraint set that a 2/2 twill does. The problem is hard
because there is no is known way to construct patterns from constraint sets that
does not involve a large amount of computation.
Neighborhood Analysis

In the first article on constraints, we introduced the concept of neighbor-
hood constraints [1]. In this article, we’ll look at the problem of determining the
neighborhood constraint set of a pattern.

Consider the following pattern:

All that is necessary to determine the constraint set for this pattern is to
examine every cell and record the template for its neighborhood.

For example, the template for the cell outlined above is

This process is straightforward except for cells at the edges, which have
incomplete neighborhoods. There are several ways to handle such cells:

27 May 2006 G1: Constraints

184

1. Don’t include the edge cells in the analysis.
2. Assume that the pattern repeats so that the edges wrap around.
3. Don’t assume the pattern repeats (for example, the Morse-Thue carpet
 does not [2]) but include partial neighborhoods of the edge cells.

Method 1 amounts to analyzing a sub-pattern, shown by the blue outline
below:

The problem with this approach is that the constraint set obtained may not
be complete. For example, the unit motif for plain weave is a 2 × 2 pattern:

This pattern only has edge cells. If they are ignored, there is no constraint set at
all, which obviously is incorrect.

Method 2 can be handled by augmenting the pattern, adding cells around
the edges that correspond to what would appear if the pattern were contained
in a repeat:

Now the analysis can proceed for the cells enclosed in the red rectangle above;

27 May 2006 G1: Constraints

185

effectively there are no edge cells.
This method is fine for repeating patterns, but it produces erroneous results

for aperiodic patterns such as the Morse-Thue carpet.
Method 3 tries to deal with this situation by adding edges with unknown

cell colors:

In this case, an edge cells such as the one outlined below has a neighborhood
template with a cell of unspecified color:

Here is that template:

It can be added this partial constraint to the set. But note that there is other cells
in the pattern with complete templates that have the same three cells as the
partial constraint:

27 May 2006 G1: Constraints

186

This neighborhood,

“covers” the incomplete one, it is not necessary to keep the incomplete one.
If partial constraints remain after analyzing all cells, one possibility is to just

“force them” by arbitrarily coloring the unspecified cells.
What to do about an aperiodic patterns is an open question. One can

analyze a portion of it using Method 3. But how can one tell if the constraint set
obtained is complete? Would analyzing a larger portion add to the constraint
set?

In the case of the Morse-Thue carpet, analyzing a modest portion yields a
constraint set with 18 templates. Analyzing larger portions do not increase the
size of the constraint set. It seems reasonable, examining the method by which
the Morse-Thue carpet is constructed, that this constraint set applies to the
entire, unlimited pattern.

But for other patterns, such as random ones, there is no basis for such an
assumption. In fact, the constraint set for a randomly generated pattern may
include all 32 possible constraints.

On the other hand, what is the point of trying to determine the neighbor-
hood constraint set for a pattern without structure?

Representing Constraint Sets
Neighborhood constraint sets can be represented in several ways. For

human understanding, graphical methods work best. For computer processing,
textual representations or numerical codes are more appropriate.

27 May 2006 G1: Constraints

187

Graphical Representations
In previous articles, we showed templates as neighborhoods laid out

according to their natural geometrical interpretation, as in

Any constraint set then can be represented by a collection of such template
images. For example, the constraint set for plain weave is

If a constraint set is large, this kind of representation takes a fair amount of
space for images of a size sufficient to be readily understood. For example, the
constraint set containing all constraints is

A less useful but more compact graphical representation is as a bar of 32
cells, each cell corresponding to one of the constraints. If a cell is in a constraint
set, it is colored gray, otherwise white. Gray is used so the black dividing lines
can be used as a guide to cell position. For example, the cell bar for the plain-
weave constraint set is

The problem with the cell-bar representation is that the templates are coded
by position, so that to determine the constraints, it’s necessary to know where
individual templates are in the bar and the order of the templates (which is as
shown in the image for all templates, reading left to right and top to bottom.
Determining the actual templates in this way is tedious and error prone, so the
cell-bar representation is not appropriate for that purpose. It is suitable, how-
ever, for getting an idea of the number of constraints in a set and comparing

27 May 2006 G1: Constraints

188

patterns of different constraint sets.
Textual Representations

The graphic representation as a series of templates has a natural counter-
part as a list of 5-bit binary strings in which a bit is 1 if the corresponding cell in
the neighborhood is black and 0 otherwise.

A convention is needed to determine the order of the bits in the bit string.
The convention we’ll use here numbers the cells starting with the center cell and
continuing clockwise around the outer cells:

5
4 1 2

3
Therefore the plain-weave constraint set has the textual representation

01111
10000

(Since this represents a set, the order of the constraints is not important, but a
useful convention is to order the binary strings by magnitude, as we have done
in this example.)

A more compact textual representation of constraint sets is as 32-bit binary
strings in which a bit is one if the corresponding constraint is in the set and 0
otherwise. For example, the plain-weave constraint set represented in this way
is

00000000000000011000000000000000
Note that although the cell-bar representation is difficulty for a human

being to interpret in its entirety, the 32-bit binary string representation presents
no problem for a program: It’s just another decoding task of the kind that
programs have to handle all the time.
Numerical Codes

A variation on the textual representations is to think of bit strings as base-
2 integers. These base-2 integers then can be converted to conventional base-10
integers. For example, in terms of 5-bit constraints, the plain-weave constraint
set has the numerical codes

15
16

27 May 2006 G1: Constraints

189

while the 32-bit representation has the numerical code 98305.
For computer programs, these are just other ways of encoding and present

no more problems than the textual forms. Base-10 integers have advantages for
programming in some situations because all commonly used programming
languages support integer arithmetic. However, the equivalents of 32-bit bit
strings can be very large: as large as 4,294,967,296, which is beyond the range of
integer arithmetic in most programming languages.

Numerical codes are somewhere between graphical representations, suit-
able for human beings, and textual representations, suitable for computers. For
human beings, they do have value as labels, if arbitrary, and are only about one-
third the length of the corresponding binary strings, as well as being easier to
differentiate than bit strings.
 von Neumann Constraint Pattern Catalog
[This section has not been published on the Web.]

Wolfram [1] has shown that only 171 repeating patterns are needed to
characterize all the von Neumann neighborhood constraint sets [2]. (Rotations,
reflections, and color reversals are omitted.)

The pages that follow show unit weaves for these patterns in the order
given in Reference 1. Below each pattern are its dimensions and, if weavable
from a drawup, the loom resources required. At the bottom is a cell bar showing
the constraints involved [3].

Some of the patterns that are unweavable as drawups can be drafted using
color-and-weave effects. Obvious examples are the stripes.

All of the patterns that are weavable from drawn-up drafts “hang together”
[4]. [Cross reference; consider changing “weavable”to “draftable” here and
elsewhere.]

27 May 2006 G1: Constraints

190

27 May 2006 G1: Constraints

191

27 May 2006 G1: Constraints

192

27 May 2006 G1: Constraints

193

27 May 2006 G1: Constraints

194

27 May 2006 G1: Constraints

195

27 May 2006 G1: Constraints

196

27 May 2006 G1: Constraints

197

27 May 2006 G1: Constraints

198

27 May 2006 G1: Constraints

199

27 May 2006 G1: Constraints

200

03 Apr 2006 G2: GridLayouts

Nonlinear Grid Design

Many design techniques use a linear grid of square cells:

Interesting results can be obtained by using nonlinear grids in which not all
cells are square. An example is the Fibonacci grid in which the widths in heights
increase according to the Fibonacci sequence: 1, 1, 2, 3, 5, 8, 13, …

03 Apr 2006 G2: GridLayouts

256

Since the values of the Fibonacci sequence increase rapidly, the cells quickly
get too large for interesting designs. An alternative is to take the first few values
and then reflect them to get a symmetric grid:

03 Apr 2006 G2: GridLayouts

257

Grids can be characterized by two sequences, one for the widths and the
other for the heights, and they need not be the same. For example, the Fibonacci
sequence could be used for widths and a constant sequence for heights:

03 Apr 2006 G2: GridLayouts

258

Other aspects of grids are the scaling and resolution: how large a cell
actually is. In the grids in this article, the scaling factor is 10 and the resolution
is 100 per inch an inch. For example, a width specification of 1 produces a width
of 1/10th inch.

Here is a linear grid with a scaling factor of 10 and a resolution of 100:

Changing the scaling factor to 20 produces

Fractal Grids

Fractal sequences can be used as the basis of nonlinear grids. By their
nature, fractal sequences do not repeat and so fractal grids do not tile seamlessly
if repeated. However, many fractal grids appear to be regular yet with just
enough difference to be interesting.

03 Apr 2006 G2: GridLayouts

259

Morse-Thue Grids

The most famous fractal sequence is the binary Morse-Thue sequence [1].
It goes like this:

0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, …
In order to make this sequence suitable for widths and heights, 1 can be

added to each value:
1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, …
The resulting grid is

03 Apr 2006 G2: GridLayouts

260

The Morse-Thue sequence can be generalized to base 3, base 4, and so on to
give a greater variety of widths and heights. For example, the base-3 Morse-Thue
sequence, incremented by 1, starts out as

1, 2, 3, 2, 3, 1, 3, 1, 2, 2, 3, 1, 3, …
and produces the grid

03 Apr 2006 G2: GridLayouts

261

The base-6 Morse-Thue sequence produces this grid:

03 Apr 2006 G2: GridLayouts

262

Rabbit Grids

Another binary fractal sequence is the rabbit sequence [2], which incremented
by 1 starts out as

2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, …
The grid for this sequence is

03 Apr 2006 G2: GridLayouts

263

As with other sequence-based nonlinear grids, the horizontal and vertical
sequences can be different.

03 Apr 2006 G2: GridLayouts

264

There are dozens of other fractal sequences that are suitable for making
nonlinear grids. Go to the Web site given in Reference 3 and search for the
keyword fractal.

These are only a few of an unlimited number of possibilities. And it's easy
to make your own. Start with linear grid paper and rule off widths and heights
according to the sequences you want.

05 Jul 2006 G3: PatternOperations

Operations on Patterns

Many interesting patterns can be created by operations on other patterns,
changing and combining them in various ways.

Patterns can be represented as grids of cells. When a pattern is interpreted
as a drawdown, black cells indicate where the warp is on top and white cells
where the weft is on top. Figure 1.1 shows an example. [Covered elsewhere.]

Figure 1.1. A Drawdown Pattern
Cells in lines across the pattern from top to bottom are called columns,

while cells in lines from left to right are called rows. The word lines is used for
both in situations in which orientation is not important. See Figure 1.2.

Figure 1.2. Columns and Rows
A variety of operations can be performed on such patterns. They can be

changed by geometrical transformations, such as rotation. Two patterns can be
concatenated (adjoined) to form a larger pattern. A portion of a pattern can be
replaced by another pattern. The rows and columns can be rearranged. And a
pattern can be turned over to show its back side, as in the back of a woven fabric.
Notation

Uppercase italic letters, like P, Q, and R, are used to name patterns for the
purpose of identification.

Some operations on patterns require integer values. Lowercase italic
letters, such as i, j, and k, are used for these.

Various symbols are used to stand for operations on patterns.
Pattern Properties

Two properties of patterns are important in many operations:

05 Jul 2006 G3: PatternOperations

314 Operations on Patterns

• width, the number of columns, in a pattern P is denoted by t(P)
• height, the number of rows; in a pattern P is denoted by d(P)

Sometimes it is useful to know the total number of cells in a pattern. The
number of cells in a pattern P is denoted by m (P). m (P) = t(P) × d(P). Figure 1.3
illustrates these properties.

Figure 1.3. Pattern Dimensions
Another important property of a pattern is the number of different colors

it has. For a pattern P, the number of colors is denoted by g(P). For drawdowns,
g(P) = 2.

For “color drawdowns” (patterns in which the colors of the warp and weft
threads are shown), g(P) may be greater than 2. Figure 1.4 shows a 6-color
pattern.

Figure 4. ggggg(P) = 6
g(P) number of colors

Geometrical Transformations

There are two kinds of geometrical transformations that can be performed
on patterns: rotations and flips.
Rotations

A pattern can be rotated in increments of 90º: 90º, 180º, and 270º. Rotation
by 360º leaves the pattern unchanged. Rotation is measured in the clockwise
direction by convention.

05 Jul 2006 G3: PatternOperations

Operations on Patterns 315

The rotations of a pattern P by 90º, 180º, and –90º (270º) are denoted by P,
P, and P, respectively.

Figure 1.5 shows the rotations of a square pattern and Figure 1.6 shows the
rotations of an oblong pattern.

 P

P P P
Figure 1.5. Rotations of a Square Pattern

 P

P P P
Figure 1.6. Rotations of an Oblong Pattern

Note that:
d(P) = t(P) = t(P)
t(P) = d(P) = d(P)
d(P) = d(P)
t(P) = t(P).

05 Jul 2006 G3: PatternOperations

316 Operations on Patterns

Flips

There are four flips:
• horizontal, around a vertical axis
• vertical, around a horizontal axis
• right, around the left diagonal (from the upper-left corner to the lower-
 right corner)
• left, around the right diagonal (from the upper-right corner to the lower-
 left corner)

These flips of a pattern P are denoted by P, P, P, and P, respec-
tively.

Figure 1.7 shows these flips for a square pattern and Figure 1.8 shows them
for an oblong pattern.

 P

 P P P P
Figure 1.7. Flips of a Square Pattern

 P

 P P P P
Figure 1.8. Flips of an Oblong Pattern

05 Jul 2006 G3: PatternOperations

Operations on Patterns 317

Note that:
d(P) = d(P) = d(P)
t(P) = t(P) = t(P)
d(P) = t(P) = t(P)
t(P) = d(P) = d(P)

Compound Operations

For rotations in increments of 90º, only one operation, P, is needed.
Applying it twice results in rotation by 180º, and applying three times results in
rotation by 270º:

P = P
P = P

There also are relationships between rotations and flips. For example,
P = P

In fact, all the geometrical operations can be obtained by using just and
 or by using just , , and . For a discussion of these relationships, seeReference 2.

Although the relationships between the geometrical operations are inter-
esting, for pattern construction, it’s more convenient to have the whole set
available.
Concatenation

Concatenation is the adjoining (juxtaposition) of two patterns to form a
larger one. There are two forms of pattern concatenation: horizontal, in which
patterns are adjoined at their vertical edges, and vertical, in which patterns are
adjoined at their horizontal edges.

Horizontal and vertical concatenation are denoted by the symbols < and
, respectively.

In order for concatenation to be possible, the adjoining edges must be of the
same length:

For the horizontal concatenation of patterns P and Q, d(P) = d(Q).
For the vertical concatenation of patterns P and Q, t(P) = t(Q).

Figures 1.9. and 1.100 show examples of horizontal and vertical concat-
enation.

05 Jul 2006 G3: PatternOperations

318 Operations on Patterns

 P Q

P Q
Figure 1.9. Horizontal Concatenation

 P Q

P Q
Figure 1.10. Vertical Concatenation

Duplicate Edges

A potential design problem arises when the adjoining edges in concatena-
tion are the same, cell by cell. This produces a duplication at the boundary, which
may be undesirable for aesthetic and structural reasons. Therefore, if the
adjoining edges are the same, one edge is discarded. Figure 1.11 shows an
example.

05 Jul 2006 G3: PatternOperations

Operations on Patterns 319

 P Q

P Q
Figure 1.11. Concatenation with Duplicate Removal

Duplicate removal is automatic in concatenation of patterns. If duplicate
removal is not desired, the operations + and + can be used.

Figure 1.12 shows an example of horizontal concatenation without dupli-
cate removal.

P Q

P + Q
Figure 1.12 Concatenation Without Duplicate Removal

Note: Duplicate edges are removed only at adjoining boundaries. Any other
duplicate rows or columns are not affected.
Repetition and Extension

Repetition is a common way to extend a small pattern to make a larger one.
Repetition is a special case of concatenation.

Like concatenation, repetition can be horizontal or vertical. The notation P
 i to denotes the repetition of P horizontally i times. Similarly, the notation P
 i denotes the repetition of P vertically i times.

Figures 1.13 and 1.14 illustrate examples of these operations.

05 Jul 2006 G3: PatternOperations

320 Operations on Patterns

P

P 3
Figure 1.13. Horizontal Repetition

P

P 3
Figure 1.14. Vertical Repetition

Duplicate Edges

As in concatenation, duplicate edges at boundaries are discarded by the
repetition operations. Figure 1.15 shows an example.

05 Jul 2006 G3: PatternOperations

Operations on Patterns 321

P

P 4
Figure 1.15. Repetition With Duplicate Removal

Duplicate removal is automatic in the repetition of patterns. If duplicate
removal is not desired, the operations + and + can be used.

Figure 1.16 shows an example of horizontal repetition without duplicate
removal.

P

P 4
Figure 1.16. Concatenation Without Duplicate Removal

Note: Duplicate edges are removed only at adjoining boundaries. Any
other duplicate rows or columns are not affected.
Extension

Sometimes it is useful to extend a pattern by repetition to a width or height
that is not an even multiple of that dimension of the pattern. The operations P �
i and P � i extend P by repetition to a total of i columns and i rows, respectively.

Figures 1.17 and 1.18 show examples of extension.

05 Jul 2006 G3: PatternOperations

322 Operations on Patterns

P

P ����� 36
Figure 1.17. Horizontal Extension

P

P ����� 25
Figure 1.18. Vertical Extension

Note: If i is less that the dimension of the pattern in the given direction, the
pattern is truncated at the right or bottom, accordingly.

As with repetition, duplicate edges at the boundaries of patterns are
removed. The operations P �+ i and P �+ i do not remove duplicate edges.

05 Jul 2006 G3: PatternOperations

Operations on Patterns 323

Summary of Operations

t(P) width
d(P) height
m (P) number of cells
g(P) number of colors

P rotation by 90º
P rotation by 180º
P rotation by –90º
P horizontal flip
P vertical flip
P right flip
P left flip

horizontal concatenation
vertical concatenation

+ horizontal concatenation without duplicate removal
+ vertical concatenation without duplicate removal
 i horizontal repetition
 i vertical repetition

� i horizontal extension
� i vertical extension

+ i horizontal repetition without duplicate removal
+ i vertical repetition without duplicate removal

�+ i horizontal extension without duplicate removal
�+ i vertical extension without duplicate removal

[More to come, but not yet written.]

28 May 2006 G4: Tours

Pattern Tours
The patterns considered here are black and white and represented by a

rectangular grid of cells. Here is a typical pattern: [Redundant]

A sequence of cell locations is called a path. A path that includes every cell
of a grid exactly once is called a tour. The focus here is on tours. Here is an
example of a tour on the pattern shown above:

The green dot indicates the start of the tour and the red dot, the end.
The sequence of colors of the cells along a tour is called a band. Here is the

band for the example above:

A tour and the corresponding band completely characterize a pattern in the
sense that the tour and band can be used to construct the pattern.

28 May 2006 G4: Tours

358

The process of producing a band from a pattern and a tour on it is called
reading out the band. Conversely, given a blank grid, a tour, and a band, a pattern
can be constructed by reading in the band. A band read out according to one tour
and written in according to a different tour generally produces a different
pattern. For example, here is the pattern that results from reading in the band
show previously with the tour in reverse order:

Tours and bands can be constructed independently of any pattern. This
allows the possibility of constructing interesting and perhaps unexpected
patterns.

Here are three patterns produced by tours and bands created mathemati-
cally but independently.

28 May 2006 G4: Tours

359

These are just some results from the first experiments. They are by no means
the most interesting patterns that can be created by the methods described here.
Perspective

A tour serves to distribute the colors of the band over all cells in a grid.
The number of possible tours for all but trivially small grids is enormous.

If there are k cells, there are k possibilities for the first cell on the tour. This
eliminates one cell but leaves k – 1 possibilities for the second cell. Therefore the
number of possible tours for a grid of k cells is k × (k – 1) × (k – 2) × … 3 × 2 × 1 =
k! (k factorial). For an 8 × 8 grid, there are 64 cells and the number of possible tours

[Sidebar on factorials.]

28 May 2006 G4: Tours

360

is 64!, which is
126,886,932,185,884,164,103,433,389,335,161,
480,802,865,516,174,545,192,198,801,894,375,
214,704,230,400,000,000,000,000
[Sidebar here or elsewhere — or in in appendix — on immense numbers]
Obviously, tours must be chosen with some plan or concept in mind, for a

tour is the geometry from which the eventual pattern is crafted. A random tour
is extremely unlikely to produce attractive results.

The problem of tour design is complicated by the fact that it alone does not
determine the pattern; the band plays a strong role in the final result. This makes
tour design challenging and interesting.

There are certain things that can be looked for in tours. One is some kind of
pattern in the tour itself. A jumbled, chaotic tour, even if far from random, is
unlikely to produce attractive results unless the band is developed along with the
tour. This is possible — take any pattern and any tour, however disorganized,
and read out the band. This band, when read in by the tour, will reproduce the
original pattern. Some uses for tours and bands produced in this way are
described in a subsequent section, but the first concern is designing tours
independently of bands.

While designing tours and bands independently requires both the applica-
tion of some principles and some serendipity, it is the core of a process for getting
attractive and unusual patterns.

If tours are taken alone, their design needs to be guided so that the tours
themselves are attractive and interesting.
Tour Design

There are several properties to keep in mind when designing tours.
Symmetry: Symmetric designs are attractive to human beings (although no

one knows exactly why). Various kinds of symmetries are possible for tours.
Repetition: Repetition of a unit within a design can be useful in tours just as

it is in tilings, weaves, and other kinds of artistic constructions.
Variety: A little variety or an element of surprise can break an otherwise

monotonous design and be aesthetically pleasing.
Continuity: Since a tour is a path in the general sense, there is some value in

continuity. For example, the locations on a tour may be adjacent (their cells
sharing a side). There are various kinds of continuity and technical names for
them. The problem is discussed in another section in the context of constraints.

28 May 2006 G4: Tours

361

Tour Constraints
Constraints can be useful in design; they limit what is possible in a

systematic way that prevents accidental aberrations, and they provide for a
certain degree of regularity.

The kind of constraints here are local ones that allow tours to be built step-
by-step. Such constraints might limit the distance from one location on the tour
to the next or limit the possible directions in which the next location may lie.

The neighborhood concept from cellular automata [2] is a useful model for
this kind of constraint. For example, the von Neumann neighborhood looks like
this:

Viewed as a constraint, this neighborhood requires the location following
the central location to be one cell away, horizontally or vertically. Staying put is
not an option, since a location cannot appear twice in a tour. Locations that are
off the grid, when a cell is at an edge, obviously are excluded. Similarly, locations
that already are on the tour are forbidden.

We’ll call a tour constructed using this neighborhood a von Neumann tour.
Von Neumann tours have a special kind of continuity, called unicursal in graph
theory. Von Neumann tours also are planar, meaning there are no crossings on
a line drawn along the tour [?].

Here are examples of von Neumann tours:

28 May 2006 G4: Tours

362

The Moore neighborhood allows more freedom of movement:

28 May 2006 G4: Tours

363

Moore tours include von Neumann tours as a subset, but they allow
considerably more variety, including diagonal moves and non-planar tours.
Here are some examples of Moore tours that are not von Neumann tours:

The legal moves of chess pieces can be described as neighborhoods. For
example, the knight has the neighborhood

28 May 2006 G4: Tours

364

Note that the knight “jumps”; it cannot move to an adjacent cell.
Knight’s tours are sufficiently interesting and difficult to design that they

have occupied the attention of chess players and mathematicians for centuries.
Here is an example:

Neighborhoods provide constraints that limit the nature of tours. In
constructing tours using neighborhoods, there are, of course, choices. One thing
that can happen is getting into a situation in which no further move is possible.
There are ways of dealing with this problem, which we’ll discuss in a later
section.
Tour Classification

Tours can be classified roughly according to the methods by which they can
be constructed and places they can be found. In many cases, a tour will fit into
more than one category, depending on how it is created or viewed.

28 May 2006 G4: Tours

365

Algorithmic Tours: These tours are constructed according to a fixed set of
rules applied in a well-defined fashion. An example of an algorithmic tour is a
square spiral:

Note that this also is a von Neumann tour.
The geometry of this kind of tour is obvious, as are possible variations on

it. You might find it illuminating to devise an algorithm that produces square-
spiral tours.

Neighborhood-Constrained Tours: These tours are discussed above. They
come in great variety and will be the subject of subsequent articles.

Numerically Derived Tours: These tours are derived from numerical prob-
lems and puzzles that are not directly related to tours but that nonetheless can
be interpreted as tours. An example is this tour derived from a magic square, in
which the sums of the rows, columns, and main diagonals are all equal:

28 May 2006 G4: Tours

366

Miscellaneous: There is the inevitable “other” category containing tours that
do not fit elsewhere. Here is an example of a tour that was constructed by hand:

More Terminology
There are a few other terms related to tours that are important in some

contexts:
Re-Entrant Tours: A tour whose last location is within a legal move of its first

location is called re-entrant. An example of a re-entrant von Neumann tour is:

28 May 2006 G4: Tours

367

Here is an example of a re-entrant knight’s tour:

Piece-Wise Tours: A piece-wise tour is one composed of parts that satisfy
some condition, but the whole does not. Here is an example of a piece-wise
Moore tour:

28 May 2006 G4: Tours

368

Such tours can be made into regular tours by connecting the end of one
piece to the beginning of the other, but it often is more useful to view the parts
independently.

Incomplete Tours: A path that does not include every location in a grid is
called incomplete or open. Incomplete tours can be used for components of piece-
wise tours or alone in some applications.

Overtours: A path that includes a location more that once is called an
overtour. Overtours also have their applications, which are discussed in another
article. [Watch references to non-existent sections, which if not written, should
be turned into subjects for further study.]
Graphical Representations

In order to deal with tours, both representations for understanding them
and representations for creating and manipulating them are needed.

So far pattern tours have been represented by lines drawn though the cells
in the order of traversal. The beginning of a tour was shown in red and the end
in green for two reasons: for ease in identifying these important locations and for
establishing the direction of transversal.

This method works well for many tours in giving an overall impression of
their geometries. Here is an example:

28 May 2006 G4: Tours

369

Grid lines may help identify specific locations:

If, however, the tour is non-planar, line crossings may make the tour
difficult to follow. And if the tour is chaotic and has many criss-crossing jumps,
such a graphic representation may be a useless jumble:

28 May 2006 G4: Tours

370

This representation also is ambiguous. There is no way to tell if a line
through several cells includes all the cells on the line or jumps over some.

An alternative graphical method is to dispense with the lines and assign
numbers to the cells that specify the order of traversal. Again, the ends can be
highlighted by colors:

This numerical representation has the virtue of being precise and unam-
biguous. It may be difficult, however, to locate successive cells on a tour.

An alternative that is sometimes used is to overlay the line and numbered
grid representations as in:

28 May 2006 G4: Tours

371

Except for small, simple tours, the result may be worse than either of the
two forms separately. Both numbered grids and line drawings in situations are
needed where a clear understanding of a tour is required. An example is:

Data Representations
In order to write procedures for manipulating tours, data representations

that a computer program can use are necessary. These are very different from the
graphical representations that human beings find easy to understand.
Coordinate Lists

One data representation of a tour as a list of cell locations. For this, A
systematic way of identifying locations on a grid is needed.

[Duplicates material given elsewhere.]
The dimensions of a grid in cells are given by two numbers, w for the width

in cells and h:

28 May 2006 G4: Tours

372

Rows and columns are numbered as indicated. The location of a cell is given
by its coordinates, which is a pair (i, j) in which i is the column number of the cell
and j is the row number of the cell. For example, in

the coordinates of the red cell are (2, 3) and the coordinates of the green cell are
(5, 6).

A tour then can be represented by a list of coordinates in the order of
traversal. For example, the tour

has the coordinate list

28 May 2006 G4: Tours

373

(1, 3), (1, 2), (1, 1), (2, 1), (2, 2), (3, 2), (3, 1),
(4, 1), (4, 2), (5, 2), (5, 1), (6, 1), (6, 2), (7, 2),
(7, 1), (8, 1), (8, 2), (8, 3), (7, 3), (6, 3), (5, 3),
(4, 3), (3, 3), (2, 3)

To apply a band to a tour represented by a coordinate list, it is only
necessary to pair the coordinate list with the band and place the colors of the
band, in order, at the designated succession of locations. For example, reducing
the type size of the coordinate list for the tour above and drawing a band below
it provide a complete specification for a pattern:
(1,3),(1,2),(1,1),(2,1),(2,2),(3,2),(3,1),(4,1),(4,2),(5,2),(5,1),(6,1),(6,2),(7,2),(7,1),(8,1),(8,2),
 (8,3),(7,3),(6,3),(5,3),(4,3),(3,3),(2,3)

The resulting pattern is:

Navigational Representations
Methods for describing tours, which are particularly useful in some con-

structing some kinds of tours, use navigation rather than specific coordinates.
For von Neumann paths, a list of compass points that specify the direction

of one cell to the next is sufficient. Given the neighborhood labels in terms of
compass points, as in

28 May 2006 G4: Tours

374

the cell following C can be indicated by a letter that corresponds to the direction
of movement. For example, for the tour

the sequence of directional moves is given by the string of letters
NNESENESENESENESSWWWWWW

Such a string and the location of the starting cell completely characterize
von Neumann tours and in a much more compact way than coordinate lists.

As given above, direction strings are limited to von Neumann tours. There
is, for example, no way to specify a diagonal move. The concept of direction
string could be extended to include Moore tours by adding letters for the
diagonal moves. A more general method, that can be used for all tours, is to
provide a way for specifying passing over cells without including them on the
tour. We’ll use lowercase letters for this: nesw in addition to NESW. For
example, the Moore tour

is described by the direction string

28 May 2006 G4: Tours

375

EsWEeNEEsWEeNEEsWEeNEsWES
WWWWWWW

Of course sW is equivalent to wS, and so on.
Using this navigational method, it is not necessary to specify the starting

cell. Assuming the string starts at the upper-left corner, the first location on the
tour can be reached by a string of nesw moves at the beginning.

Although this method is completely general, it is cumbersome for tours in
which there are long jumps.

In cases of specialized neighborhoods, such as the knight’s, a customized
navigational system can be used. Here’s the knight’ neighborhood with the cells
that can be reached lettered clockwise around the knight:

For this fragmentary tour

the navigational string is DBGDGB.
There are many possible navigational alternatives to these kinds of naviga-

tional strings. An attractive one is to use L-System notation in which the symbols
used are interpreted to draw images [3]. Adapted to describing tours, these
symbols are:

28 May 2006 G4: Tours

376

F move forward, including cell on tour
f move forward, not including cell on tour
+ turn right 90º
– turn left 90º

The initial direction is east and that the starting point is the upper-left corner.
For example, the von Neumann tour shown earlier:

can be represented by the L-System string
 +ffFF+F+F–F–F+F–F–F+F–F–F+FF+FFFFFF

The initial +ff gets to the first location on the tour.
The Moore tour shown earlier

can be represented by
F+f+Ff–F+f+Ff–F+f+F+f–F+f+F++F+
fFFFFFF

Again, diagonal moves can be represented in different ways. For example,
f–F produces the same result as–fF.

An advantage of using the L-System method is that there is a large body of
knowledge associated with them. And this material includes some interesting
tours.

03 Apr 2006 G5: GridOverlays

Grid Overlay Patterns

In his book, A New Kind of Science, Stephen Wolfram describes a system
for constructing patterns by overlaying grid of cells with increasing separation.

The basic scheme uses grids of black cells separated by rows and columns
of white cells. In the first grid, the black cells are separated by single columns and
rows of white cells. In the next grid, the separation is by two columns and rows,
then three, and so on:

 …

If these grids are overlaid so that black cells show through (logical or if black
represents true and white false [2]), the result looks like this:

For larger grids, the results are even more intricate:

03 Apr 2006 G5: GridOverlays

2

While these patterns are not suitable a drawdowns in toto because of floats,
portions of them are.

There are many possible generalizations to the basic scheme described
above. Here are a few:

• using a motif more complicated than a single black cell
• using different motifs for successive grids
• varying the horizontal and vertical separations between the motifs in

various ways
• combining successive overlays in different ways, not just with logical or

One version of a generalized system is based on sequences that apply to
successive grids:

• motifs
• width separations
• height separations
• logical combination operations

The basic system described at the beginning of this article is characterized
by the sequences

motifs: �, �, �, �, �, …
width: 1, 2, 3, 4, 5, …
height: 1, 2, 3, 4, 5, …
operations: +, +, +, +, +, …

As usually happens with such generalizations, there is a vast (in fact,
infinite) number of possibilities. With some exploration, it may become clear
what kinds of possibilities lead to interesting results.

One way to start is to depart from the basic scheme one way at a time. For
example, if a different motif is used, but only one, as in

motifs: ��, ��, ��, ��, ��, …
the result is:

03 Apr 2006 G5: GridOverlays

3

Another simple change is to use prime numbers for the separations:
width: 2, 3, 5, 7, 11, …
height: 2, 3, 5, 7, 11, …

the result is:

Changing the operation to exclusive or, �, so that
operations: �, �, �, �, �, …

produces

All the changes so far are simple and uniform. Here’s one that is a bit more
complex:

03 Apr 2006 G5: GridOverlays

4

motifs: �, ��, ���, ��, �, …
where the sequence of motifs shown is repeated. The result is:

Exercises and Areas for Further Study

What happens if some of these variations are tried in combination? What
if they are more varied and complex? Are there schemes that produce results that
are more interesting than other schemes?

01 Jun 2006 G6: LinePatterns

Line-Based Patterns
The term line is used to cover both rows and columns of grid-plot

patterns. Grid plots are shown in row order, but columns and rows are equiva-
lent for the subject here.

As such, a line can be represented by a binary sequence of 0s and 1s
corresponding to white and black grid cells, respectively. For example, the fifth
row in the following pattern has the line sequence 01000000.

Many interesting and important weave structures can be made from
patterns in which one line serves as a basis line and each subsequent line is
derived from the previous line by the application of a transformation rule. Such
patterns are called line-based patterns.

For example, in twills, each line after the basis line is produced by a cyclic
permutation by one of the preceding line:

Transformation Rules
Transformation rules can be of many kinds. The simplest ones are

cyclic permutation
reversal
complementation (exchange of 0s and 1s)

and combinations of these.
For example, given the line

00111011
its cyclic permutation by 3 is

01100111
Positive values are to the right, negative values to the left. Positive values are
sufficient, since there is always a positive value that produces the same results
as a negative one. For example, –3 for the line above is equivalent to 5.

01 Jun 2006 G6: LinePatterns

242

The reversal of the given line is
11011100

and its complement is
00100011

Binary Indices
The binary index of a line is the decimal equivalent of the line considered

as a binary number.
For example, the binary index for 00111011 is 59.
The combination of a line’s length and binary index uniquely characterizes

the line. The line length is needed because leading zeros are lost in computing
binary indices. For example, 00111011, 111011, and 000000111011 have the same
binary index.

The line at the beginning of this section is uniquely identified by 8:59; length
8, binary index 59.
Design-Equivalent Patterns

Various transformations of a pattern are design equivalent in the sense that
they can be derived from each other by simple transformations [1]: rotation in 90º
increments, flips (horizontal, vertical, and around the diagonals), cyclic permu-
tation of rows or columns, complementation, and any combination of these.

Patterns with repeats also are design equivalent to their unit patterns.
[definition?]
Design-Equivalent Basis Lines

For line-based patterns, several different basis lines can produce design-
equivalent patterns, which are essentially redundant and need to be avoided. A
fundamental basis line needs to be selected from the alternatives.

The transformation rules listed above are the ones that produce design-
equivalent lines.

Given a line, its basis line can be obtained by applying the transformation
in all possible ways and selecting the one with the smallest binary index.

Here is an example of how this can be done. Consider this line
11101100

Its cyclic permutations are

01 Jun 2006 G6: LinePatterns

243

01110110
00111011
10011101
11001110
01100111
10110011
11011001

The one with the smallest binary index is the second, 00111011. (This can be
determined by inspection without having to produce all the permutations. For
very long lines, the permutations can be sorted as numbers to find the one with
the smallest binary index.)

The chosen line now is the basis for applying other transformation. It is not
necessary to do this for all the permutations: The results would be the same.

The next transformation is reversal, which produces
11011100

Taking the permutations and selecting the one with the smallest binary index
produces

00110111
Since its binary index is smaller than the one for the permutations of the

original line, it’s the one to which the next transformation, complementation, is
applied:

11001000
The cyclic permutation of this line that gives the smallest binary index is

00011001
The final transformation is to reverse it to give

10011000
Its cyclic permutation with the smallest binary index is

00010011
so this is the one to use for the basis line. This is the fundamental basis line and
has the unique identification 8:19.

For what it’s worth, the binary index of the original line is 236.

01 Jun 2006 G6: LinePatterns

244

The Number of Fundamental Basis Lines
Here is a list of the number of fundamental basis lines up to n = 16:

n lines
2 1
3 1
4 2
5 3
6 5
7 8
8 14
9 21
10 39
11 62
12 112
13 189
14 352
15 607
16 1144

Soundness
There is no guarantee that line-based patterns will produce interlacements

that “hang together” if drafted by the conventional draw-up techniques [2].
This issue must be addressed separately.

Shift Patterns
The simplest kind of line-based pattern involves successive cyclic permu-

tations (shifts) by a fixed amount. Twills, with a shift of 1, are the most familiar
of these patterns:

For a basis line of length n, all shifts from 1 to n–1 produce patterns (shifts
of 0 and n simply repeat the basis line), but it is not necessary to consider all these
shifts.

01 Jun 2006 G6: LinePatterns

245

A shift of 1 can be omitted, since the result is a twill and well known. Shifts
that are greater than (n–1)/2 produce patterns that are design-equivalent [1] to
those for shifts that are less than or equal to (n–1)/2.

Finally to get square n × n patterns, a shift must be relatively prime to n; that
is no number other than 1 (and n) must evenly divide n and the shift. Otherwise
the vertical repeat will be less than n. While such patterns have potential interest,
the focus here is on n×n patterns. Note that for n prime, all shifts are relatively
prime to n. [sidebar? reference?]

Here is a list of shifts up to n = 16 that meet the requirements above:
n shifts number
2 0
3 0
4 0
5 2 1
6 0
7 2, 3 2
8 3 2
9 2, 4 2
10 3 1
11 2, 3, 4, 5 4
12 5 1
13 2, 3, 4, 5, 6 5
14 3, 5 3
15 2, 4, 7 3
16 3, 5, 7 3
Note that there are no shift patterns for n = 6 (as is the case for satins, and

for the same reason).
Combining the number of basic lines with the information on shifts gives

the number of shift patterns:
n patterns
2 0
3 0
4 0
5 3

01 Jun 2006 G6: LinePatterns

246

6 0
7 16
8 28
9 42
10 39
11 248
12 112
13 945
14 704
15 1821
16 3432
As a final note, all the shift patterns that meet the criteria above produce

structurally sound interlacements if drawn up in the conventional manner —
they “hang together” [2].

Here are some examples of sift patterns: [The layout needs to be fixed.]

01 Jun 2006 G6: LinePatterns

247

27 Jun 2006 G7: PantacticSquares

141

Pantactic Squares

The material that follows in based on a paper in a mathematical journal and
a Web page [1-2].

A 5×5 pantactic square is a 5×5 two-color grid pattern in which every 2×2
subpattern is different.

There are 24 = 16 2×2 patterns:

0 1 2 3 4 5 6 7

8 9 A B C D E F

The identifying labels are obtained by following the rows left to right,
taking white cells to be 0 and black cells to be 1. The resulting binary number is
converted to hexadecimal.

Here is an example of a 5×5 pantactic square:

The 2×2 subpatterns from left to right, top to bottom are:
DB247E81FA05C936. This string uniquely identifies this pantactic square,
although there are more concise ways of doing this.

Although there are 225 = 33,554,432 5×5 two-color grid patterns, there are
only 800 essentially different 5×5 pantactic squares. These 800 squares can be
grouped into 16 categories according to common structural properties.
Properties of 5×××××5 Pantactic Squares

5×5 pantactic squares have some surprising properties, especially lack of
symmetry. While many patterns are the same after some kind of rotation or
refection, 5×5 pantactic squares are not: No combination of rotations, reflection,
(horizontal, vertical, or diagonal), or color inversion of a 5×5 pantactic square
produces the same 5×5 pantactic square.

Another property of 5×5 pantactic squares is a limitation of connected paths
they can contain. A connected path in a grid pattern is a sequence of cells of the
same color, all of which share an edge. For example, in

27 Jun 2006 G7: PantacticSquares

142 Running Head

the black cells form a connected path, while in

they do not, because in two places they connect only at corners.
A 5×5 pantactic square cannot have a connected path that reaches from one

edge to the opposite one.
A connected block is a collection of cells of the same color in which the cells

share edges. An example of a connected block is

The maximum number of connected cells in a connected block in a 5×5
pantactic square is eight.

There are 50 essentially different basic blocks in 5×5 pantactic squares. Here
are four of them:

Pantactic Patterns

Some basic blocks can be arranged in ways that form repeating patterns of
arbitrarily large size, all of whose 5×5 subpatterns are pantactic squares. Two
examples are:

27 Jun 2006 G7: PantacticSquares

Running Head 143

The arrangement here is a regular tiling.

The arrangement here is a tiling with a three-row offset.
Generalizations

There are other questions to be addressed. The literature on pantactic
squares seems to be limited to 5×5 ones. Are there larger ones? Are there non-
square pantactic designs? What about more than two colors?

10 Jun 2006 H1: Introduction

Introduction

Sequences play a central role in drafting: the threading, the treadling,
and warp and weft color sequences.

Since shafts and treadles are numbered, integer sequences from math-
ematics fit in naturally. Numbers can be associated with colors, as in black = 1,
white = 2, red = 3, and so on.

Why integer sequences with mathematical origins? Because they abound
in patterns — some of the most beautiful and intricate patterns known.

This chapter explores a number of integer sequences and shows some
kinds of weave structures that can be found in them. Some of the integers
sequences explored here are simple and well known, like squares, cubes, and so
on. Some are esoteric and whose origin are too deep to explain here.

Perhaps the most fascinating sequences of all are fractal sequences. Since
they are just sequences, their beauty is hidden, unlike the spectacular color
fractal images we are used to seeing. But the beauty is there — to be discovered.

This chapter make no attempt at comprehensive coverage — that would,
in fact, be impossible. It merely suggests — both on how integer sequences can
be used in weave design and where to look for other promising sequences.

24 Jun 2006 H2: ResidueSequences

97

Residue Sequences

I don’t like nonrepeating decimals. Pi makes me furious.
 — Don DeLillo, Ratner’s Star

Introduction

Most integer sequences that come to mind — such as the integers, the
squares, the cubes, the Fibonacci numbers, and the primes — have terms that get
larger and larger.

For most design purposes, values need to be limited to a fixed range, such
as the number of shafts or treadles available.

The most natural way to bring an integer sequence into a fixed range is to
use modular arithmetic — to use the remainders or residues* of the terms on
division by a specified modulus.

For example, the sequence of the cubes
 1, 8, 27, 64, 125, 216, 343, 512, 729, 1000, 1331,
 1728, 2197, 2744, 3375, 4096, 4913, 5832, 6859, …
has the following residue sequence mod 10:
 1, 8, 7, 4, 5, 6, 3, 2, 9, 0, 1, 8, 7, 4, 5, 6, 3, 2, …
Periodicity

In addition to bringing sequences into fixed ranges, residues often reveal
underlying patterns. The most distinctive pattern is periodicity, in which a fixed
number of terms repeats indefinitely. For example, the residue sequence for the
cubes mod 10 has period 10 with the repeat:
 1, 8, 7, 4, 5, 6, 3, 2, 9, 0
(The fact that the modulus and the period are the same in this case is not a
coincidence, but this relationship does not hold in general.)

Some residue sequences have pre-periodic parts before the period begins.
An example is the sequence of digits in the decimal expansion of

1/77760
which has the pre-periodic part
 0, 0, 0, 0, 1, 2
before settling down to the repeat

24 Jun 2006 H2: ResidueSequences

98 Residue Sequences

 8, 6, 0, 0, 8, 2, 3, 0, 4, 5, 2, 6, 7, 4, 8, 9, 7, 1, 1, 9,
 3, 4, 1, 5, 6, 3, 7

Periodic sequences without pre-periodic parts are called purely periodic.
Although many residue sequences are periodic, some are not. For example,

residue sequences for the primes are not periodic for any modulus greater than
2. Other residue sequences are periodic only for certain moduli. Furthermore,
some residue sequences appear to the eye to be periodic but are not. Examples
are the residues of the two Wythoff sequences [1]:

an = n ×� �q lower
an = n ×� �q2 upper

where q is the golden ratio, 1.6180339887 ... and x� � is the floor of x, the largest
integer less than or equal to x.

For example, the residue sequence for the lower Wythoff sequence mod 8
is:
 1, 3, 4, 6, 0, 1, 3, 4, 6, 0, 1, 3, 5, 6, 0, 1, 3, 5, 6, 0, 1,
 3, 5, 6, 0, 2, 3, 5, 6, 0, 2, 3, 5, 7, 0, 2, 3, 5, 7, 0, …
Repeating Patterns

The concept of pattern is familiar to everyone, but a precise meaning is
elusive and often depends on context. Nonetheless, our intuitive concept of
pattern serves fairly well in practice. We see repetition, as in a periodic sequence,
as a pattern. We recognize various symmetries as patterns. And, in general, we
perceive order as different from chaos. Of course, not all patterns are attractive.

With effort, we can detect patterns in relatively short sequences of integers,
but patterns are much easier to detect if the integers are shown by magnitude,
as in grid plots. Here are some grid plots of residue sequences in which the
bottom row is 0 and the top row is the modulus minus 1.

Cubes Mod 10

Fibonacci Numbers Mod 10

I’m inclined to leave
the ”we“ approach
below intact. What do
you think?

24 Jun 2006 H2: ResidueSequences

Resodie Sequences 99

Lower Wythoff Sequence Mod 8

Upper Wythoff Sequence Mod 8
Periodic Residue Sequences

Although some non-periodic residue sequences have interesting patterns
and hence offer design possibilities, most of the interesting questions involve
periodic residue sequences:

• What kinds of sequences yield periodic residue sequences?
• What are their periods for different moduli?
• What residues are present?
• How are the residues distributed?

Although there is no comprehensive answer to the first question, there are
some classes of sequences that have periodic residue sequences for all moduli:

• Linear recurrences with constant coefficients, in which each term is
expressed as a linear combination of previous terms:

 an = c1 × an –1 + c2 × an –2 + … + ck × an–k
The Fibonacci sequence is an example:
 a1 = a2 = 1
 an = an–1 + an–2 n > 2

• The denominators of continued fraction expansions of quadratic irrationals,
such as

23 4 1
1 1

3 1
1 1

8 1
1 1

3 1
1 1

8 1
1

= +

+

+

+

+

+

+

+

+
+ …

24 Jun 2006 H2: ResidueSequences

100 Residue Sequences

whose denominator sequence has the repeat
1, 3, 1, 8.

• The digits of the fractional parts of decimal (and other base) expansions of
rational numbers, such as

 fract(2/7) = .285714285714285714 …
 which has the repeat 2, 8, 5, 7, 1, 4.
There are, of course, many others, but the ones above have been extensively

studied and offer endless possibilities.
Even if a residue sequence is known to be periodic, predicting (as opposed

to discovering) its period may be difficult and there are many open questions in
this area.

The period often depends on the factors of the modulus. For example, the
maximum period for Fibonacci residue sequences is 6 × m, where m is the
modulus. This maximum is achieved only for moduli of the form

m = 2 × 5n n > 0
That is, m = 10, 50, 250, …

A quick glance at a few residue sequences shows that in many cases not all
residues are present and that some residues occur more often than others. This
has design implications, but this matter has not been studied in any detail.
Computing Residue Sequences

Computing residue sequences by hand is tedious and prone to error. One
problem with computing residues of a sequence is that the values in many
sequences get large very quickly. For example, the Fibonacci sequence, which
starts out innocuously as 1, 1, 2, 3, 5, 8, … quickly gets out of hand — the forty-
seventh term is 2,971,215,073.

Most hand-held calculators work with floating point numbers, not inte-
gers. Some more sophisticated calculators can perform integer operations,
including computing residues, but such calculators have so many other “more
important” features that it may be hard, short of buying one, to find out if a
particular calculator computes residues. And, while large integers can be done
by hand with enough care and patience, calculators have limits on the sizes of
integers they can handle.

If you are a programmer, it’s easy to write a program to compute residues
— most programming languages include a remainder operation in their reper-
toire of integer arithmetic. However, the size of integers is again a problem, and
worse, a program may give the wrong answer for an integer larger than the

24 Jun 2006 H2: ResidueSequences

Resodie Sequences 101

programming language handles properly. For example, the forty-seventh term
in the Fibonacci sequence given above exceeds the word size for a 32-bit
computer and some programming languages, including C, don’t check for
arithmetic overflow. Some programming languages, on the other hand, can
handle arbitrarily large integers; if you’re conversant with one, computing
residue sequences is a snap.

All this aside, if a sequence can be formulated as a recurrence (and many
can, even if how to do it is not obvious), large integers can be avoided altogether
by not first computing the sequence and then getting the residues, but rather by
computing the residue sequence directly.

This is possible because
 (a + b) mod m =((a mod m) + (b mod m)) mod m
 (a – b) mod m = ((a mod m) – (b mod m)) mod m
 (a × b) mod m = ((a mod m) × (b mod m)) mod m
This kind of relationship does not hold, in general, for cancellation of common
factors (division). That’s an interesting subject but not important here.

What all this means is that residues often can be computed on the fly. For
example, Fibonacci residue sequences can be computed by

an = (an–1 + an–2) mod m
The residue is taken at each step. Consequently intermediate values never
exceed 2 × (m –1).
Residue Sequences in Weave Design

Residues can be used in several ways in weave design. The emphasis here
is in their use in designing threading and treadling sequences.

Since residue sequences work on a 0-based system, while shafts and
treadles are numbered from 1, it is necessary to convert residue sequences to a
1-based system. All that’s needed is to change all 0 values to m, where m is the
modulus. To convert 0-based remainders to 1-based residues, add m to values less
than 1 and leave the rest unchanged. Since residues are not negative, the two
rules amount to the same thing. See Reference 2 for an explanation.

If a residue sequence is periodic, the repeat can be used as a threading or
treadling unit. If a residue sequence has a pre-periodic part, that part can be
discarded — or used in a variety of ways. If a residue sequence is not periodic,
a portion of it can be used.

Where not all residues are present, it may be useful to “fill in” the gaps by
moving others into vacant spaces. While this is not necessary if there are enough
shafts or treadles without it, it makes clear the resources required and may make

24 Jun 2006 H2: ResidueSequences

102 Residue Sequences

patterns easier to see.
The attached appendix [Note referenced "appendix".] shows the periods of

the Fibonacci residue sequences for moduli from 4 through 16, both in their
natural form and with duplicates removed and higher values moved down to fill
in for missing residues.

Another approach to design using residue sequences is to use the values as
“pivots” connected by alternating ascending and descending straight draws.
Thus, the Fibonacci sequence mod 7, which has period 16,

shifted to a 1-based system with duplicates removed, produces the pivot
sequence

which has period 40.
Note that when pivot values increase or decrease in succession, the inter-

mediate values are passed over — only alternating high and low values count.
Examples

A Fibonacci Threading

The first example used a repeat of the Fibonacci residue sequence for
modulus 15, reflected to create a palindrome, as a threading unit. The weave is
treadled as drawn in using a tabby tie-up.

The repeat is 74. Here’s the draft:

24 Jun 2006 H2: ResidueSequences

Resodie Sequences 103

A Wythoff Point Twill

The second example uses 37 terms of the upper Wythoff sequence mod 9 to
provide pivots for the threading and then reflected it to form a palindrome.
Again, the treadling is as drawn in, with a /2/1/1/2/2/1 twill tie-up.

The repeat is 264. Here’s part of the draft:

24 Jun 2006 H2: ResidueSequences

104 Residue Sequences

A reduced drawdown repeat for the entire draft is shown on the last page
of this section.
Exercises and Further Explorations

There are so many areas to explore that it’s hard to even know how to list
them.

There is, of course, no end to interesting residue sequences. In addition,
there are many ways to combine and transform residue sequences to produce
new ones.

More interesting, perhaps, are the various ways residue sequences can be
used in weave design. So far, only their direct use for threading and treadling
sequences and a derivative use in pivot draws have been presented. Other
possibilities are:

• other derivative uses for designing threading and treadling sequences
• various uses related to profile drafting [3, 4]
• binary (mod 2) residue sequences for designing tie-ups
• binary residue sequences for designing drawdowns
• color selection

What else?

24 Jun 2006 H2: ResidueSequences

Resodie Sequences 105

Reduced Drawdown Repeat for the Wythoff Point Twill

27 Mar 2006 H3: RecurrenceRelations

Recurrence Relations

A recurrence relation gives the terms of a sequence as a function of previous
terms. For example, the Fibonacci sequence is given by the recurrence

an = an–1 + an–2
with the initial terms a1 = a2 = 1 to get the sequence started. Different initial terms
produce different but related sequences.

The number of initial terms required is determined by how far back in the
sequence terms are specified — called the order of the recurrence relation. For
example,

an = an–1 + 2an–3
is a recurrence relation of order 3 and requires three initial terms, a1, a2, and a3,
to specify the sequence it produces.

The examples given above are linear recurrence relations with constant
coefficients — LRRCs for short — and are instances of the general form

an = c1an –1 + c2an –2 + … + ckan –k (1)
where only the first powers of previous terms are used and the coefficients are
constant.

There are other kinds of recurrence relations. For example,
an = a2

n–1 + a2
n–2 + an –4

is a quadratic recurrence of order 4, while
an = an–1 + nan–2

is a linear recurrence of order 2 but with a non-constant coefficient.
LRRCs are important in subjects including pseudo-random number gen-

eration, circuit design, and cryptography, and they have been studied exten-
sively. LRRCs also have periodic residue sequences [1]. Despite the importance
of LRRCs and the work done on them, much about them remains unknown.
Very little of a general nature is known about nonlinear recurrence relations..
LRRCs

LRRC Canonical Form

Equation 1 above shows the canonical form for LRRCs. This form does not
provide for a constant term, as in

27 Mar 2006 H3: RecurrenceRelations

122

an = an–1 + 1
The reason for not having a constant term in the canonical form has to do

with manipulations of LRRCs in which a constant term would require special
handling.

A linear recurrence of order k with a constant term can be converted to a
linear recurrence of order k + 1 in canonical form. Consider the example above:

an = an–1 + 1 (2)
From this it follows that

an–1 = an–2 + 1 (3)
Subtracting Equation 3 from Equation 2,

an – an–1 = an–1 + 1 – an–2 – 1
and hence

an = 2an–1 – an–2
which is in the required canonical form.
Problems Related to LRRCs

There are many interesting problems related to LRRCs. The article on
residue sequences touched on the properties of their residue sequences. Other
problems of interest are:

• computing the sequence for an LRRC
• determining if a sequence can be represented by an LRRC and, if so, finding

it
• solving an LRRC to produce an explicit formula for its nth term

An LRRC Generator

An LRRC can be completely characterized by two lists: one containing its
coefficients and another containing its initial terms. For an LRRC of order k, both
lists are of length k. For example, the recurrence relation

an = an–1 + 2an–3
has the coefficient list [1, 0, 2]; the initials list, as always, determines the actual
sequence. For example, the initials list [1,1,0] produces the sequence

1, 1, 0, 2, 4, 4, 8, 16, 24, 40, 72, 120, …

27 Mar 2006 H3: RecurrenceRelations

123

Finding LRRCs

Many sequences can be represented by LRRCs, even if the recurrences are
not obvious.

The difference method often works and it can be done by hand or with a
simple program [2]. This method starts with a row containing the terms of the
original sequence. The second row consists of the differences of successive terms
in the first row, and so on. The rows are labeled 60, 61, 62, … . Here’s an example:

60 1 7 18 34 55 81 112 148 189 …
61 6 11 16 21 26 31 36 41 …
62 5 5 5 5 5 5 5 …
63 0 0 0 0 0 0 …

If a constant row appears, as it does in this example, the process is complete,
there is an LRRC, and it can be obtained by using Equation 4 below, which is a
consequence of the way the differences are computed:

(4)

where i is the binomial coefficient

i
k k

k i i() =
<

!
()! !

To get an LRRC in canonical form, it is necessary to go to a row of zeroes;
63 in this case. Therefore, by Equation 4

Expanding this,

03 13 23 333 2 1 0() < () + () < () =+ + +a a a an n n n

and hence
a a a an n n n+ + +< + < =3 2 13 3 0

from which the LRRC follows
a a a an n n n= < +< < <3 31 2 3

The initial terms are, of course, the first three in 60.

27 Mar 2006 H3: RecurrenceRelations

124

Any recurrence derived from a finite number of terms is, of course,
conjectural.
Explicit Formulas for LRRC Terms

Any sequence that leads to a 0 6 sequence can be represented by a
polynomial in n. Conversely, all polynomials in n can be represented by a single
LRRC; the coefficients of the polynomial only affect the initial terms for the
LRRC.

This follows from another equation that results from the method of differ-
ences:

a an m k

n k
mk

n
+

=

= ()-
0

6 (5)
From this, an explicit formula for the nth term of the corresponding LRRC

can be obtained Setting m to 1 in Equation 5 gives
an

n n n n
+ = ()+ ()+ ()+ ()1 1 6 5 00 1 2 3

(1, 6, 5, and 0 are the leading terms in 60, 61, 62, and 63.) This evaluates to
a n nn+ = + +1

21 7
2

5
2

Needs explanation.

24 Mar 2006 H4: FractalSequences

Fractal Sequences

Infinity is where things happen that don't.
 — S. Knight

Ever since Benoit Mandelbrot published his book on fractals [1], we’ve
become accustomed to seeing fantastic and beautiful fractal images such as the
ones at the bottom of the pages of this article.

A fractal is a mathematical object that exhibits self similarity — it looks the
same at any scale. If you zoom in on an image of a fractal, you see the same
structure no matter how far you go, at least to the resolution of the image. In an
actual fractal, there is no limit.

Fractal Sequences

In the case of sequences, a fractal sequence contains an infinite number of
copies of itself, embedded within itself, as strange as this may seem.

The idea can be shown by the sequence
 1, 2, 1, 3, 2, 1, 4, 3, 2, 1, 5, 4, 3, 2, 1, 6, 5, 4, …

Striking out the first instance of every value,
 1, 2, 1, 3, 2, 1, 4, 3, 2, 1, 5, 4, 3, 2, 1, 6, 5, 4, …
 ?

 1, 2, 1, 3, 2, 1, 4, 3, 2, 1, 5, 4, …
 ?

 1, 2, 1, 3, 2, 1, 4, 3, 2, 1, 5, 4, …
which is the same as the original sequence, as far
as it goes. Of course, we can’t show the complete
sequence — it is infinite — for this you have to

have faith.
Rules that re-

move the values in
fractal sequences to
show their self simi-
larity are called
fractal decimation
rules.

This article reminds me that there
is a “gallery” proposed for the
book. It would be good to keep a
list of candidates. Any volunteers?

24 Mar 2006 H4: FractalSequences

112

Bounded Fractal Sequences

The Morse-Thue sequence [2] is a binary fractal sequence, consisting only
of 0s and 1s:

0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, …
For this sequence, striking out even-numbered values leaves the original

sequence:
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, …

 ?

0, 1, 1, 0, 1, 0, 0, 1, …
 ?

0, 1, 1, 0, 1, 0, 0, 1, …
The Morse-Thue sequence can be generalized to include more different

values. The three-valued Morse-Thue sequence is
 0, 1, 2, 1, 2, 0, 2, 0, 1, 1, 2, 0, 2, 0, 1, 0, 1, …

and the four-valued Morse-Thue sequence is
 0, 1, 2, 3, 1 ,2, 3, 0, 2, 3, 0, 1, 3, 0, 1, 2, 1, …
Generalized Morse-Thue sequences also are fractal sequences. Can you

find decimation rules that show their self similarity?
Another binary fractal sequence is the rabbit sequence [3]:
 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, …
To show that this sequence is self-similar, underline 1, 0 pairs, replace them

by 1s, and replace non-underlined 1s by 0s:
 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, …
 ?

 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, …

Image placement is a problem for
this article. I've not tried to ad-
dress it yet.

24 Mar 2006 H4: FractalSequences

113

 ?

 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, …
Again, this is the original sequence.
Unbounded Fractal Sequences

Many fractal sequences increase without bounds. Examples are signature
sequences [2], which provide characterizations of irrational numbers (numbers
like 7 that cannot be represented by fractions). Here is a grid plot of the
signature sequence for q, the golden ratio:

Signature sequences are one category of Kimberling fractal sequences [3].
Two operations that, when applied to Kimberling fractal sequences, pro-

duce fractal sequences are upper trimming and lower trimming. Upper trimming
strikes out the first instance of every value, as illustrated by the first example in
this article. Lower trimming subtracts 1 from each value and discards 0s. For the
first example in this article, it goes like this:

 1, 2, 1, 3, 2, 1, 4, 3, 2, 1, 5, 4, 3, 2, 1, 6, 5, 4, …
 ?

 0, 1, 0, 2, 1, 0, 3, 2, 1, 0, 4, 3, 2, 1, 0, 5, 4, 3, …
 ?

 1, 2, 1, 3, 2, 1, 4, 3, 2, 1, 5, 4, 3, …
 ?

 1, 2, 1, 3, 2, 1, 4, 3, 2, 1, 5, 4, 3, …
This is the same as the original sequence. This is not always true of lower
trimming, but the result always is some fractal sequence.
Periodic Sequences

A periodic sequence is a sequence in which a subsequence repeats [4]. An
example is the sequence of Fibonacci numbers, mod 6. The repeat length is 24:
 1, 1, 2, 3, 5, 2, 1, 3, 4, 1, 5, 0, 5, 5, 4, 3,

 1, 4, 5, 3, 2, 5, 1, 0

24 Mar 2006 H4: FractalSequences

114

Infinite periodic sequences are, technically speaking, self similar. Decima-
tion rules for periodic sequences are simple: Remove the initial repeat. In fact
removing any repeat or any combination of repeats does the same thing: There
is an infinite number of decimation rules for an infinite periodic sequence.

Periodic sequences have an important role in weave design, but they lack
the intriguing aspects of other kinds of fractal sequences. Periodic sequences are
best left to other contexts.
Adapting Fractal Sequences to Weave Design

Threading and Treadling Sequences

The obvious use of fractal sequences in weave design is as threading and
treadling sequences. For this purpose, fractal sequences can be divided into two
classes: Those whose values fit within the constraints of a loom and those that
do not.

The former can be used directly — at least portions of them. For fractal
sequences, such as the Morse-Thue sequences, that have 0s, simply adding 1 to
each value produces a sequence that works for the 1-based numbering of shafts
and treadles.

Fractal sequences that have values exceeding the constraints of a loom can
be converted to the desired range using modular reduction [5].

For example, the signature sequence for the golden ratio, reduced (shaft)
modulo 7, treadles as drawn in with a tabby tie-up produces this draft:

24 Mar 2006 H4: FractalSequences

115

Color Sequences

Fractal sequences also can be used to derive warp and weft color sequences
by assigning a color to each different value in the sequence.

Here is a color sequence based on the 4-valued Morse-Thue sequence:

A plain weave with this color sequence used for the warp and weft is

Selecting Fractal Sequences for Weave Design

You can’t expect to get weave designs from fractal sequences that rival the
fractal images at the bottoms of the pages at this article: These images are too
complex to be woven in a loom-controlled fashion. Tapestry weaving is an
intriguing possibility, however.

The fractal sequences that are the most interesting from a design viewpoint

24 Mar 2006 H4: FractalSequences

116

are those that develop successive variations and extensions of an initial “theme”.
The Morse-Thue and rabbit sequences are excellent examples of this type of
fractal sequence.

Such sequences often give designs that appear at first glance to be periodic
but on closer examination show continual variations. An example is this draft
based on the 8-valued Morse-Thue sequence:

Prospecting for Fractal Sequences

The few examples of fractal sequences given here can get you started on
designing. But if you find the results interesting, you may want to try other
fractal sequences.

The best source for integer sequences of all kinds is the On-Line Encyclopedia
of Integer Sequences [2]. There you can search for sequences by entering a few
initial terms or using keywords. The keywords fractal and self-similar produce
long lists of relevant sequences. You can also look for Morse-Thue and the
synonym Thue-Morse.

Sequences in the Encyclopedia also can be looked up by their identifying
numbers, which consist of an A followed by 6 digits. Some numbers for examples
given here and related ones are:

A010060 Morse-Thue Sequence
A005614 Rabbit Sequence
A053838 2-Valued Morse-Thue Sequence
A053839 4-Valued Morse-Thue Sequence
When you look up a sequence by number, the description may not be what

24 Mar 2006 H4: FractalSequences

117

you expect: A sequence may have many origins. Similarly, there are different
forms of some sequences.

The site also has a page listing many self-similar sequences with simple
decimation rules [6].

24 Jun 2006 H5: MorseThue

143

The Morse-Thue Sequence

[Check cross references.] The Morse-Thue sequence is a binary fractal
sequence with many interesting properties. It begins as

0, 1, 1, 0, 1, 0, 0, 1, …
This sequence was introduced in 1906 by the Norwegian mathematician

Axel Thue (pronounced TOO) as an example of an aperiodic recursively
computable string of symbols.

Later Marvin Morse (on the principle of quoting when you can’t do better)
… proved that the trajectories of dynamic systems whose phase spaces
have a negative curvature everywhere can be completely characterized
by a discrete sequence of 0s and 1s — a stunning discovery [1].

Because of the importance of Morse’s discovery, his name usually is listed
first, although the sequence sometimes also is called the Thue-Morse sequence.
Constructing the Morse-Thue Sequence

There are many ways of constructing this sequence. The one shown most
is the siple L-System [check cross references]

seed: 0
0 � 01
1 � 10

At each step every 0 and 1 is replaced by the specified pair, simultaneous (at least
conceptually), Thus, the development proceeds like this:

0 � 0, 1 � 0, 1, 1, 0 � 0, 1, 1, 0, 1, 0, 0, 1 � …

Axel Thue Sidebar

24 Jun 2006 H5: MorseThue

144 The Morse-Thue Sequence

Another way to produce the Morse-Thue sequence is to start with 0 and
iterate the following process: Take the present sequence and append its comple-
ment (replacing 0 by 1 and 1 by 0) to it. It goes like this:

0
0, 1
0, 1, 1, 0
0, 1, 1, 0, 1, 0, 0, 1
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0

…
The advantage of this method is that it is simple and the number of terms

produced increases rapidly.
A third method for producing the Morse-Thue sequence is to write the

nonnegative integers in binary form:
0, 1, 10, 11, 100, 101, 110, 111, …

Then replace every value by its digit reduction mod 2.

Properties of the Morse-Thue Sequence

The Morse-Thue sequence is self similar (fractal) [reference], as can be seen
by striking out every even-numbered value, which produces the original
sequence:

0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, …
Among the fascinating properties of the Morse-Thue sequence is that it is

cube-free. This means that it does not contain the subsequences 0, 0, 0 or 1, 1, 1.
But cube-free is a more general concept. In the jargon of combinatorics on words
[2], a word is any sequence of characters from the alphabet being used (here, 0
and 1). Cube-free applies to all words. For example, if

W = 1, 0, 1, 1, 0
(which is a word in the Morse-Thue sequence), then W, W, W, which is

1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0
does not occur in the Morse-Thue sequence.

Digit reduction sums the digits of a number and repeats the process if
necessary until only one digit remains. Thus the digit reduction of 111 is 3,
whose residue mod 2 is 1.

24 Jun 2006 H5: MorseThue

The Morse-Thue Sequence 145

Generalizing the Morse-Thue Sequence

The Morse-Thue sequence generalizes to bases other than 2. For example,
the base-5 generalization of the Morse-Thue sequence is

0, 1, 2, 3, 4, 1, 2, 3, 4, 0, 2, 3, 4, 0, 1, 3, 4, 0,
 1, 2, 4, 0, 1, 2, 3, 1, 2, 3, 4, 0, …

All three methods used for computing the regular, base-2 Morse-Thue
sequence generalize for larger bases.
Geometrical Interpretations of the Morse-Thue Sequence

Visualizing 0 as a black square and 1 as a white square, the Morse-Thue
sequence appears graphically as shown in Figure 1.1:

 …

Figure 1.1. The Morse-Thue Sequence
The steps for the append-complement method of construction are shown

in Figure 1.2.

…

Figure 1.2. Morse-Thue Sequence Construction
This can be extended to two dimensions by at each step appending the

complement both horizontally and vertically [3]. Figure 1.3 shows the first four
iterations:

 1 2 3

24 Jun 2006 H5: MorseThue

146 The Morse-Thue Sequence

 4

Figure 1.3. Constructing The Morse-Thue Plane
Like the Morse-Thue sequence itself, the Morse-Thue plane is fractal. And,

despite the appearance of symmetry and regularity, there are no repetitions.
That is, no finite portion of the plane can be tiled regularly to produce the whole
plane.
Applications of the Morse-Thue Sequence

The Morse-Thue sequence has applications in many areas. In addition to
the one mentioned at the beginning of this article, the Morse-Thue sequence has
been used in graphic design and in music composition [4-6].

It should not be surprising to discover that the Morse-Thue sequence can
be used as the basis for a variety of interesting weaves. Figure 1.4 shows a
weaving draft that was “drawn up” from the sixth iteration of the plane-
construction process shown in Figure 3. Notice that the Morse-Thue sequence
appears in the threading and treadling and that it takes only two shafts and two
treadles to produce this weave.

24 Jun 2006 H5: MorseThue

The Morse-Thue Sequence 147

Figure 1.4. A Morse-Thue Weave
There are other ways the Morse-Thue sequence can be used in weave

design. We’ll explore some of these in other sections.

07 Jul 2006 H6: SignatureSequences

167

Signature Sequences

An interesting class of fractal sequences consists of signature sequences for
irrational numbers. The signature sequence of the irrational number x is ob-
tained by putting the numbers

i + j × x i, j = 1, 2, 3, …
in increasing order. Then the values of i for these numbers form the signature
sequence for x, which is denoted by S(x).

Here’s the signature sequence for q, the golden mean:
1, 2, 1, 3, 2, 4, 1, 3, 5, 2, 4, 1, 6, 3, 5, 2, 7, 4, 1, 6, 3, 8,
 5, 2, 7, 4, 9, 1, 6, 3, 8, 5, 10, 2, 7, 4, 9, 1, 6, 11, …

Both upper trimming and lower trimming of a signature sequence leave the
sequence unchanged.

Signature sequences have a characteristic appearance, but they vary con-
siderably in detail depending of the value of x.

Signature sequences start with a run 1, 2, …, n+1, where n = x� � , the integer
part of x. The larger the value of x, the more quickly terms in the sequence get
larger. Most signature sequences display runs, either upward or downward or
both — which one is usually a matter of visual interpretation. At some point,
most signature sequences become interleaved runs. This sometimes gives the
illusion of curves.

Although signature sequences are defined only for irrational numbers, the
algorithm works just as well for rational numbers. Although signature se-
quences for rational numbers are not fractal sequences, they are as close as you
could determine manually. The structure of a signature sequence depends on
the magnitude of x. Furthermore, there are irrational numbers arbitrarily close
to any rational number. There is no difference in the initial terms of signature
sequences for numbers that are close together. For example, S(3.0) and S(/) do
not differ until their 117th terms.

It‘s also worth noting that there really is no way, in general, to perform exact
computations for irrational numbers. Computers approximate real numbers,
and hence irrational numbers, using floating-point arithmetic. A floating-point
number representing an irrational number is just a (very good) rational approxi-
mation to the irrational number. For example, the standard 64-bit floating-point
encoding for / is

07 Jul 2006 H6: SignatureSequences

168 Signature Sequences

7074237752028440/251

Figure 1.1 shows grid plots for some signature sequences. Signature
sequences for large numbers are not included because they are unwieldy.
Using Signature Sequences in Weaving Drafts

Signature sequences can be used as the basis for threading and treadling
sequences. To use signature sequences for this purpose, it is necessary to bring
the values of terms within the bounds of the number of shafts and treadles used.
The mathematically reasonable way is to take their residues, modulo the
number of shafts or treadles, using 1-based arithmetic. Figure 1.2 shows residue
sequences derived from signature sequences. In most cases, taking residues
preserves the essential characteristics of signature sequences.

Sequences like these, if used directly, produce drawdown patterns that lack
repeats or symmetry. More attractive patterns can be obtained by taking a small
portion of a signature sequence and then reflecting it to get symmetric repeats.

Figure 1.3 shows a draft for such a sequence with 16 shafts and treadles and
a twill tie-up.

It seems natural to use initial terms of a signature sequence. The structure
of signature sequences, however, changes as the sequence goes on. Figure 1.4
shows magnified portions of the drawdown pattern for a signature sequence.
This suggests that it might be worth trying subsequences of signature sequences
in various locations.

Figure 1.5 shows some drawdown patterns for various combinations of
signature sequences. All have 16 shafts and treadles and twill tie-ups.

07 Jul 2006 H6: SignatureSequences

Signature Sequences 169

S(1.0)

Figure 1
. Grid Plots for Signature Sequences

S(0.1)

S(0.2)

S(0.5)

S(0.7)

S(0.9)

S(1.1)

S(1.2)

S(1.5)

07 Jul 2006 H6: SignatureSequences

170 Signature Sequences

Figure 1.1, continued. Grid Plots for Signature Sequences

S(2.0)

S(e)

S(3.0)

S(/)

S(5.0)

S(q)

07 Jul 2006 H6: SignatureSequences

Signature Sequences 171

S(0.9) mod 8

S(1.2) mod 8

S(q) mod 8

S(e) mod 8

S(/) mod 8

S(q) mod 12

S(e) mod 12

S(/) mod 12

S(0.9) mod 16

S(1.2) mod 16

S(q) mod 16

S(e) mod 16

S(/) mod 16
Figure 1.2. Signature Sequence Residues

07 Jul 2006 H6: SignatureSequences

172 Signature Sequences

Figure 1.3. Drawdown for A Reflected Portion of S(/////)

07 Jul 2006 H6: SignatureSequences

Signature Sequences 173

Figure 1.4. Magnified Portions of the q × qq × qq × qq × qq × q Signature Drawdown Plane

07 Jul 2006 H6: SignatureSequences

174 Signature Sequences

Figure 1.5. Drawdown Patterns for Signature Sequences

threading: /, terms 1-30

threading: /, terms 1-60

threading: q, terms 61-120

threading: e, terms 1-60

07 Jul 2006 H6: SignatureSequences

Signature Sequences 175

Figure 1.5, continued. Drawdown Patterns for Signature Sequences

threading: /, terms 61-120 threading: e, terms 1-60

threading: e, terms 1-60 threading: 0.9, terms 61-120

07 Jul 2006 H6: SignatureSequences

176 Signature Sequences

Figure 1.5, continued. Drawdown Patterns for Signature Sequences

threading: 1.0, terms 1-60 threading: 1.0, terms 61-120

threading: 0.9, terms 1-60 threading: 0.5, terms 61-120

03 Aug 2006 H7: SpectraSequences

191

Spectra Sequences

Given an irrational number _, the integer sequence floor(_), floor(2_),
floor(3_), … is called the spectrum sequence of _. For example, the spectrum
sequence of / is 3, 6, 9, 12, 15, 18, 21, 25, 28, 31, 34 … and the spectrum sequence
of e is 2, 5, 8, 10, 13, 16, 19, 21, 24, 27, 29, … .

The spectrum sequence of x is denoted by S(x).
Beatty Sequences

A very interesting case occurs for two positive irrational numbers _ and ̀
such that

1/_ + 1/` = 1
Then S(_) and S(`) together contain all the positive integers without repetition.
These are called Beatty sequences after Samuel Beatty, who discovered their
remarkable property.

Note: This formulation is by Weisstein [1]. Superficially this gives the
impression that _ and ` are independent. However, given _, ` = _/(_ – 1).
Similarly, given ̀ , _ = ̀ /(` – 1). It would seem more straightforward to say that,
given a positive irrational number _, S(_) and S(_ /(_ – 1)) are Beatty sequences
that together contain all the positive integers without repetition. The catch is that
_ must be greater than 1; otherwise ` is negative.

Here are grid plots for some Beatty sequence pairs.

 S() S(/ (– 1))

Note: floor() should be replaced by a presently
missing font combination.

03 Aug 2006 H7: SpectraSequences

192 Spectra Sequences

 S(q) S(q/(q – 1))

 S(/) S(//(/ – 1))
Here are two observations about spectra sequences:

(1) Because /(– 1) simplifies to 2 + , the complementary
sequence S() is just the same sequence, spread out over bigger gaps.
Clusters of two and three follow the same pattern in both sequences.
(2) The complement of S(q) is S(q 2) after simplification, due to the special
properties of q.

Collating the pairs of Beatty sequences in shown above gives these grid
plots:

03 Aug 2006 H7: SpectraSequences

Spectra Sequences 193

 q /

Spectra T-Sequences

As mentioned several times in earlier sections, almost all integer sequences
with any structure can be used as the basis for interesting weave patterns.
Spectra sequences are no exception.

As usual, it’s necessary to bring such sequences within the bounds of the
number of shafts or treadles used by taking residues in shaft arithmetic [2].

The following grid plots show some Beatty T-sequences and different
numbers of shafts.

S(), 8 shafts

S(), 12 shafts

S(), 16 shafts

S(qqqqq /(q /(q /(q /(q /(q – 1)), 8 shafts

03 Aug 2006 H7: SpectraSequences

194 Spectra Sequences

S(qqqqq /(q /(q /(q /(q /(q – 1)), 12 shafts

S(qqqqq /(q /(q /(q /(q /(q – 1)), 16 shafts

S(/////), 4 shafts

S(/////), 6 shafts
The following grid plots show collated Beatty t-sequences corresponding

to the previous sequences.

, 8 shafts

, 12 shafts

, 16 shafts

qqqqq , 8 shafts

qqqqq , 12 shafts

03 Aug 2006 H7: SpectraSequences

Spectra Sequences 195

qqqqq , 16 shafts

/////, 4 shafts

/////, 6 shafts

The following drawdowns are for collated Beatty t-sequences with 2/2
twill tie-ups and 8 shafts and treadles, treadled as drawn in.

 qqqqq

/////

24 Mar 2006 H8: ContinuedFractions

Continued Fractions

Continued fractions are part of the “lost mathematics,” the mathematics now
considered too advanced for high school and too elementary for college.

— Petr Beckmann, A History of Pi
Most persons taking courses in mathematics do not encounter continue

fractions. When first encountered, they have a forbidding appearance. Yet
continued fractions have an elegant theory and are important in several branches
of mathematics.

A continued fraction is a fraction in which the numerators and denomina-
tors may contain (continued) fractions. Displayed in their full laddered form,
they look like this:

See Figure 1.1 on the next page for other examples.
The numerators and denominators in a continued fraction can themselves

be complicated, as evidenced by Figure 1.1i. Most work on continued fractions
deals with ordinary continued fractions, in which the numerators and denomi-
nators are numbers:

Two sequences completely characterize an ordinary continued fraction: a1,a2, a3, a4, … and b1, b2, b3, b4 … .
A simple continued fraction is an ordinary continued fraction in which all

the numerators are 1 and all the denominators are integers and positive except
possibly a1:

24 Mar 2006 H8: ContinuedFractions

126

Figure 1.1. A Gallery of Continued Fractions

a

b

c

d

e

f

h

g

i

24 Mar 2006 H8: ContinuedFractions

127

Only one sequence is needed to characterize a simple continued fraction.
For example, the continued-fraction sequence for / is

3, 7, 15, 1, 292, 1, 1, 1, … .
As you’�d expect, this sequence is infinite.

There are several important facts about simple continued-fraction se-
quences:

1. Rational numbers (fractions) have finite sequences. An example is 11/13,
which has the sequence 0, 1, 5, 2.

2. Irrational numbers have infinite sequences.
3. Quadratic irrationals have periodic sequences. An example is 7 , which

has the sequence 2 1 1 1 4, , , , .
4. All other irrational numbers have non-periodic sequences. The sequence

for /, shown above, is an example.
5. There is a one-to-one correspondence between an irrational number and

its simple continued-fraction sequence. Furthermore, any periodic se-
quence of positive integers represents a unique irrational number. (For
rational numbers, there are two equivalent sequences: one that ends … am,
1 and one that ends … am – 1.)

Computing Continued Fractions

Continued fractions are closely related to the familiar Euclidean algorithm
for computing the greatest common divisor of two integers, i and j. Euclid’s
algorithm might look like this in pseudo-code:

until j = 0 do {

 r := remdr(i, j)

 i := j

 j := r

 }

print(i) # previous value of j

24 Mar 2006 H8: ContinuedFractions

128

The terms in the simple continued faction for i / j consist of values of i ÷ j
(integer division, remainder discarded) in the loop above:

 until j = 0 do {

 print(i ÷ j)

 r := remdr(i, j)

 i := j

 j := r

 }

The problem with trying to compute continued fractions for irrational
numbers is that floating-point numbers used by computers to represent real
numbers are finite approximations to real numbers, and hence they really are
rational numbers whose values are “close” to the corresponding real numbers.
For example, the standard 64-bit floating-point encoding for / is

7074237752028440/251

The corresponding continued-fraction sequence is, of course, finite:
3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 3, 3, 2,
 1, 3, 3, 7, 2, 1, 1, 3, 2, 42, 2

and only the first 13 terms are the same as for the sequence for the actual
irrational number:

3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1,
 2, 2, 2, 2, 1, 84, 2, 1, …

Patterns

Simple continued-fraction sequences for rational numbers usually are
short and any patterns are accidental and mostly uninteresting.

Since quadratic irrationals have periodic simple continued-fraction se-
quences, they have patterns that may be of interest in designing weaves.

Simple continued-fraction sequences for other irrationals are not periodic
and most have no evident patterns.

Some, however, do. An example is tan(1) (see Figure 1.1f), whose simple
continued-fraction sequence is

1 1 2 1, , n + n = 1, 2, 3, …
Another example is e – 1 (see Figure 1.1a), whose simple continued-fraction

sequence is

Explain overbar notation.

24 Mar 2006 H8: ContinuedFractions

129

1 1 2 1, , ,n n = 1, 2, 3, …
Such sequences have periodic forms. The simple continued-fraction se-

quence for / has no such structure, but there is an ordinary continued-fraction
for //4 (see Figure 1.1d) that has numerator and denominator sequences with
periodic forms:

numerators: ()2 1 2n < n = 1, 2, 3, …
denominators: 1 2,
Figures 1.2 through 1.4 indicate some possibilities for weaves based on

continued fractions..

Figure 12. 10089 , Tabby Tie-Up

Need ideas for better examples.

24 Mar 2006 H8: ContinuedFractions

130

Figure 1.3. 9949 , Tabby Tie-Up

Figure 14. 9949 , Twill Tie-Up
Need more discussion of designing with continued fractions.

24 Mar 2006 H8: ContinuedFractions

131

Learning More About Continued Fractions

Much of the literature about continued fractions is highly technical and
specialized. There are, however, a few books that are accessible [1-3]. There also
are Web resources [4-5].

07 Apr 2006 H9: FareyFractions

Farey Fractions
In this day of hand-held calculators and computers, for most of us fractions

are only dim, unpleasant memories of early rote schooling and seemingly
pointless, tedious exercises.

Despite the fact that we can get along without all but the simplest fractions
for most everyday business, fractions are important in mathematics, the physi-
cal sciences, and computer science.

Fractions may seem to be unlikely candidates for design inspiration, but
patterns and beauty can be found in the most unexpected places in mathematics.
Farey Fractions

The Farey fractions, named after the British geologist John Farey (1766-
1826), provide an example.

The Farey fraction sequence of order i, F(i), consists of all fractions with
values between 0 and 1 whose denominators do not exceed i, expressed in lowest
terms and arranged in order of increasing magnitude. For example, F(6) is

0
1

1
6

1
5

1
4

1
3

2
5

1
2

3
5

2
3

3
4

4
5

5
6

1
1, , , , , , , , , , , ,

Farey observed that the fractions in such sequences are the mediants of their
adjacent fractions. The mediant of n1/d1 and n2/d2 is

(n1 + n2)/(d1 + d2)
which looks like a naive attempt to add fractions.

Farey sequences have a number of other interesting and useful properties[1, 2]. Our interest here, however, is with their use in weave design.
A sequence of fractions can be interpreted as integer sequences in a numberof ways. Since the numerators and denominators show distinctive patterns, anatural method is to separate a sequence of fractions into two sequences, one ofthe numerators and one of the denominators as in:

Fn(6) = 0, 1, 1, 1, 1, 2, 1, 3, 2, 3, 4, 5, 1
Fd(6) = 1, 6, 5, 4, 3, 5, 2, 5, 3, 4, 5, 6, 1

The patterns in Farey sequences can be seen in grid plots, as shown in
Figures 1.1 and 1.2. The bottom line of a plot corresponds to the smallest value
in the sequence.

07 Apr 2006 H9: FareyFractions

142

Fn(8)

 Fn(16)
Figure 1.1. Farey Numerator Sequences

Fd(8)

 Fd(16)
Figure 1.2. Farey Denominator Sequences

The patterns for other values of i are similar in structure. As i gets larger, the
sequences are longer and the patterns more articulated.

The patterns in the numerator sequences are clear and interesting, although
not particularly attractive. The patterns in the denominator sequences, however,
are very attractive. Part of this is because these sequences are palindromic,
adding the visual appeal of symmetry. A palindrome can be constructed from
any sequence, but this one occurs naturally.
Properties of Farey Sequences

Farey sequences have several properties that relate to their appropriateness
for weave design.

Both Fn(i) and Fd(i) contain i different values. The 0 in Fn(i) can be handled in
various ways. One way is to add 1 to all values in the sequence. Another way is
to use modular shaft arithmetic [3] with modulus i, in which case the 0 is changed
to i and all other values remain unchanged. In any event, all shafts and treadles
in their ranges are utilized.

The distribution of values in the sequences is not balanced, however. The
value 0 appears only once in Fn(i) and the value 2 appears only once in Fd(i) for

07 Apr 2006 H9: FareyFractions

143

i > 1 (for i = 1, 2 does not appear at all, but this is an uninteresting case for weave
design). The distributions of other values follow interesting patterns, but that is
a deeper topic that we won’t consider here.

In Fn(i) there is a string of 1s of length �i /2� + 1 starting with the second value
of the sequence, where �x� is the integer part of x. No other successive values are
the same. For i > 1, no successive values in Fd(i) are the same.

The lengths of Farey sequences increase only modestly with i. There is no
simple formula, but the length is about

3(i//)2 5 0.304 × i 2

which gives increasingly better approximations as i gets larger [2].
Here are the lengths of F(i) for 4) i) 32:

i length i length
4 7 19 121
5 11 20 129
6 13 21 141
7 19 22 151
8 23 23 173
9 29 24 181

10 33 25 201
11 43 26 213
12 47 27 231
13 59 28 243
14 65 29 271
15 73 30 279
16 81 31 309
17 97 32 325
18 103

Drafting with Farey Sequences
One way to use Farey sequences is directly as threading and treadling

sequences. Figures 3 and 4 show drawdown patterns for F(8) with 8 shafts and
8 treadles, treadled as drawn in. Direct tie-ups were used to make the patterns
clear.

07 Apr 2006 H9: FareyFractions

144

Figure 1.3. Fn(8)

Figure 1.4. Fd(8)

07 Apr 2006 H9: FareyFractions

145

Figure 51. shows the drawdown pattern for Fn(8) threading and Fd(8)
treadling.

Figure 1.5. Fn(8) versus Fd(8)
Direct tie-ups are not suitable for weaving with these sequences for

structural reasons. Figures 1.6-8 show the corresponding drawdown patterns
for twill tie-ups.

07 Apr 2006 H9: FareyFractions

146

Figure 1.6. Fn(8) Twill

Figure 1.7. Fd(8) Twill

07 Apr 2006 H9: FareyFractions

147

Figure 1.8. Fn(8) versus Fd(8) Twill

Adapting Farey Sequences for Thread-by-Thread Drafts
Modifications often are needed to make sequences from mathematical

sources suitable for weaving or to improve the appearance of weaves derived
from them.

This usually means doing some violence to the mathematical properties of
the sequences, but weave design is, after all, an artistic enterprise — mathemat-
ics can only provide inspiration.

Numerator sequences are more troublesome than denominator sequences
because numerator sequences have a string of 1s starting at term 2.

One thing to do is to simply remove successive duplicates. This is an easy
method that can be applied to all sequences that have successive duplicate
values.

Another method is to add incidentals between successive duplicates,
analogous to the use of incidentals in name drafting to produce alternating odd/
even values for overshot [4].

Yet another method is to change alternative values to break the sequence of
duplicates. This has the virtue of maintaining the length of the sequence. For
numerator sequences, an attractive method is to change every other 1 into a 0.

07 Apr 2006 H9: FareyFractions

148

See Figures 1.9 and 1.10.

Figure 1.9. Fn(8) Repeated

Figure 1.10. Fn(8) With Changes Repeated
The drawdown pattern for the changed sequence is shown in Figure 1.11.

Compare this with Figure 1.3, which shows the pattern without changes.

Figure 1.11. Fn(8) with Changes
When considering successive duplicates, it is important to look at the first

and last values of a sequence, since these become adjacent when the sequence is
repeated. Farey numerator sequences have first and last values of 0 and 1,
respectively. Note that this meshes with the 0, 1 change method just discussed.

Farey denominator sequences are true palindromes with the same first and
last value. For repeats, pattern palindromes obtained by removing the last value
of a pure palindrome usually are used. Then, of course, a true palindrome for the
entire pattern is obtained by appending the first value of the pattern palindrome
to the end of the last repeat. The difference this makes in the drawdown pattern

07 Apr 2006 H9: FareyFractions

149

is minor. Compare Figure 1.12 with Figure 1.4.

Figure 1.12. Fd(8) with Change

Drafting Variations
Parameters

Even with just two sequences used for thread-by-thread drafts, there are
endless variations for drafting. The parameters are

i Farey order for threading
j Farey order for treadling
m number of shafts,) i
n number of treadles,) j
t threading sequence type (numerator or denominator)
u treadling sequence type (numerator or denominator)

One general question is what happens if m < i and/or n < j, assuming
modular arithmetic is used to reduce the sequences appropriately.

Figure 13 shows the pattern for Fd(8) threading and treadling with 4 shafts
and 4 treadles. How about some feedback on

tie-ups to use here an the rest of
the book?

07 Apr 2006 H9: FareyFractions

150

Figure 1.13. Fd(8) with 4 Shafts and 4 Treadles
Another question is what happens if m does not divide i evenly or if n does

not divide j evenly. Endless questions and possibilities … .
Another possibility is to use a Farey sequence for threading and some

unrelated sequence for treadling, or vice versa. Figure 1.14 shows the pattern for
Fd(8) threading and an ascending straight draw for treadling.

`
Figure 1.14. Fd(8) with Straight-Draw Treadling

And what about tie-ups? Direct tie-ups to show underlying interlace-
ment patterns and a simple twill to show weavable interlacements. Are there
other tie-ups that produce more attractive patterns?
Palindromes for Numerator Sequences

Farey denominator sequences are palindromic but Farey numerator se-
quences are not. Another design possibility is to form palindromes by reflecting
numerator sequences and use them alone or in combination with denominator
sequences.

Figure 15 shows the pattern for Fn(8), reflected and treadled as drawn in.
Figure 16 shows the pattern for Fn(8), reflected for threading and Fd(8) for
treadling.

07 Apr 2006 H9: FareyFractions

151

Figure 1.15. Fn(8) Reflected

Figure 1.16. Fn(8) Reflected Threading Versus Fd(8)

07 Apr 2006 H9: FareyFractions

152

Interleaved Sequences

Another possibility is to interleave the numerator and denominator se-
quences. For Fn(6) the result is

0, 1, 1, 6, 1, 5, 1, 4, 1, 3, 2, 5, 1, 2, 3, 5, 2, 3, 3,
 4, 4, 5, 5, 6, 1, 1

Figure 1.17 shows the pattern for Fn(8) and Fn(8) interleaved, treadled as
drawn in with a direct tie-up. Figure 18 shows the pattern for the corresponding twill.

Figure 1.17. Fn(8) and Fd(8) Interleaved

07 Apr 2006 H9: FareyFractions

153

Figure 1.18. Fn(8) and Fd(8) Interleaved Twill
Combining Farey Sequences of Different Orders

So far we’ve only shown patterns based on Farey Sequences of the one
order. Figure 19 shows the pattern that results of concatenating Farey denomi-
nator sequences of orders 1 through 8, treadled as drawn in with a direct tie-up.

07 Apr 2006 H9: FareyFractions

154

Figure 19. Fd(1), Fd(2), … , Fd(8)
You can figure out the pattern if this sequence is reflected to form a pattern

palindrome.
Point Twills

While the direct use of Farey sequences for threading and treadling
produces interesting results, interpreting the values in the sequences as inflec-
tion points for point draws is more promising. In such an interpretation, only
high and low values in runs are considered. For example,

1, 1, 2, 5, 3, 1
has the inflection points 1, 5, and 1.

Figure 1.20 shows grid plots for
Fd(8) point draws.

 F
n
(8)

 F
d
(8)

Figure 1.20. F(8) Point Draws
 Figures 1.21 and 1.22 show the patterns for the corresponding pointtwills, treadled as drawn in.

07 Apr 2006 H9: FareyFractions

155

Figure 1.21. Fn(8) Point Twill

Figure 1.22. Fd(8) Point Twill

07 Apr 2006 H9: FareyFractions

156

The lengths of point draws are, of course, considerably longer than the
lengths of the sequences from which they are derived:

i Fn(i) point length Fd(i) point length
4 6 11
5 12 23
6 14 27
7 26 51
8 34 67
9 48 95

10 56 111
11 86 171
12 98 195
13 140 279
14 158 315
15 186 371
16 218 435
17 290 579
18 316 631
19 406 811
20 446 891
21 506 1011
22 556 1111
23 688 1375
24 736 1471
25 862 1723
26 934 1867
27 1056 2111
28 1140 2279
29 1350 2699
30 1414 2827
31 1654 3307
32 1782 3563

Other Possibilities
The wide range of possibilities touched on here does not begin to exhaust

the potential of Farey fraction design.
Color specification, for example, always is a design possibility for se-

quences.
And Farey fraction design is not limited to weaving [5].

07 Apr 2006 H9: FareyFractions

157

Resources
If you want to experiment with Farey sequences, you’ll find sequence data

at Reference 6 and 7.

25 Jun 2006 H10: TermReplication

141

Term Replication Sequences

Patterns like this one have a visual fascination:

This fascination is enhanced by mirroring:

These patterns come from a very simple sequence:
1 2 2 3 3 3 4 4 4 4 5 5 5 5 5 …

For example, if this sequence is used for the threading and treadling sequences
in a weaving draft with a tabby tie-up, the resulting drawdown is as shown in
image above.

25 Jun 2006 H10: TermReplication

In the sequence above, each term is replicated according to its value. There
is no accepted good name for this sequence. It was called the multi sequence in
previous articles [1] and the On-Line Encyclopedia of Integer Sequences [2]
refers to it as “n appears n times”, which is descriptive but far from elegant.

The sequence above is one of a class of sequences obtained by applying term
replication functions to bases sequences.

For the example above, the base sequence is the positive integers, I+ = 1 2 3
4 5 … and the replication function is r(v) = v, where v is the value of the term.

If the base sequence is the Fibonacci numbers, F = 1 1 2 3 5 8 …, then this rule
yields

1 1 2 2 3 3 3 5 5 5 5 5 8 8 8 8 8 8 8 8 …
Compact Representations of Term Replication

Sequences in which terms are replicated may be difficult to understand if
terms are written out in the usual fashion.

One way to reduce visual clutter is to list replicated terms only once along
with their replication factor. The notation

i j
indicates that there are j copies of i. Thus, the result of applying r(v) = v to I+ and
the primes, P = 2 3 5 7 …, can be written as

11 22 33 44 55 …
22 33 55 77 …

Another way to represent the results of applying a replication function to
a base sequence is to write the base sequence above the replication sequence,
with a bar separating the two. For the examples above, the representations are

1 2 3 4 5 …––––––––––1 2 3 4 5 …
2 3 5 7 …–––––––––2 3 5 7 …

For named sequences, a simpler, linear typographical form can be used, as
in P/F.

25 Jun 2006 H10: TermReplication

143

Value-Based Replication Functions

Replication functions whose values are determined solely by term values
are called value-based.

Many kinds of value-based replication functions are possible, such as the
following:

r(v) = 1 [1]
r(v) = v [2]
r(v) = v + 2 [3]
r(v) = v smod 5 [4]
r(v) = 1 v even [5]

 2 v odd
r(v) = 1 v even [6]

 0 v odd
Eqn. 1 leaves the base sequence unchanged. Eqn. 2 produces the results

described previously. Eqn. 3 is like Eqn. 2 except that 2 replications are added.
In Eqn. 4, the replication factor is reduced shaft-modulo 5 [1], so that values
whose residues are 1 smod 5 are not replicated, values whose residues are 2
smod 5 are replicated two times, and so on.

In Eqns. 5 and 6, the result depends on the parity of the value. In Eqn. 5 even
values are not replicated, while odd ones are duplicated. In Eqn. 6, even values
are not replicated and odd values are discarded (being replicated 0 times).

Note that in Eqns. 2 and 3, replication factors increase without limit as v
does. In the other equations, the replication factors are bounded regardless of
how large v is.
Position-Based Replication Functions

Replication factors can be based on the positions of terms instead of their
values, position being the number of the term in the sequence. For example, in
P, 2 is term 1, 3 is term 2, 5 is term 3, 7 is term 4, and so on.

For example, if p is the position of a term in a sequence, the replication
function

r(p) = 1 p odd [7]
 2 p even

25 Jun 2006 H10: TermReplication

doubles even-numbered terms but not the odd-numbered terms.
The replication function

r(p) = p [8]
replicates by the position of the term. For I+, Eqn. 8 produces the same results as
Eqn. 2. For P, it produces

2 3 2 5 3 7 5 …
Value- and Position-Based Replication Functions

Replication functions can depend both on value and position. An example
is

r(v, p) = v p odd [9]
 p p even

For F, Eqn. 9 produces
1 3 2 2 3 3 5 5 8 6 …

Replication Sequences

Replication factors can be determined independently of the base sequence.
For example, for the base sequence I+ and the replication sequence P,

I+/P =

1 2 3 4 …––––––––– =2 3 5 7 …

1 2 2 3 3 5 4 7 … =

1 1 2 2 2 3 3 3 3 3 4 4 4 4 4 4 4 …
As another example, consider the 1-based Morse-Thue sequence [3], M =

1 2 2 1 2 1 1 2 … as the base sequence and I+ as the replication sequence:
M /I+ =

1 2 2 1 2 1 1 2 …–––––––––––– =1 2 3 4 5 6 7 8 …

25 Jun 2006 H10: TermReplication

145

1 2 5 14 25 1 13 28… =

1 2 2 2 2 2 1 1 1 1 2 2 2 2 2 1 1 1 1 1 1 1 1
1 1 1 1 1 2 2 2 2 2 2 2 2 …

Term-Replication Sequence Patterns

Patterns derived from term-replication sequences may not be suitable, as-
is, for interlacement patterns in weaving for structural reasons. Such patterns,
however, may make good block patterns for profile drafting.

As in all such things, designing good patterns based on term replication
requires a combination of experience, skill, and creativity.

The next two pages show some examples that can be used as a basis for
experimentation. Following two pages show some examples of mirrored pat-
terns based on term replication sequences.

All the examples in the appendices are produced using tabby tie-ups with
treadling as drawn in. Hint, hint … .

25 Jun 2006 H10: TermReplication

146 Term Replication Sequences

Basic Patterns Derived from Term-Replication Sequences

I+/ P

F / I+

F / P

M / P

M / F

M / (F smod 7)

25 Jun 2006 H10: TermReplication

Term Replication Sequences 147

I / (F smod 7)

I / (F smod 5)

F / (F smod 5)

(F smod 5) / (F smod 5)

(F smod 3) / (F smod 5)

(I+ smod 3) / (F smod 5)

Eqn. 8 Applied to F

25 Jun 2006 H10: TermReplication

148 Term Replication Sequences

I+/ P

F / I+

M / P

M / F

Mirrored Patterns Derived from Term-Replication Sequences

25 Jun 2006 H10: TermReplication

Term Replication Sequences 149

nces

M / I
Eqn. 8 Applied to F

03 Jul 2006 H11: AlgebraicExpressions

133

Algebraic Expressions

Mathematics is often defined as the science of space and number. …it was not until
the recent resonance of computers and mathematics that a more apt definition
became fully evident: mathematics is the science of patterns.

 — Lynn Arthur Steen
Ada Dietz introduced a novel method of weave design in her seminal

monograph Algebraic Expressions in Handweaving [1]. Her idea was to use
multivariate polynomials (polynomials in several variables) raised to different
powers to produce sequences that could be used as the basis for design. Such
design sequences can be used as profile sequences, color sequences, and so on
[2-7].
Dietz Polynomials

The polynomials Ada Dietz used consist of the sum of variables with unit
coefficients raised to a power. An example is (a + b + c)3. Note: Standard
mathematical notation uses italic lowercase letters at the end of the alphabet,
such as x, y, and z, for variables, and roman lowercase letters at the beginning of
the alphabet, such as a, b, and c for constants. The use of letters here is
deliberately different, since in many uses, variables correspond to blocks, for
which the first letters of the alphabet usually are used.

The number of variables used corresponds to the number of blocks desired,
while the power to which the polynomial is raised corresponds to the “degree
of interaction” among the blocks.

For example, in (a + b + c + d)2 there are four blocks, a, b, c, and d, with a small
amount of interaction, while in (a + b)5 , there are two blocks, a and b, with a large
amount of interaction.

Design sequences are constructed from such expressions in the following
way. First, the polynomial is multiplied out, combining like terms, to give the
individual terms:

1: (a + b + c + d)2 = a2 + 2ab + 2ac + 2ad + b2 + 2bc + 2bd + c2 + 2cd + d2

2: (a + b)5 = a5 + 5a4b + 10a3b2 + 10a2b3 + 5ab4 + b5

Next, powers are replaced by products of variables:
1: a2 + 2ab + 2ac + 2ad + b2 + 2bc + 2bd + c2 + 2cd + d2 =
 aa + 2ab + 2ac + 2ad + bb + 2bc + 2bd + c + 2cd + dd
2: a5 + 5a4b + 10a3b2 + 10a2b3 + 5ab4 + b5 =

03 Jul 2006 H11: AlgebraicExpressions

134 Algebraic Expressions

 aaaaa + 5aaab + 10aaabb + 10aabbb + 5abbbb + bbbbb
Next, numerical coefficients are interpreted as repetitions of the variables

that follow them:
1: aa + 2ab + 2ac + 2ad + bb + 2bc + 2bd + cc +2cd + dd A
 aa + abab + acac + adad + bb + bcbc + bdbd + cc + cdcd + dd
2: aaaaa + 5aaab + 10aaabb + 10aabbb + 5abbbb + bbbbb A
 aaaaa + aaabaaabaaab + aaabbaaabbaaabbaaabbaaabbaaabbaaabbaaabbaaab_
 baaabb + aabbbaabbbaabbbaabbbaabbbaabbbaabbbaabbbaabbbaabbb +
 abbbbabbbbabbbbabbbbabbbb + bbbbb

An underscore indicates a term that is too long to fit on the current line and
is continued onto the next.

Note that this transformation produces a result that is not mathematically
equivalent to the previous expression, since, for example, abab = a2b2, not 2ab. The
use of A above instead of = indicates the result is not mathematically
equivalent.

Finally, the terms are concatenated to produce a profile sequence:
1: aa + abab + acac + adad + bb + bcbc + bdbd + cc +cdcd + dd A
 aaababacacadadbbbcbcbdbdcccdcddd
2: aaaaa + aaabaaabaaab + aaabbaaabbaaabbaaabbaaabbaaabbaaabbaaabbaaabbaaabb +
 aabbbaabbbaabbbaabbbaabbbaabbbaabbbaabbbaabbbaabbb +
 abbbbabbbbabbbbabbbbabbbb + bbbbb A
 aaaaaaaaabaaaabaaaabaaaabaaaabaaabbaaabbaaabbaaabbaaabbaaabbaaabba_
 aabbaaabbaaabbaabbbaabbbaabbbabbbaabbbaabbbaabbbaabbbaabbbaabbbabbbb_
 abbbbabbbbabbbbabbbbbbbbb

Although the procedure described above is not mathematically sound, it is
unambiguous if somewhat arbitrary.

The actual variables used are just names and are used to stand for things like
blocks and colors.

The pattern of variables in the result depends on the ordering of the
variables and terms. Conventional mathematical practice is followed in the
development above. Variables in the polynomials are in alphabetical order from
left to right and products in terms are written in the order of the variables.
Furthermore, the variables in the terms are ordered lexically (in dictionary
order). For example, aa appears before aab, and aab appears before aabb. Other
orderings could be used, but for uniformity, strict lexical ordering is used in the
examples here.

03 Jul 2006 H11: AlgebraicExpressions

Algebraic Expressions 135

Computing Dietz Polynomials

What is going on in deriving design sequences from polynomials is easier
to see if the simplifications that usually are performed in multiplying out
products of polynomials are bypassed and do not use powers or combine like
terms.

A simple example is (a + b)2, which conventionally is multiplied out to give
a2 + 2ab + b2. Instead, the multiplication process, without the use of powers and
combining like terms, looks like this

 a + b a + b
 ab + bb

 aa + ab
 aa + ab + ab + bb

which directly yields aaababbb.
So the steps in the Dietz process amount to removing simplifications

usually made in polynomial arithmetic. When computing polynomial design
sequences by hand, the easiest method is to avoid the simplifications usually
made, going more directly to the end result (being careful to keep terms
separated and in the correct order).
Design Sequence Lengths

Dietz design sequences become quite long, especially when the power
(“degree of interaction”) is large. Here is a table showing lengths for various
numbers of variables and powers:

variables power length
1 1 1
1 2 2
1 3 3
1 4 4
1 5 5
1 6 6

…
2 1 2
2 2 8
2 3 24
2 4 64
2 5 160
2 6 384

…

03 Jul 2006 H11: AlgebraicExpressions

136 Algebraic Expressions

3 1 3
3 2 18
3 3 81
3 4 324
3 5 1215
3 6 4374

…
4 1 4
4 2 32
4 3 192
4 4 1024
4 5 5120
4 6 24576

…
5 1 5
5 2 50
5 3 375
5 4 2500
5 5 15625
5 6 93750

…
6 1 6
6 2 72
6 3 648
6 4 5184
6 5 38880
6 6 279936

…
7 1 7
7 2 98
7 3 1029
7 4 9604
7 5 84035
7 6 705894

…
8 1 8
8 2 128
8 3 1536
8 4 16384
8 5 163840
8 6 1572864

;

03 Jul 2006 H11: AlgebraicExpressions

Algebraic Expressions 137

9 1 9
9 2 162
9 3 2187
9 4 26244
9 5 295245
9 6 3188646

…
Sequences whose lengths are greater than several hundred are not good

candidates for weave design, although parts of them may be.
Interlacement Patterns

There are many ways these sequences can be used in design, a subject we’ll
take up in a subsequent article.

An understanding of the nature of these sequences can be obtained by
using them as threading and treadling sequences.

Interlacement patterns for patterns (drawdown images) for various Dietz
polynomials are shown on the following pages. In these patterns, the variables
a, b, c, … are assigned the shafts 1, 2, 3, … . Direct tie-ups are used and the
treadling is as drawn in.

Note how the patterns change down the columns as the powers increase
and across the rows of successive pages as the number of variables (and hence
shafts and treadles) increases.

The patterns show 240 ends and picks. As the power and number of
variables increase, some patterns do not show a full repeat. See the table of
sequence lengths given on the previous page. [More to come.]

03 Jul 2006 H11: AlgebraicExpressions

138 Algebraic Expressions

(a + b)2

(a + b)3

Examples

03 Jul 2006 H11: AlgebraicExpressions

Algebraic Expressions 139

(a + b)4

(a + b + c)2

Examples

03 Jul 2006 H11: AlgebraicExpressions

140 Algebraic Expressions

(a + b + c)3

(a + b + c)4

Examples

03 Jul 2006 H11: AlgebraicExpressions

Algebraic Expressions 141

(a + b + c + d)2

(a + b + c + d)3

Examples

03 Jul 2006 H11: AlgebraicExpressions

142 Algebraic Expressions

(a + b + c + d)4

(a + b + c + d + e)2

Examples

03 Jul 2006 H11: AlgebraicExpressions

Algebraic Expressions 143

(a + b + c + d + e)3

(a + b + c + d + e)4

Examples

03 Jul 2006 H11: AlgebraicExpressions

144 Algebraic Expressions

(a + b + c + d + e + f)2

(a + b + c + d + e + f)3

Examples

03 Jul 2006 H11: AlgebraicExpressions

Algebraic Expressions 145

(a + b + c + d + e + f)4

(a + b + c + d + e + f + g)2

Examples

03 Jul 2006 H11: AlgebraicExpressions

146 Algebraic Expressions

(a + b + c + d + e + f + g)3

(a + b + c + d + e + f + g)4

Examples

03 Jul 2006 H11: AlgebraicExpressions

Algebraic Expressions 147

(a + b + c + d + e + f + g + h)2

(a + b + c + d + e + f + g + h)3

Examples

03 Jul 2006 H11: AlgebraicExpressions

148 Algebraic Expressions

(a + b + c + d + e + f + g + h)4

(a + b + c + d + e + f + g + h + i)2

Examples

03 Jul 2006 H11: AlgebraicExpressions

Algebraic Expressions 149

(a + b + c + d + e + f + g + h + i)3

(a + b + c + d + e + f + g + h + i)4

Examples

08 Jul 2006 H12: MeanderingSequences

193

Meandering Sequences

Given j integers such as 1, 2, 3, …, j, a j-k-meandering sequence, or simply j-
k-meander, contains all subsequences of j integers of length k [1]. Meandering
sequences are considered to wrap around from end to beginning for the purpose
of representing subsequences. [Note: This started out as meandering strings and
has been converted to sequences. Some things need clarification, like the fact that
the integer values can be anything.]

For example, the length-2 sequences composed from the 3 integers 1, 2, and
3 are {1, 1}, {1, 2}, {1,3}, {2, 1}, {2, 2}, {2, 3}, {3, 1}, {3, 2}, and {3, 3}. A 3-2-meander
that contains all these sequences as subsequences is {1, 1, 2, 1, 3, 2, 2, 3, 3}. The
subsequence {3, 1} comes from the last value of the meander followed by the first.

For j integers, it can be shown that:
• A j-k-meander must contain at least j k values.
• There is a minimal j-k-meander that contains exactly j k values.
• There is a straightforward way of constructing minimal j-k-meanders.

Meanders become long as j and k increase. Here is a table of some values:
j k length
2 2 4
2 3 8
2 4 16
2 5 32
3 2 9
3 3 27
3 4 81
3 5 243
4 2 16
4 3 64
4 4 256
4 5 1024
5 2 25
5 3 125
5 4 625
5 5 3125

08 Jul 2006 H12: MeanderingSequences

Design Uses

Meanders can be used in design in a variety of ways. In this regard, the
value of j determines the number of design objects, while, somewhat in the
manner of Dietz polynomials, the value of k corresponds to the degree of
interaction among the objects.

It doesn’t matter what integers are used. They can be interpreted in a
variety of ways.

One interpretation of meanders is as T-sequences for threading and trea-
dling. Another is as blocks for profile drafting.

Another interpretation of meanders is as sequences of colors, which can be
used, for example, for stripes. In this interpretation, the valuess in the meander
are mapped into colors from a palette. For example, 1 might stand for peach, 2
for white, and 3 for sky blue.

Another possible interpretation of the values is as widths. For example, 3
might stand for 3 threads.

There are many other possibilities. For example, values in odd-numbered
positions might stand for colors and values in even-numbered positions might
stand for corresponding widths.

The possibilities are limited only by your ingenuity.
Some examples based on some of the ideas given above are shown on the

last page of this article.
Constructing Meanders

The process of constructing minimal meanders is relatively simple, al-
though for long ones it is tedious and error-prone if done by hand.

1. Put the values in some order. The order does not matter except as it affects
the details of the result.

2. Start with a sequence of k–1 copies of the first value.
3. Append the last value to the current sequence, provided it does not

produce a duplicate k-length subsequence (wrap-around doesn’t apply here). If
the last value would produce a duplicate, try the next-to-last, and so on, until one
works. If no value works, go to Step 4. Otherwise repeat Step 3.

4. Remove the starting sequence. The result is a minimal j-k-meander.
 As an example, suppose j = 3, k = 2, and the three values are 1, 2, and 3.
Then the starting sequence is {1}.

08 Jul 2006 H12: MeanderingSequences

195

The first application of Step 3 appends 3 to this result, giving {1, 3}.
Repeating Step 3, the sequence becomes {1, 3, 3}.

So far, so good. However, in trying Step 3 again, appending 3 would
produce {1, 3, 3, 3}. But now there are two (albeit overlapping) instances of {3, 3},
so this isn�’t allowed. Following the instructions, try the next-to-last value, 2,
which gives {1, 3, 3, 3}.

Now when Step 3 is done again, the last value, 3, can be appended to give
{1, 3, 3, 2, 3}.

Neither 3 nor 2 can be appending, since these would produce duplicate
subsequences. This leaves 1, giving{1, 3, 3, 2, 3, 1}.

Starting Step 3 over, 3 can’t be appended because there already is is an {1,
3}, but 3 can be appended, giving{1, 3, 3, 2, 3, 1, 2}.

Trying Step 3 once again, 3 can’t be appended but 2 can, giving {1, 3, 3, 2,
3, 1, 2, 2}.

At Step 3, 3 and 2 can’t be appended but 1 can, giving {1, 3, 3, 2, 3, 1, 2, 2, 1}.
And Step 3 another time only 1 can be appended, giving {1, 3, 3, 2, 3, 1, 2,

2, 1, 1}.
At Step 3 again, nothing works, since there already are subsequences {1, 3},

{1, 2}, and {1, 1}.
On to Step 4. All that remains is removing the initial sequence, 1, giving {1,

3, 3, 2, 3, 1, 2, 2, 1, 1}. That is the result.
Note how the order in which the values are placed affects their order in the

result.
All this detail seems tedious, but it practice it goes quickly, at least for small

j and k. The usefulness of a program for larger values of j and k is clear, however.

08 Jul 2006 H12: MeanderingSequences

Profile Draft for Mirrored 3-2-Meander

Profile Draft for Mirrored 3-3-Meander

Designs Based on Meandering Sequences

08 Jul 2006 H12: MeanderingSequences

197

Stripe Colors from 3-3-Meander

Stripe Colors from 3-4-Meander

Stripe Colors from 4-3-Meander

Designs Based on Meandering Sequences

27 Mar 2006 H13: FriendlySequences

Friendly Sequences

A friendly sequence is one in which successive terms differ by one. Since a
friendly sequence may be a repeat on which a longer sequence is based, the first
and last terms must be friendly so that repeats are friendly.

Friendly sequences often make good candidates for threading and trea-
dling sequences. And since they have alternating parity, they are applicable to
weaves that have this requirement, such as overshot.

Close proximity amounts to friendship. Figure 1.1 shows a friendly se-
quence, which labelled . Notice, as required, its first and last terms are
friendly.

Figure 1.1. A Friendly Sequence
Figure 1.2 shows a fairly unfriendly sequence, labelled , and Figure 1.3

shows a downright hostile sequence, .

Figure 1.2. A Fairly Unfriendly Sequence

Figure 1.3. A Hostile Sequence

exudes good vibes; it’s a cheerful sequence. The tension and confusion
in are evident, while reeks of discord.

Our goal here is to convert unfriendly sequences to friendly ones — to
befriend unfriendly sequences. These are the rules:

• Only friendly terms may be added.
• Terms may not be deleted.
• Existing friends may not be separated.

Under these rules, befriending a friendly sequence does not change it.

27 Mar 2006 H13: FriendlySequences

162

The most straightforward and conservative approach is to add the fewest
terms necessary to achieve a friendly result. This involves inserting a friend
between pairs of equal, self-focussed terms and adding a run of friendly terms
between unfriendly terms that are some distance apart.

When there is a pair of equal, self-focussed terms, there is a question of
whether to insert a term that is one larger or one smaller. This can be done many
ways. One natural way is to make the choice at random. Another way is to
alternate between the two choices. In the examples that follow, choices are made
at random.

A more enthusiastic approach is to allow some leeway in inserting friends
between unfriendly terms — letting the friendly path wander a little, adding
more friends than are strictly necessary. Wandering implies some degree of
randomness. Of course, friend-binding paths are expected to be finite so that the
befriending process terminates. For this reason, the choice of direction is biased
toward the target friend in a manner that makes the probability of termination
very high.

Figure 1.4 shows the results of befriending and in a conservative
way. Figure 1.5 shows the results for more enthusiastic befriending. Note that
enthusiastic befriending produces a more lively result than conservative be-
friending.

Befriending as done here can add values larger or smaller than those in the
original sequences.
What is a Friend?

The key question in befriending sequences is what constitutes a friend.
What appeared to be a simple statement appears atthe beginning of this article,
but sequences for drafting may come from modular reduction in order to bring
a sequence within the bounds of the number of shafts or treadles to be used [1].
In such cases, the modulus and 1 are friends.

Modular reduction effectively wraps the sequence around a modular
wheel whose modulus, m, is the number of shafts. Values not in the range 1) i
) m are replaced by their residues. See Figure 16.

27 Mar 2006 H13: FriendlySequences

163

Figure 1.6. Arithmetic Shaft Modulo 8
The converse operation to modular reduction, called modular expansion,

can be used to convert a sequence on m shafts to a sequence on n shafts, n * m,
in which there is no wrap-around. The result is a sequence whose residues, shaft
modulo m, produce the original sequence.

Figures 1.7 and 1.8 show an example of modular expansion.

Figure 1.7. A Point Draw

Figure 1.&8. The Modular Expanded Point Draw
Note that modular expansion exposes the underlying pattern in this point

draw.
The process of modular expansion is simple and relies on the fact that 1 and

m are adjacent on the modular wheel.
Starting with i = 1, if term ti = m and ti+1 = 1, add m to ti+1 and all the remaining

terms (shifting them upward by m). Similarly, if ti = 1 and ti–1 = m, subtract m from
ti–1 and all the remaining terms (shifting them downward by m). Note that
adding or subtracting a multiple of m does not affect the residues.

When the process is complete, add enough multiples of m to bring the
smallest value in the range 1 to m. (The smallest value can be less than 1 but it
cannot be greater than m, since t1 is not greater than m and is not changed by the
process.)

If the expanded sequence is not friendly, it can be made friendly and then

27 Mar 2006 H13: FriendlySequences

164

reduced according to the original modulus. Figure 1.9 shows a sequence that is
not friendly when it is expanded, as shown in Figure 1.10. Figure 1.11 shows
the result of conservatively befriending this sequence and Figure 1.12 shows the
result of modular reduction of the sequence by its original modulus.

Figure 1.9. A Sequence

Figure 1.10. The Modular-Expanded Sequence

Figure 1.11. The Befriended Modular-Expanded Sequence

Figure 1.12. The Modular-Reduced Befriended Sequence
Design Applications of Friendly Sequences

Virtually any sequence can be befriended to produce a threading or
treadling sequence that gives an aesthetically pleasing weave.

There are many sequences that can benefit from befriending. For example,
the modular reduction of sequences of mathematical origin often produces a
periodic but unfriendly sequence. Figure 1.13 shows the Fibonacci sequence
shaft-modulo 8, which has period 12, and Figure 1.14 shows the result of
conservatively befriending it, which has period 42.

…

Figure 1.13. The Fibonacci Sequence Modulo 8

27 Mar 2006 H13: FriendlySequences

165

Figure 1.14. The Befriended Fibonacci Sequence Modulo 8
Although these are very different sequences, the second is derived from the first
in a well-defined way.

The Appendix shows some examples of weaves derived by befriending
equences with mathematical origins.

There are, of course, endless other possibilities for using friendly se-
quences. That is the challenge of creative weave design.

27 Mar 2006 H13: FriendlySequences

166

Appendix

These drawdown images have 240 ends and 240 picks. All for eight shafts
and eight treadles, treadled as drawn in. Befriendings are conservative except as
noted

Direct Tie-Ups

Fibonacci Sequence

Fibonacci Sequence, Enthusiastic

Primes

27 Mar 2006 H13: FriendlySequences

167

Fibonacci Sequence, 2/2

Primes, 2/2

Primes, 2/4/1/1

Primes, 2/1/2/3

Twill Tie-Ups

27 Mar 2006 H13: FriendlySequences

168

Primes, 2/1/2/3, Enthusiastic

Fibonacci Sequence, 2/1/2/3, Enthusiastic

Twill Tie-Ups

02 Aug 2006 H14: Smarandache

141

Smarandache Sequences

All kinds of things can be found among integer sequences, including the
weird and nonsensical. Enter Smarandache sequences (S. sequences, for short),
which are integer sequences due to Florentin Smarandache and his disciples.

Some S. sequence are related to number-theoretic topics. Others, at first
glance (second, third, …) seem downright silly.

An example is the progressive concatenation of the digits of the Fibonacci
numbers:

1, 11, 112, 1123, 11235, …
Sequences like this one, based on digit manipulation, do not have any

natural important mathematical properties, since they depend on base-10
representation of numbers and not on the properties of the numbers themselves.

On the other hand, weave design depends on patterns and not on the actual
values of numbers. The numbering scheme used for shafts and treadles does not
rely on any mathematical properties of the numbers.

With this said, it is worth exploring S. sequences to see what patterns
emerge, starting with concatenation sequences and going on to other kinds of S.
sequences in subsequent sections.

Florentin Smarandache was born in Romania
in 1954. He describes himself as poet, playwright,
novelist, writer of prose, tales for children, transla-
tor from many languages, experimental painter,
philosopher, physicist, and mathematician.

He presently is associate professor of com-
puter science at the University of New Mexico.

In 1980 he set up the “paradoxism” move-
ment, which has many advocates in the world. It is
based on an excessive use of antitheses, antinomies,
contradictions, paradoxes in creation paradoxes —
both at the small level and the entire level of the

work — mathematics, philosophy, and literature.

02 Aug 2006 H14: Smarandache

Concatenation Sequences

Concatenation sequences have the property that terms are derived from
other sequences by concatenation

Examples of concatenation sequences found in the literature [1] include the
natural number repetition sequence

1, 22, 333, 4444, 55555, 666666, 7777777, 88888888, 999999999,
 10101010101010101010, 1111111111111111111111, …

the prime concatenation sequence
2, 23, 235, 2357, 235711, 23571113, …

and the cube concatenation sequence
1, 18, 1827, 182764, 182764125, …
The terms in repetition sequences are given by the rule

ti = si
i

where si is the ith term of the base sequence on which the repetition sequences in
built, ti is the ith term in the repetition sequence, and ai denotes i copies of a.

Another possibility that produces the same results as the one above for the
natural numbers is

ti = si
si

That is, replicate the ith term of the base sequence by its value. For this rule, the
repetition of the primes would be

22, 333, 55555, 7777777,…
instead of

2, 33, 555, 7777, …
by the first rule.

For concatenation sequences, the terms are given by
ti = ti–1si

There are endless possibilities for other rules of these general types, such as
ti = siti–1

02 Aug 2006 H14: Smarandache

143

which for the primes produces
2, 32, 532, 7532, 117532, 13117532, …
And, of course, repetition and concatenation sequences can be used as base

sequences, and so on, although in most cases the size of terms gets out of hand.
Yes, this is all silly — digit play, not mathematics. But can any interesting

weave designs come from it?
From S. Sequences to T-Sequences

For t-sequences (threading and treading sequences) [2], values need to be
limited to the number of shafts/treadles available. Direct conversion of an S.
concatenated sequence to a t-sequence can be done by modular reduction [3].

Since the terms in S. concatenated sequences get longer and longer (at least
for the rules shown above), another alternative is to interpret a term as a
sequence of digits. For example, the ninth term in the concatenated cube
sequence is

182764125216343512729
Converting the digits to terms gives

1, 8, 2, 7, 6, 4, 1, 2, 5, 2, 1, 6, 3, 4, 3, 5, 1,
 2, 7, 2, 9

Normalizing this [4] and representing the result graphically produces:

With a tabby tie-up and treadled as drawn in the draft is

02 Aug 2006 H14: Smarandache

This interpretation of terms in an S. sequence can produce t-sequences with
at most 10 values (0 can be converted to 10 arbitrarily, or one can be added to all
values).

To get good results with this method, S. sequences and their terms need to
be selected with care. Even then, some will need to be modified.

What about the more conventional approach of using modular reduction
to bring large values into the domain of t-sequences?

The natural number repetition sequence is about as unpromising a candi-
date for design as one might find among concatenation sequences. But modular
reduction for 10 shafts produces this sequence:

2, 3, 3, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 9, 9,
 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2,
 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, …

Here is one possible draft:

02 Aug 2006 H14: Smarandache

145

and the weave pattern is

Conclusion

S. concatenation sequences are clearly artificial from a mathematical point
of view, but they do produce patterns and among them there are possibilities for
novel weave designs.

The next section will look at a more promising kind of S. sequence: S.
palindromes.

21 Jun 2006 I1: ProblemDrafts

Sound Interlacements
There are two parts to conventional fabric analysis [1]:

1. Determining the interlacement of the warp and weft threads.
2. Producing a draft from this interlacement.

The two parts may be done separately or in combination, depending on the
particular technique used. For the purposes of this section, it is convenient to
view them separately with the first part producing a “drawdown” pattern.

[Redundant material.] Drawdowns can be represented in various ways.
For visual understanding, a rectangular grid of cells, with each cell representing
a point of interlacement, works best. In drawdown systems, black grid cells
indicate where a warp thread is on top and white cells indicate where the weft
threads are on top. Here is an example:

drawdown
A drawdown that accurately represents the interlacement of a sound fabric

can be used to “draw up” a draft for weaving the fabric.
This draw-up process can be used for producing drafts from patterns

obtained from sources other than fabric analysis. Some weaving programs
provide this capability. But there may be a problem.
A Problem

In their seminal paper on weave structures [2], Grünbaum and Shephard
of tiling and pattern fame [3], pointed out that patterns that look perfectly
reasonable may not produce interlacements that “hang together”; if woven,
some interlaced warp and weft threads may not be interlaced with the rest of the
fabric. A fabric woven based on such a pattern would come apart in pieces. Such
an interlacement is unsound. Note: For some drafts, such as some kinds of double
weave, this is the expectation, not a problem. But for patterns produced by the
various methods described in this book, it is a problem.

Consider this pattern and the corresponding drawn-up draft:

21 Jun 2006 I1: ProblemDrafts

202 Problem Patterns

pattern

 tie-up threading

treadling drawdown

draft
At first glance, the draft looks perfectly reasonable. If woven, however, the

result would be pieces that would not hang together.
What distinguishes patterns whose corresponding interlacements are not

sound from ones that are?
Interlacements with long floats, may, of course, not produce stable fabrics,

but they hang together, however loosely. Patterns with complete rows or
columns of cells of the same colors obviously have unsound interlacements. But
there seems nothing obvious about the pattern and draft shown above that
would indicate a problem.

Determining whether or not a pattern when drawn up represents an
interlacement that hangs together — or doesn’t — cannot be done by simple
visual inspection. Instead, an algorithm (procedure) is needed. Grünbaum and
Shephard’s paper was followed by several papers giving algorithms for deter-
mining whether or not a fabric hangs together [4-6].

These algorithms are written in the language of mathematics and are not
easy to follow, even for an educated layperson.

21 Jun 2006 I1: ProblemDrafts

Problem Patterns 203

A Mathematical Method
The following procedure is due to Clapham [4].
First note that the columns and rows of a drawdown can be rearranged

without affecting whether or not the fabric hangs together.
The basic idea is to rearrange the rows and columns so that the bulk of the

black (warp) cells are at the top right and the bulk of the white (weft) cell are at
the bottom left.

If the resulting pattern can be divided up in this fashion, with the bottom-
right corner of the all-black area just touching the upper-right corner of the all-
white area,

then the fabric would not hang together. The black and white areas need not be
square; they can be any rectangular shape, all that is required is that their corners
touch as shown.

The method of rearranging the rows and columns is first to rank them
according to the number of black cells they have. For the example above, this is

21 Jun 2006 I1: ProblemDrafts

204 Problem Patterns

 c1 c2 c3 c4 c5 c6 c7 c8

6 2 6 2 6 2 6 2

The next step is to rearrange the columns so that they are in order of their
ranks. If more than one column has the same rank, as in this example, it does not
matter in what order the columns with the same rank are placed.

c1 c3 c5 c7 c2 c4 c6 c8

 6 6 6 6 2 2 2 2
The last step is to rearrange the rows so that they are in the order of their ranks:

r1
r2
r3
r4
r5
r6
r7
r8

6
2
6
2
6
2
6
2

r1
r2
r3
r4
r5
r6
r7
r8

6
2
6
2
6
2
6
2

21 Jun 2006 I1: ProblemDrafts

Problem Patterns 205

c1 c3 c5 c7 c2 c4 c6 c8

6 6 6 6 2 2 2 2
The red lines show that the all black and all white blocks meet as required,

so the fabric does not hang together. Had they not so met, the fabric would hang
together.
An Alternative Method

An alternative method, described by Grünbaum and Shephard [2], is to lift
off a thread, lift off what it lifts, and so on. If all threads are lifted off by this
process, the fabric hangs together. If not, it doesn’t.

This can be done methodically as follows.
First, if there is a solid-colored row or column, it represents a thread that is

not interlaced at all and obviously the fabric doesn’t hang together.
Otherwise, two lists are needed: one to keep track of threads that have been

lifted and another to keep track of threads that have been lifted but not checked
to see what they lift.

1. Start by putting the first column (warp thread) on the two lists. (Any other
thread could be used to start.)

2. If the list to be checked is empty, go to Step 4. Otherwise pick a thread,
remove it, and continue to Step 3 with this thread.

3. (a) If the thread is a warp thread, put all the weft threads that are on top of
it (white cells in the column) but not already lifted on both lists.
(b) If the thread is a weft thread, put all the warp threads that are on top of
it (black cells in the row) but not already lifted on both lists.
 Go to Step 2.

r1
r3
r5
r7
r2
r4
r6
r8

6
6
6
6
2
2
2
2

21 Jun 2006 I1: ProblemDrafts

206 Problem Patterns

4. If all warp and weft threads have been lifted, the fabric hangs together. If
not, the lifted threads come off the rest and the fabric does not hang
together.

Here is how this procedure works on the previous example.
 c1 c2 c3 c4 c5 c6 c7 c8

 step thread to check lifted
1 c1 c1 c1
2 c1 c1
3 c1 r6 r8 c1 r6 r8
2 r6 r8 c1 r6 r8
3 r6 r8 c3 c5 c1 c3 c5 r6 r8
2 r8 c3 c5 c1 c3 c5 r6 r8
3 r8 c3 c5 c7 c1 c3 c5 c7 r6 r8
2 c3 c5 c7 c1 c3 c5 c7 r6 r8
3 c3 c5 c7 r2 c1 c3 c5 c7 r2 r6 r8
2 c5 c7 r2 c1 c3 c5 c7 r2 r6 r8
3 c5 c7 r4 c1 c3 c5 c7 r2 r4 r6 r8
2 c7 r4 c1 c3 c5 c7 r2 r4 r6 r8
3 c7 r4 c1 c3 c5 c7 r2 r4 r6 r8
2 r4 c1 c3 c5 c7 r2 r4 r6 r8
3 r4 c1 c3 c5 c7 r2 r4 r6 r8
4 c1 c3 c5 c7 r2 r4 r6 r8

r1
r2
r3
r4
r5
r6
r7
r8

21 Jun 2006 I1: ProblemDrafts

Problem Patterns 207

Since not all threads have been lifted, the fabric does not hang together. The
pattern with the lifted threads marked is
 • • • •

c1 c2 c3 c4 c5 c6 c7 c8

Another Result
A theorem due to Clapham [7] is of interest:

If every weft thread passes both over and under more than one quarter of the
warp threads, and if every warp thread passes both over and under more than one
quarter of the weft threads, then the fabric hangs together. [Gregg: I find it hard
to parse also. This is verbatim. Suggest complete rewording if you wish.]

The converse is not true; there are many fabrics, notably satins, the hang
together but do not meet the requirements of this theorem.

Here are the required over/under numbers to assure a fabric hangs
together for some warp/weft threads counts:

 threads required
4 2
5 3
6 3
7 3
8 3
9 4

 r1
• r2
 r3
• r4
 r5
• r6
 r7
• r8

21 Jun 2006 I1: ProblemDrafts

208 Problem Patterns

10 4
11 4
12 4
13 5
14 5
15 5
16 5

Creating Interlacements that Don’t Hang Together
Note that it is easy to create unsound interlacements. Using the ideas in the

mathematical method, just create a pattern with all-white and all-black blocks
that meet as required, fill in the other two blocks in any fashion, as long as they
are not all black or all white, and rearrange the rows and columns to hide the
problem. Why you would want to do this, except to create examples like the one
here, is another question.

Dealing with Problem Patterns
The difficulty with problem patterns is that it is not possible to produce a

sound interlacement, one that “hangs together” and at the same time produces
the pattern, using only black warp threads and white weft threads.

In many cases, a sound interlacement can be found if the warp and weft
threads are allowed to be both black and white. This is familiar from color-and-
weave effects [2], although the motivation here is different.

Be aware that there are patterns for which no sound drafts exist. Here’s one:

But in most cases, there are sound interlacements for problem patterns.
An extreme example, stripes, illustrates how such interlacements can be

found:

pattern

21 Jun 2006 I1: ProblemDrafts

Problem Patterns 209

If this pattern is drawn up in the standard fashion, its interlacement
obviously would not hang together: There is nothing to hold down the warp
threads.

In this example, the solution is obvious: Select colors for the warp threads
that match the colors of the stripes:

 B W B W B W B W

pattern
The weft thread colors can be chosen in a variety of ways, keeping in mind

that they need to interlace with the warp threads. One way is
 B W B W B W B W

pattern
The next step is to decide on the interlacement. Plain-weave interlacement

clearly works:

interlacement
The draft, with the thread colors shown in bars at the top and left, is

W
B
W
B
W
B
W
B

21 Jun 2006 I1: ProblemDrafts

210 Problem Patterns

draft
Although the colors chosen above for the weft obviously work, there are

other choices that do also. One is
 B W B W B W B W

pattern

An interlacement is

interlacement
This version has floats of length two.

This example illustrates the aspects of the general problem:
1. The first step is to find warp and weft colors that “satisfy” the pattern. (If

it is a problem pattern, by definition all-black warp and all-white weft will not
work.) There may be more than one choice.

2. The next step is to produce an interlacement. Again, there may be more
than one choice.

21 Jun 2006 I1: ProblemDrafts

Problem Patterns 211

3. Finally, the interlacement must be tested for soundness. If it is not sound,
it is necessary to retreat to Step 2 or even Step 1.

There is no simple, general method of solving the problem. A naive
approach would be to try all possible warp and weft colors and all possible
subsequent interlacements. For all but trivially small patterns, this will not work:
There simply are too many possibilities.

Consider this simple twill:

To start, a color needs to be assigned to some thread. Suppose the first weft
thread is white:

This choice has immediate implications. To satisfy the pattern, the first and
second warp threads must be black: These colors are forced:

 B B

The black warp threads in turn force the rest of the weft threads to be white,
and these force the rest of the warp threads to be black:

 B B B B

The important point is that the choice of a color for one thread forces the
colors for all the rest of the threads and produces a standard coloring from which
a sound standard draft can be made.

If the first weft thread had been assigned black, the result would have been
all weft threads black and all warp threads white: a complementary coloring.
Any other choice for any thread would have produced one of these two; there
are no others. The draft for this pattern is unique up to complementation.

This is not true of all patterns; some can be assigned thread colors in many
ways. If this is the case for a problem pattern, there may be a sound draft for it.
(By definition, the standard draft for a problem pattern is not sound.)

W

W

W
W
W
W

21 Jun 2006 I1: ProblemDrafts

212 Problem Patterns

The way to find thread colorings for problem patterns is the same as for the
twill: Pick a color for one thread and see what colors are forced as a result. If they
are all forced, there is not a sound draft. But if all the colors are not forced, there
may be a sound interlacement, and the process continues by picking a color for
some thread that is not already assigned a color.

Although any thread and color could be used to start, it is reasonable to start
with a “promising” thread and color. For example if one row or column is
predominantly one color, it is reasonable to pick that thread and color accord-
ingly.

The procedure can be made systematic by ranking rows and columns by the
number of black cells they have.

The first example in this section illustrates the process:
 c1 c2 c3 c4 c5 c6 c7 c8

 6 2 6 2 6 2 6 2
Starting with one of the highest ranking columns, the first, and assigning

black to its warp color, the result after forcing for this column is

r1
r2
r3
r4
r5
r6
r7
r8

6
2
6
2
6
2
6
2

21 Jun 2006 I1: ProblemDrafts

Problem Patterns 213

 B

The forced weft threads in turn force three warp threads:
 B B B B

And these force two more weft threads:

W

W

W

W

21 Jun 2006 I1: ProblemDrafts

214 Problem Patterns

 B B B B

At this point, all the forcing from the initial choice has been done and eight
threads remain to be assigned colors.

The first row is predominantly black, so the next choice is black for the first
weft thread:

 B B B B

W

W

W

W

B
W

W

W

W

21 Jun 2006 I1: ProblemDrafts

Problem Patterns 215

This results in forcing the remaining colors:
 B W B W B W B W

The next step is the interlacement. There are two considerations. The
primary one is getting a sound interlacement. The secondary one is getting an
interlacement with acceptable float lengths.

The colors for the example pattern in the last article are:
 B W B W B W B W

pattern
Two cases arise in determining an interlacement. If the warp and weft

colors are different there is no choice: The thread that is on top is forced by the
color of the corresponding cell in the pattern. The second case is where the warp
and weft threads are the same color and either could be on top. This is an option
cell.

B
W
B
W
B
W
B
W

B
W
B
W
B
W
B
W

21 Jun 2006 I1: ProblemDrafts

216 Problem Patterns

The second case is, of course, the important one. The situation for the
pattern above is illustrated by a partial interlacement diagram in which the cells
at option paints are gray:

partial interlacement
The large number of option points and their placement is a strong indica-

tion that there is a sound interlacement without long floats. Note the twill effect;
this suggests the pattern is a color-alternate twill that does not hang together [2].

In this example, it is easy to get a sound interlacement. The idea is to make
choices that prevent long floats. One solution is

interlacement
This is a twill with floats of length two.

21 Jun 2006 I1: ProblemDrafts

Problem Patterns 217

Not all problem patterns have such good interlacements. Here's an ex-
ample from a series of block-substitution fractals [3]:

pattern
One possible thread coloring is

 W B W B B B W B W

A partial interlacement is

W
W
W
W
B
W
W
W
W

21 Jun 2006 I1: ProblemDrafts

218 Problem Patterns

partial interlacement
Note that whatever choices are made at option points, there will be a float

of length eight if this interlacement is repeated vertically.
Here is one sound interlacement; at least it hangs together:

Of course, there are other possible colorings and interlacements, but the
intersection of a solid-colored row and a solid-colored column suggests that not
much better can be done.

These interlacements were done by hand. Done that way, the process is
tedious and error-prone. To be able to get sound interlacements for many large
patterns requires a method that can be incorporated in a program. Unfortu-

21 Jun 2006 I1: ProblemDrafts

Problem Patterns 219

nately, such a program is far from trivial.

25 Jul 2006 I2: ColorDraftability

– 177 –July 24, 2006

Draftable Color Patterns

Not being a mathematician, I am not obligated to complicate my explanations by
excessive mathematical rigor.

— Petr Beckmann, The History of Pi
Suppose you are looking for a design for dish towels to weave on your floor

loom. A little searching produces a design in the style of Mondrian; see Figure
1.1. But when you try to set up your loom, you can't figure out how to assign
color threads for the warp and weft to get the pattern you want. A little more
work convinces you it is impossible — there are parts where there really is no
way to assign thread colors to get the desired result.

So you try replacing yellow by white, as in Figure 1.2. And you get the same
result, although are only four colors. Pushing on, you replace blue by white, as
in Figure 1.3. You still can’t find a way to make a draft. At this point, you begin
to wonder if you’re doing something wrong. Finally, you replace red by white.
and, of course, a draft is easy — all-black warp and all-white weft will do it.

What’s going on. Did you make mistakes in trying to assign thread colors
in the other cases? Certainly, there are many weaves with lots of colors. How to
they differ from what you’re trying?

Figure 1.1 Mondrian Design Figure 1.2 Yellow Deleted

 Figure 1.3 Blue Deleted Figure 1.4 Only Black and White

25 Jul 2006 I2: ColorDraftability

178 Draftable Color Patterns

July 24, 2006

To answer the last question first, the difference between what you tried to
do and most colored weaves is that the latter are designed by assigning thread
colors to an existing draft; of course they are draftable. Here’s a draftable color
pattern, obtained by design:

In the context of loom-controlled weaving (as opposed to, say, tapestry
weaving) there are many patterns that can’t be woven. In fact, most can’t. The
problem is determining if a color pattern can be woven as the perpendicular
interlacement of two sets of parallel threads.

That is one part of the problem, and generally the hardest. The other part
of the problem is producing a draft, if the thread colors can be assigned.
The Color Problem

A rectangular color pattern can be considered as a grid of colored cells. If
the color pattern is an image, the cells might be single pixels.

In a loom-controlled weaving, every cell in the grid corresponds to a point

25 Jul 2006 I2: ColorDraftability

Draftable Color Patterns 179

July 24, 2006

of interlacement between a vertical (warp) thread and horizontal (weft) thread.
Therefore, either the warp thread or the weft thread must be the color of the cell.

To simplify the description that follows, letters will be used to stand for
colors. See the end of this section for equivalent color patterns. Columns
correspond to warp threads and rows correspond to weft threads. In order for
the grid to be draftable, the columns and rows must be labeled in a way that the
label for every square is its column label or its row label — “satisfied”. Figure 1.5
shows an example grid.

A B C

C B A

r1

r2

c1 c2 c3

Figure 1.5. A Labeled Grid
Column and row labels are assigned as follows. Starting with square (c1, r1),either c1 or r1 must be A. Arbitrarily pick c1 to be A. This forces r2 to be C. Figure

1.6 shows the labeling to this point.

A B C

C B A

r1

r2

c1 c2 c3
A

C

Figure 1.6. First Labeling Step
Since (c3, r2) is A and r2 is C, c3 must be A. This requires r1 to be C and hence

c2 must be B. Figure 1.7 shows the final labeling.

A B C

C B A

r1

r2

c1 c2 c3
A

C

B A

C

Figure 1.7. The Final Labeling
So far, so good. But what about the grid shown in Figure 1.8?

Should colors be
used here in-
stead of letters?
See the images
on the last pages.

25 Jul 2006 I2: ColorDraftability

180 Draftable Color Patterns

July 24, 2006

A B C

C A B

r1

r2

c1 c2 c3

Figure 1.8. Another Grid
Starting as before, assign A to c1. This forces r2 to be C, which in turn forces

c2 and c3 to be A and B, respectively, as shown in Figure 1.9.

A B C

C A B

r1

r2

c1 c2 c3
A

C

BA

Figure 1.9. First Step in Labeling
Now there is no way to proceed: r1 cannot be both B and C. Starting

anywhere else and trying any other combination of labelings leads to the same
result. It’s not possible to satisfy the grid: The pattern cannot be woven.

Note that if a larger pattern contains such a subpattern, the larger pattern
cannot be woven either. Furthermore, the rows and columns do not have to be
adjacent. The pattern shown in Figure 1.10 is equivalent to the pattern shown
in Figure 1.9 as far as draftability is concerned.

r1

r2

c1 c2 c3

A B C? ? ?

? ? ? ? ? ?

C A B? ? ?

? ? ? ? ? ?

Figure 1.10. Separated Rows and Columns

25 Jul 2006 I2: ColorDraftability

Draftable Color Patterns 181

July 24, 2006

This is a very small pattern by weaving standards and it has only three
colors. What then of more colors and larger patterns?
The Number of Colors

Suppose a pattern has k colors. For k = 2, all patterns can be drafted —
simply assign one color to all columns (warp threads) and the other color to all
rows (weft threads) and pick one or the other depending on the color at every
intersection.

As illustrated by the example on the previous page, for k = 3, there are some
patterns that cannot be drafted. For larger k there is a more fundamental
problem. If a pattern has m columns and n rows, there are only m + n colors
available. If k is greater than m + n, then the pattern can’t be drafted at all. Thus,
there are 2×3 patterns that can’t be woven for this reason. See Figure 1.11.

A B C

D E F

r1

r2

c1 c2 c3

Figure 1.11. A Pattern with Too Many Colors
For what follows, examples are limited to k) m + n.
Approaches to Solving the Problem

There are several possible ways the problem might be solved.
One way would be to try assigning the color of every cell to the columns and

rows in all possible ways. This clearly is hopelessly time consuming except for
tiny patterns.

Two colleagues produced viable methods and wrote programs to deter-
mine if a color image is draftable. One method recognizes the problem as an
instance of the 2-satisifiabilty (2SAT) problem, for which there is a known
algorithm [1]. The other solution is heuristic in nature.

The heuristic solution is described here for several reasons:
• It’s original.
• It’s interesting.
• It’s fast for most patterns.
• It illustrates an approach that is worth considering for other problems.

25 Jul 2006 I2: ColorDraftability

182 Draftable Color Patterns

July 24, 2006

The Heuristic Solution

Heuristics

A word about heuristics is in order, since they often are misunderstood.
Heuristics use insights into the nature of a problem and intelligent guesses to
build a solution method tailored to the problem.

Using heuristics doesn’t mean wild guessing or proceeding blindly, just
hoping to find a solution. Nor need a heuristic solution give incorrect answers,
although proving a heuristic method is correct and terminates — and hence is
an algorithm — may be difficult.

Heuristics can be used in many ways. For the problem here, one possibility
would be look for a fast way to reject a pattern because it contains an unsolvable
subpattern (such as the ones shown earlier). Of course, the absence of a known
undraftable subpattern does not prove the whole pattern is draftable — so that
problem would still exist.

Checking for special cases such as this one often takes more time on average
than it saves. Since it’s difficult — even impractical — to analyze the effects of
such heuristics without implementing them and doing performance testing,
such heuristics should be viewed with skepticism.

A good heuristic method relies on understanding the nature of the problem
and, if possible, breaking the problem down into smaller, more tractable,
subproblems.
Insights into Color Draftability

For the color draftability problem, the following observations are particu-
larly useful.

• If a row or column is all one color, that color can be assigned to the
corresponding row or column without affecting the rest of the problem.
Hence such rows and columns can be eliminated from further consider-
ation.

• Duplicate rows and columns can be eliminated for the same reason.
• The pattern can be rotated without changing the problem; in this sense,

there is no difference between rows and columns.
• Rows can be interchanged (rearranged) without changing the problem,

and the same is true of columns.
To get ideas for the heuristic approach to the problem, small subpatterns

can be examined to see what implications they have for a pattern as a whole.
Two-colored patterns aren’t particularly interesting, since all can be satis-

fied.

25 Jul 2006 I2: ColorDraftability

Draftable Color Patterns 183

July 24, 2006

There are only two distinct three-colored 2×2 patterns; all others are
equivalent to these by rotation or row and column interchange. See Figures 1.12
and 1.13.

A B

C A

r1

r2

c1 c2

Figure 1.12. Three-Colored 2×××××2 Pattern One

A A

B C

r1

r2

c1 c2

Figure 1.13. Three-Colored 2×××××2 Pattern Two
The pattern in Figure 8 imposes some constraints on any larger pattern in

which it is embedded: c1 must be A or C, c2 must be B or A, and similarly for the
two rows.

For the pattern in Figure 1.13, however, c1, c2, and r2 are not constrained but
r1 is completely determined. It must be A for the entire pattern in which this
subpattern is embedded.

This particular subpattern turns out to provide a sufficient basis for a
heuristic solution; no others need be considered. This AA/BC pattern is called
the forcing pattern.
A Program

What follows is a sketch of a program that implements the heuristic
solution. The complete program is available on the Web [2].
Data Structures

The representation used for the pattern data is crucial. The main data
structure is a vector that is used for both rows and columns.

A vector has several components, including:
an index of the row or column
a label differentiating rows and columns
a list of colors in cells

25 Jul 2006 I2: ColorDraftability

184 Draftable Color Patterns

July 24, 2006

an identification of being “active” or not
An active vector is one still to be assigned a color. All vectors are active initially.
Program Structure

The program starts by reading an image file for the pattern and initializing
data.

Next, duplicate rows and columns, as well as solid-colored vectors, are
marked inactive. This may reduce the problem size significantly, especially for
patterns with symmetries.

The main loop in the program then iterates over the pattern, developing
constraints and setting colors determined by forcing patterns.

If at any time the pattern can be completely solved by simple means (see
below), the problem is solved. Otherwise, all 2×2 subpatterns are examined for
instances of the forcing pattern.

If a forcing pattern is found, the colors it forces are set and the loop
continues. Since the cells of a forcing pattern need not be adjacent, all possible
combinations of rows and columns are examined for forcing patterns.

When there are no more instances of the forcing pattern, an attempt is made
solve the pattern by simple means. If this succeeds, the pattern is solved. If it fails,
the pattern cannot be solved.

A pattern has a simple solution if one of the following applies:
1. The pattern is 1×n (or, equivalently, n× 1) or 2×2, for which there are
obvious solutions. See Figures 1.14 and 1.15.

A B

C D

�

A� D�

B

C

Figure 1.14. A 2 ××××× 2 Pattern

25 Jul 2006 I2: ColorDraftability

Draftable Color Patterns 185

July 24, 2006

A

B

C

D

�A�

D�

B

C

EE

Figure 1.15. A 1 ××××× 5 Pattern
2. The pattern is solid colored except for a diagonal or part of one. Again, a
solution is simple. See Figure 1.16 for an example.

AB

C

A

B DC

A

A AA

A A A

A A A

D

E

A

A

A

A

A

Figure 1.16. A 4××××× 4 Diagonal Pattern
3. It can be solved by setting the color of a vector to one possibility, chosen
arbitrarily, then setting colors of other vectors this forces, and continuing
until all vectors have been assigned colors.

Output

On completion, the program indicates whether or not the pattern could be
solved and produces lists of the row and column colors. An enlarged version of
the pattern then is displayed in a window with row and column color assign-
ments along the top, bottom, and sides. If the pattern could not be solved, the
colors just reflect the program state at termination. Figure 1.17 shows a solved
color pattern.

25 Jul 2006 I2: ColorDraftability

186 Draftable Color Patterns

July 24, 2006

Figure 1.17. A Solved Pattern
Sketch of a Proof

A formal proof that the method described above is correct and terminates
with a result — and hence is an algorithm — would require a formalism and a
lengthy and not particularly illuminating argument.

In the spirit of the quotation at the beginning of this article, here’s just a
sketch of a proof that, hopefully, will provide some insight.

Consider what remains after eliminating duplicate rows and columns,
solid-colored rows and columns, and applying all the forcing patterns.

If the remaining pattern is 1×n, 2×2, or diagonal, the solution is trivial as
shown earlier. Otherwise there is a 3×2 (or, equivalently, 2×3) or larger pattern
containing no AA/BC forcing pattern.

If there are no rows or columns with duplicate colors, then the pattern is
insoluble: a 3×2 color pattern with no duplicate color in one row or column is
insoluble, as is every larger pattern of which it is a part.

The other possibility is that there is a AA/AB pattern There also may be AA/
BB patterns, but there must be at least one AA/AB pattern, for otherwise the AA/
BB pattern would identify two identical rows and columns, but they were
eliminated earlier.

Given an AA/AB subpattern, there are only two possibilities that lead to a
solution: The pattern has only two colors or it is a diagonal pattern.

This exhausts the possible patterns. Every original pattern eventually
reduces to one of these cases, so the procedure terminates with a definite answer.

25 Jul 2006 I2: ColorDraftability

Draftable Color Patterns 187

July 24, 2006

The Drafting Problem

What remains is to use the results of a solution to create a draft — threading
and treadling sequences and a tie-up.

From the color assignments for columns and rows a drawdown can be
obtained by looking at the color of each point of intersection. Then from this, a
draft can be obtained.

For every cell in the pattern, there are three possibilities for a drawdown:
1. The corresponding row and column colors are the same, in which case

either the warp or weft thread can be on top.
2. The column color is the same as the color of the point, in which case the

warp thread is on top.
3. The row color is the same as the color of the point, in which case the weft

thread is on top.
The first case, an option point, presents a problem — how to choose? The

choice potentially is important, because it can affect the length of floats and the
loom resources required.

For many patterns that might be candidates for weaving, the number of
option points is huge. For the pattern shown in Figure 1.17, 256 of the 4,096
points are option points. So there are 2256 possible drafts.

It’s clearly hopeless to explore even a small fraction of possible drafts that
result from making different decisions at option points.

The program that creates a draft [3] provides four ways of handling option
points:

choose the warp or weft at random
always chose the warp
always chose the weft
chose the warp and weft alternately
Trying each of the four methods generally gives an idea of how important

the method used is and which is best. Figure 1.18 shows a warp-choice draft for
the pattern shown Figure 1.17.

25 Jul 2006 I2: ColorDraftability

188 Draftable Color Patterns

July 24, 2006

Figure 1.18. Warp-Choice Draft
The effects on float lengths of the method of making decisions at option

points are shown in Figures 1.19 through 22.

Figure 1.19. Random-Choice Floats

25 Jul 2006 I2: ColorDraftability

Draftable Color Patterns 189

July 24, 2006

Figure 1.20. Warp-Choice Floats

Figure 1.21. Weft-Choice Floats

25 Jul 2006 I2: ColorDraftability

190 Draftable Color Patterns

July 24, 2006

Figure 1.22. Alternating-Choice Floats
Another, often more important, consideration is the number of shafts and

treadles the draft requires. The warp-choice draft shown in Figure 1.18 requires
31 shafts and 31 treadles. The weft-choice draft, shown in Figure 1.23, requires
only 16 shafts and 16 treadles.

Figure 123. Weft-Choice Draft
More strikingly, the random-choice draft requires 56 shafts and 52 treadles,

while the alternating choice draft requires 62 shafts and 31 treadles, making
them out of the question for actual weaving.

25 Jul 2006 I2: ColorDraftability

Draftable Color Patterns 191

July 24, 2006

Exercises and Further Explorations

The heuristic method only gives one set of colors for a solution. In some
cases there may be other color assignments that satisfy the pattern, and they, in
turn, might give solutions with different float structures and loom requirements.
The number of alternative color assignments may be impossibly large and
preclude systematic searching. The exploration of alternative solutions under
the guidance of a sophisticated user might be worthwhile.

A question of more practical concern is what changes might make an
undraftable pattern draftable. One possibility is to examine the effect of changes
in color in forcing patterns.

Another question that could be studied is the determination of draftable
subpatterns within a larger undraftable pattern.

There are many possibilities for producing better drafts (fewer shafts and
treadles, shorter floats), once thread colors are determined.

25 Jul 2006 I2: ColorDraftability

192 Draftable Color Patterns

July 24, 2006

r1

r2

c1 c2 c3

Figure 1. A Labeled Grid

r1

r2

c1 c2 c3

Figure 2. First Labeling Step

r1

r2

c1 c2 c3

Figure 3. The Final Labeling

r1

r2

c1 c2 c3

Figure 4. Another Grid

25 Jul 2006 I2: ColorDraftability

Draftable Color Patterns 193

July 24, 2006

r1

r2

c1 c2 c3

Figure 5. First Step in Labeling

r1

r2

c1 c2 c3

Figure 6. Separated Rows and Columns

r1

r2

c1 c2 c3

Figure 7. A Pattern with Too Many Colors

r1

r2

c1 c2

Figure 8. Three-Colored 2×××××2 Pattern One

25 Jul 2006 I2: ColorDraftability

194 Draftable Color Patterns

July 24, 2006

r1

r2

c1 c2

Figure 9. Three-Colored 2×××××2 Pattern Two

�

Figure 10. A 2××××× 2 Pattern

�

Figure 11. A 1××××× n pattern

25 Jul 2006 I2: ColorDraftability

Draftable Color Patterns 195

July 24, 2006

Figure 12. A 4××××× 4 Diagonal Pattern

Figure 13. Solved Pattern

20 Jun 2006 I3: MaximalPatterns

Maximal Color Patterns

The last section described how to determine if a color pattern is weaveable
and, if so, how to create a draft for it.

This section looks at weaveable color patterns from a different perspective:
How to create color patterns that are guaranteed to be weaveable and have as
many colors as are possible.

In this context a color pattern is an i× j array of colored cells. An array in
which every column and row is labeled with a different color is called maximal.

One question is how many cells are needed to create a weaveable pattern
that has k different colors. Obviously, this can be done with a 1×k or k×1 pattern:
a single row or column with a cell for each different color. These cases, however,
are degenerate and uninteresting.

For maximal patterns, k is partitioned into two parts. There are k – 2 non-
degenerate size combinations, given by

i = k – j 2) j) k – 2
Since these arrays have i × j cells, the largest array occurs for i = j or i = j ± 1,
depending on whether k is even or odd.

Suppose there are eight colors and a 4×4 array as shown in Figure 1.1.
A B C D

E

F

G

H

Figure 1.1. A 4××××× 4 Array
It is obvious that it’s possible to have all k colors in such an array. Figure 1.2

shows one such pattern.

20 Jun 2006 I3: MaximalPatterns

2 Maximal Color Patterns

A B C D

E

F

G

H

EA

B F

G C

H D

Figure 1.2. An 8-Color 4×××××4 Pattern
The remaining cells in Figure 1.2 can be colored in any of the ways the column
and row labels allow. Since there are eight cells of unspecified color, there are 28
= 256 possible patterns based on Figure 2.

For k a multiple of four and i = j = k / 2, it is possible to assign colors to cells
so that each color occurs k / 4 times (i × j = k2 / 4). Here is a coloring algorithm
for constructing such color-balanced patterns:

• For each odd-numbered row, assign alternate cells the column and row
colors.

• For each even-numbered row, assign alternate cells the row and column
colors.

Figure 1.3 shows the result for a 4×4 array.
A B C D

E

F

G

H

EA

B F

G

C

H D

E

F D

GA C

HB

Figure 1.3. A Balanced 4×××××4 Color Pattern
For other array shapes, color balance is not possible, but the coloring

20 Jun 2006 I3: MaximalPatterns

Maximal Color Patterns 3

algorithm given above assures k-colored patterns.
The patterns produced by this algorithm can be quite attractive. See Figure

1.4 for an example.

Figure 1.4. An Algorithmic Pattern

Transformations that Preserve Weaveability

Given a weaveable color pattern, there are several kinds of changes that can
be made to it that preserve Weaveability:

1. duplicating existing rows and columns
2. deleting rows and columns
3. rearranging rows and columns
4. rotating the pattern in 90º increments
5. flipping the pattern horizontally, vertically, or diagonall
6. adding solid-colored rows and columns

These changes do not require knowledge of the colors assigned to columns and
rows. Here are two that do:

7. adding a column whose cells are colored either with the new column color
or their corresponding row colors, and similarly for rows

20 Jun 2006 I3: MaximalPatterns

4 Maximal Color Patterns

8. setting the color of a cell to the color of its column or row
The first kind of change, duplicating existing rows and columns, offers

many design possibilities. For example, duplicating adjacent rows and columns
can be used to produce bands of any desired width. Mirroring, horiztonal,
vertical, or both also follows. Figure 5 shows a weavable color pattern created
using only duplications of the rows and columns of an algorithmic pattern:

Figure 1.5. A Weavable Color Pattern

20 Mar 2006 J1: BooleanDesign

123

Boolean Design of Patterns

Basic weave structures — interlacement patterns — can be described in
many ways, but they all come down to representing the crossings of warp and
weft threads. One or the other is on top. This is represented in drawdowns by a
grid in which the cells represent the intersections and (usually) a cell is black if
the warp thread is on top but white if the weft thread is on top. See Figure 1.1.

Figure 1.1. Drawdown
From a computational point of view, 1s and 0s instead of colors are the

natural representation of interlacement patterns. See Figure 1.2, which corre-
sponds to the drawdown of Figure 1.1. A 1 corresponds to black for the warp
thread on top and a 0 corresponds to white for the weft thread on top.

0100011001100111111001100110001000010011001100101011001100110111011001100110011001100110011001101110110011001101010011001100100001000110011001111110011001100010000100110011001010110011001101111011100110011000000110011001110111101100111011010100100011001000010001100100011111100010011000100001001100010010101101110011011110111000011001100110011000011101111011001110110011001000110010000100011001000110011000100110001000010011000100110011011100110111101110011011100110011101100111010011001100101100110010110011001110011001100001100110000110011001000100110001001100110111001101111011100110111001100111011001110111101100111011001100100011001000010001100100011001100010011000100001001011001100110011001011011110111001101110000001110110011101111011001110110101001000110010000100011001000111111000100110001000010011001100101011001100110111101110011001100000011001100111011110110011001101010011001100100001000110011001111110011001100010110011001100110011001100110011001011100110011000000110011001110111101100110011010100110011001000

Figure 1.2. Binary Interlacement Pattern

Note: This material
should be covered in
the introduction to the
book.

20 Mar 2006 J1: BooleanDesign

124

This binary representation suggests the use of Boolean operations for
weave design.
Boolean Operations

George Boole invented the mathematical system named after him to
describe logical operations on truth values — true or false [1].

Although Boole was motivated by logic, his system applies equally well to
contexts in which there are two mutually exclusive values, such as “on” and
“off”. In the case of weave structures, the values are “warp on top” and “weft on
top”, or alternatively, “it is true that the warp is on top” and “it is false that the
warp is on top”. (The choice of warp rather than weft is arbitrary, as is the choice
of 1 and 0 to represent truth values.)

In Boolean algebra [2], variables, which are indicated by x, y, and so forth,
can have only two values — 1 or 0. Boolean operations produce values depend-

1815 - 1864

George Boole
George Boole grew up in poverty in England. He

early exhibited intellectual powers and showed a special
aptitude for mathematics.

He was unable to pursue a formal education be-
cause he had to work to support his parents. He under-
took to learn mathematics on his own and soon began to
do original work.

His work attracted the attention of prominent math-
ematicians and he began to publish in mathematical
journals. He eventually was awarded a gold medal by the
Royal Society.

He contributed to several areas of mathematics, but he is best known for his
seminal work on the mathematics of logic. This work is the foundation for modern
computing and information technology.

Because of his need to work and lack of formal training in mathematics, he
started late. Unfortunately, he died early.

He had hereditary lung disease. Caught in a drenching rain and late to a
lecture, he continued without changing to dry clothes. He subsequently con-
tracted pneumonia. His wife, who thought the only way to cure a disease was to
apply its cause, drenched him with cold water as he lay feverish in bed. He died
shortly thereafter.

We can only speculate as to what Boole might have accomplished had he had
the opportunity to get a formal education and had lived longer.

1815 - 1864

I’m trying Gregg’s suggestion of using a smaller type size for sidebars.

20 Mar 2006 J1: BooleanDesign

125

ing on the values of the variables to which they are applied. The operations,
however, are not the familiar arithmetic ones, but rather logical operations like
and and or.

Boolean operations are described by truth tables that detail the results
depending on the value of the variables to which the operators are applied. An
example is not, also known as complement and negation, indicated by the symbol
~. This operation has the truth table

not
Other basic Boolean operations are or (+), also known as disjunction, and and

(×), also known as conjunction. Their truth tables are

or

and
Note that ~(x + y) = (~x × ~y) and ~(x × y) = (~x + ~y). These are known as

De Morgan’s Laws, named after the 19th century logician and mathematician
Augustus De Morgan, who propounded them.

A particularly interesting Boolean operation is exclusive or (�), which has
the truth table

20 Mar 2006 J1: BooleanDesign

126

exclusive or
That is, x � y has the value 1 if exactly one of x and y is 1 — it excludes the case
that both are. The + operation sometimes is called inclusive or to distinguish it
from exclusive or.

Exclusive or has an interesting and important property:
(x � y) � y = x
(x � y) � x = y

That is, either x or y can be extracted from (x � y) by applying exclusive or with
the other.

The complement of exclusive or is equivalence (C), which has the value 1 only
if x and y are the same.

equivalence
Another important Boolean operation is implication (A), which is based on

modus ponens, one of the foundations of logical argument: If x implies y and x is
true, then y is true.

implication
All together there are 16 Boolean operations of two variables, correspond-

PDF problem.

20 Mar 2006 J1: BooleanDesign

127

ing to the 16 possible patterns of 0 and 1 for the four possible combinations of the
variable values.

If we use the order of the values of x and y as given in the truth tables above,
we can represent the 16 Boolean operations of two variables by the patterns of
the values they produce.

For example, or and and have the value patterns
1110 or
1000 and

It is possible to use only a small functionally complete set of Boolean
operations from which all 16 can be composed. Two functionally complete sets
are {~, +} and {~, ×}. There are several other small functionally complete sets. In
fact, there are single operations from which all others can be composed. See the
side-bar Sheffer Strokes on the next page.

So far, we have identified Boolean operations by names and operator
symbols. We can also identify them by the hexadecimal characters for their value
patterns. For example, or has the hexadecimal identification e and and has the
hexadecimal identification 8.

The complete list of 2-variable Boolean operations, with hexadecimal
identifications and names and symbols for common operations is

0000 0

0001 1

0010 2

0011 3

0100 4

0101 5

0110 6 exclusive or x � y
0111 7

1000 8 and x × y
1001 9 equivalence x C y
1010 a

1011 b implication x A y
1100 c

1101 d

1110 e (inclusive) or x + y
1111 f

It is worth looking critically at this list. In the first place, eight of the
operations are complements of the others. For example,

PDF problem.

20 Mar 2006 J1: BooleanDesign

128

x C y = ~(x � y)
Since complementation only changes 0s to 1s and vice versa, it can be done

as a simple operation on the result.
In addition, the result of applying the operation 0, which has the value

pattern 0000, is 0, regardless of the values of x and y. This operation therefore is
of no use in design based on two values. The same is true of its complement, f.

Furthermore, the operation c, which has the value patterns 1100, always
produces x regardless of the value of y. Similarly, the operation a, which has the
value pattern 1010, always produces y regardless of the value of x. The comple-

Sheffer Strokes

In a 1913 paper [1], Henry M. Sheffer showed that one of the 16
Boolean operations constitutes a functionally complete set in itself. This
operation, called the Sheffer Stroke and designated by the symbol ?, has
the value pattern 0111 and the hexadecimal identification 7. This
operation can be described as not both x and y.

It can be shown that
~x = x ? y

and
x + y = (x ? y) ? (y ? x)

Since it is well known that {~, +} constitutes a functionally com-
plete set, then {?} does also.

The second Sheffer Stoke, designated by the symbol B, has the
value pattern 0001 and the hexadecimal identification 1. It also consti-
tutes a functionally complete set.

While it may be interesting to know that only one operation is
necessary to form all Boolean operations of two variables, using just one
operation is complicated and unintuitive. These operations are, how-
ever, good for making up homework problems.
Reference
1. “A Set of Five Independent Postulates for Boolean Algebras, with
Application to Logical Constants”, Transactions of the American Math-
ematical Society, Vol. 14 (1913), pp. 481-488.

PDF problem.

20 Mar 2006 J1: BooleanDesign

129

ments of these operations produce ~x and ~y, respectively.
Eliminating all the operations whose results do not depend on both x and

y leaves 10 operations, of which five are complements of the other five.
The question then is what five operations to choose for design. It really

doesn’t matter, as long is none is the complement of another. Four that are
considered most fundamental and add one other, reverse implication, x @ y, will
do.

x × y
x + y
x � y
x A y
x @ y

Thus, a functionally complete design set is {~, ×, +, �, A, @}.
Boolean Operations on Arrays

In the examples above, Boolean operations are applied to individual
variables, such as x and y. The operations also can be applied to arrays of Boolean
variables, denoted by X, Y, and so forth. When an operation is applied to two
arrays, it is applied to all the values in corresponding positions of the two arrays
to give a new array. Figure 1.3 shows an example.

 X Y Z
1 0 1 0 1 1 0 0 0 1 1 0
0 1 0 1 0 1 1 0 0 0 1 1
1 0 1 0 � 0 0 1 1 = 1 0 0 1
0 1 0 1 1 0 0 1 1 1 0 0
1 0 1 0 0 0 1 1 0 1 1 0

Figure 1.3. Boolean Operation on Arrays
Boolean operations on arrays are the basis for the methods of weave design

described here. Boolean operations can be performed on interlacement patterns
cast in the form of arrays of Boolean values, as shown in Figure 1.2. For example,
Figure 1.3 shows the result of applying exclusive or to a small plain weave and
a 2/2 twill to produce a new interlacement pattern (which is just a shifted 2/2
twill).
An Application — Diversified Weaves

Oelsner, whose well-known book was first published in 1915 [3], includes
a chapter on what he calls diversified weaves. The chapter opens as follows:

20 Mar 2006 J1: BooleanDesign

130

Very attractive patterns can be obtained by adding or removing risers
from a ground weave. These alterations are made according to a previ-
ously selected motif.

Many of his examples classify as spot weaves, but he goes beyond that.
The most common ground weave is plain weave, although others can be

used. Figure 1.4 shows a spot weave obtained by applying or to a plain weave
and a repeated motif.

+

 =

Figure 1.4. A Spot Weave
Other Boolean operations produce different patterns. The result of apply-

ing exclusive or is shown in Figure 1.5.

�

=

Figure 1.5. Exclusive Or Spot Weave
Other weaves can be used for the ground. Figure 1.6 shows a 2/2 twill in place
of the plain weave in Figure 1.5.

�

=

Figure 1.6. Twill-Based Spot Weave

Other Applications

The concept of combining figure and ground implies a fundamental
distinction between the two. Boolean operations can, of course, be applied to any
two weaves. The question is what kinds of weave and which operations produce
good results. Figure 1.7 shows the result of combining a 2/2 twill with a basket
weave.

20 Mar 2006 J1: BooleanDesign

131

+

=

Figure 1.7. Combining Plain and Basket Weaves

Comments

Boolean operations provide a natural way to combine two (or more)
interlacement patterns to form new ones. As in all matters of design, artistic
sense and understanding of the tools used are essential.

There are two potential problems associated with using Boolean operations
in weave design: long floats and the loom resources required.

In Boolean operation value patterns, 1s tend to add warp floats and 0s tend
to add weft floats.

The “balanced” Boolean operations, which have two 1s and two 0s in their
value patterns generally cause fewer problems with floats than the unbalanced
ones. Note that there is only one balanced operation, exclusive or, in the function-
ally complete design set described earlier.

The problem of loom resources is more serious and difficult to gauge in
design. One of Oelsner’s examples of diversified weaves has 60 ends and 60
picks — and would require 60 shafts and 60 treadles (the maximum possible for
a weave of this size). While this weave could be done on a drawloom, it really
is in the province of Jacquard weaving.
Advanced Boolean Design

In this article, one Boolean operation has been applied to all the variables
in two interlacement patterns.

The next article describes the use of arrays of Boolean operations, in which
different operations can be applied to different parts of the interlacement
patterns.

“Next article” to be added here.

09 May 2006 J2: L-Systems1

L-Systems

Civilization is founded on language. Our accumulated knowledge has
been preserved in writing. We communicate using language.

Everyone knows at least one natural language, such as German, French,
or English. The term natural has arisen because of languages that have not
evolved in the normal course of human civilization. The most well known of
these “unnatural” languages are programming languages, such as FORTRAN,
C, and Java, which contain instructions for running computers.
Strings

A central component of languages is the string, which is a sequence of
characters, such as a word, a phrase, or a telephone number. The characters may
be letters, digits, punctuation marks, dollar signs, and so forth. Uppercase letters
are used in examples to make them stand out, as in ABCBA.

The characters in strings may or may not have meanings associated with
them. For the time being, they will just be abstract symbols. Strings may of
course, contain patterns; in fact, this is the major interest here. For example, the
string ABCBA is a palindrome, reading the same way forward and backward.
Another example is DEDEDEDE, which consists of four repetitions of DE.

A string within a string is called a substring. For example, DE, ED, and DED
are among the many substrings in DEDEDEDE.

The length of a string is the number of characters in it. For example, the
length of ABCBA is 5. The empty string, consisting of no characters, has length 0.
The empty string is denoted by O.

A single character is a one-character string.
Concatenation consists of appending one string to another. For example, the

concatenation of ABCBA and DE produces ABCBADE.
Formal Language Systems

Linguists studying languages have developed formal language systems as
models for exploring the expressive powers of different kinds of languages.
Most formal language systems are arcane and known only to specialists. A few,
however, have practical applications — sometime surprising ones.

A formal language system consists of three parts:
• (1) an alphabet, which might consist of letters such as A, B, C, …
• (2) a grammar that determines how sentences in the system are
 produced

09 May 2006 J2: L-Systems1

214

• (3) a seed, which is the starting sentence.
A sentence is a string of symbols in the alphabet, such as BA, BCD, DA, … A
language for the system is a set of sentences the grammar can produce.

Grammars usually consist of rewriting rules that describe how one sentence
is produced from another.

Here is an example:
Alphabet: A and B
Rewriting Rules:

1: A � BA

2: B � AB

Seed: A

Grammar: a randomly chosen letter of the current sentence is replaced
according to its rewriting rule to produce the next sentence.

The resulting language might be
sentence rules generation
A seed 0
BA Rule 1 applied to first character (A) 1
ABA Rule 2 applied to first character (B) 2
ABBA Rule 1 applied to last character (A) 3
AABBA Rule 1 applied to second character (B) 4
 …

Different random choices would, of course, produce different languages.
The process of producing a language, starting with a seed, is called

generation. The seed is generation 0; subsequent generations are numbered 1, 2,
3, … a shown bove.
Phrase-Structure Languages

One common formal language system uses phrase-structure grammars. In
such grammars, there are alternative rewriting rules, such as

A � BA

A � AB

The rewriting rule used for a symbol is chosen at random. Sentences are
produced starting with the seed and picking one symbol in the sentence to

09 May 2006 J2: L-Systems1

215

replace, also at random.
Here’s an example:

Alphabet: W, C, S, P, 1, 2, 3, 4

Rewriting Rules:
1: W � 1
2: W � 2
3: W � 3
4: W � 4
5: C � c
6: C � y
7: C � m
8: S � WC

9: P � S
10: P � SP

Seed: P

One language for this grammar is
 sentence character rule generation

P 0
SP 1 10 1
SS 2 9 2
WCS 1 8 3
WCWC 3 8 4
4CWC 1 4 5
4CWm 4 7 6
4C2m 3 2 7
4c2m 2 5 8

That’s the end of the language, since there are no more symbols with rewriting
rules.

This example may seem pointless, but suppose W stands for width, C for
color, S for stripe, P for pattern, c for cyan, y for yellow, and so on, with the

09 May 2006 J2: L-Systems1

216

numerals standing for themselves. Then this grammar generates examples of
simple stripe patterns. The one above has two stripes: cyan of width 4 and
magenta of width 2.

Note that P is defined in terms of itself in rule 10:
P � SP

This introduces the concept of recursion, which is a source of complexity. More
on this important mechanism later.
L-Systems

Phrase-structure grammars are interesting, but they lack expressive power
— that is, the complexity of patterns they can produce is limited and not very
interesting. Among the more powerful and interesting formal language systems
are Lindenmayer Systems, or L-Systems for short, which are named after their
inventor, Aristid Lindenmayer.

Aristid Lindenmayer

Aristid Lindenmayer was a Hun-
garian biologist. His invention of the
string rewriting system named after
him “grew out of an attempt to de-
scribe the development of multicellu-
lar organisms in a manner which takes
genetic, cytological and physiological
observations into account in addition
to purely morphological ones” [2].

It was a surprise to him when his
system began to be used in many other
disciplines and in many ways. In fact, he first rejected as a gimmick the
graphical interpretation of L-System strings to draw plants, something
he never envisioned when he started to manipulate strings of characters.
Drawing ultimately proved to be the most influential use of L-Systems.

There are L-Systems of many different kinds and degrees of com-
plexity, including ones that can be used to represent geometrical forms
and even three-dimensional plants in color and [3-5]. Active research in
the area continues to this day.

1925 - 1985

09 May 2006 J2: L-Systems1

217

The distinguishing characteristic of L-Systems is that all rules are applied
in parallel for each generation and every symbol is rewritten. In the simplest
kind of L-System, there are no alternative rules.

Here is an example L-System:
seed: ABCD
rules: A � BD

B � B
C � ACA
D � O

The first rule specifies that A is replaced by BD. The second rule specifies
that B is replaced by B; that is, it is unchanged. The third rule specifies that C is
replaced by ACA, while the fourth rule specified that D is to be replaced by the
empty string; that is, deleted.

The generation goes like this:
string generation
ABCD 0
BDBACA 1
BBBDACABD 2
BBBBDACABDB 3
BBBBBDACABDBB 4
BBBBBBDACABDBBB 5
BBBBBBBDACABDBBBB 6
 … …

Bs accumulate and each generation is longer than the previous one.
Despite their apparent simplicity, L-Systems are very powerful. Their

languages may contain intricate patterns with infinitely varying subtlety. Among
other things, they can describe plant development (their original use), fractals,
and complex geometric designs.

The power of L-Systems comes from parallel rewriting and repeated
application (iteration) of the rules. These properties are of fundamental impor-
tance and apply to entirely different mechanisms, such as cellular automata [1],
and to many processes in the physical world.
Example L-Systems

Example 1: The Morse-Thue sequence [6] is produced by a very simple L-
System:

09 May 2006 J2: L-Systems1

218

seed: A

rules: A � AB

B � BA

The generation goes like this
A
AB
ABBA
ABBABAAB
ABBABAABBAABABBA

…
Note that the lengths of the strings double with each generation.

Example 2: The Fibonacci string sequence, analogous to the Fibonacci
number sequence [7], is produced by this L-System:

seed: A

rules: A � B
B � AB

Generation goes like this:
A
B
AB
BAB
ABBAB
BABABBAB
ABBABBABABBAB
BABABBABABBABBABABBAB

…
Note that the lengths of the generations give the Fibonacci numbers: 1, 1, 2, 3, 5,
8, 13, 21, …

Incidentally, no phrase-structure grammar can generate either the Morse-
Thue string sequence or the Fibonacci string sequence.
Interpreting L-System Languages

The strings produced by L-Systems such as those given above have evident
patterns but the characters themselves have no meaning. If A and B in the Morse-
Thue example are interpreted as 0 and 1, respectively, the results is the usual
interpretation of the Morse-Thue sequence as a sequence of binary digits.

09 May 2006 J2: L-Systems1

219

Many other kinds of interpretation are possible. One of the most striking
methods interprets characters as drawing commands. The next section describes
the drawing interpretation.

A very natural interpretation of strings like the Fibonacci strings is as
profile sequences. Here is a profile pattern for the seventh-generation Fibonacci
string:

Profile Drafting

In fact, the simplest and most straightforward use of L-Systems is in the
design of profile drafts.

Here is another example:
seed: A

rules: A � ABB

B � BCC

C � CAA

The first four generations are
 generation

ABB 1
ABBBCCBCC 2

09 May 2006 J2: L-Systems1

220

ABBBCCBCCBCCCAACAABCCCAACAA 3
ABBBCCBCCBCCCAACAABCCCAACAA 4
 BCCCAACAACAAABBABBCAAABBAB
 BBCCCAACAACAAABBABBCAAABBABB

Any of these generations beyond the trivial one can be used for profile
“threading” and “treadling” sequences. From here on out, we’ll drop the quotes.
Here is a draft that uses generation 4 for threading and treadling:

The number of blocks is, of course, the number of symbols for which there
are replacement rules. By the nature of L-Systems, useful ones for profile
drafting are limited to four or five blocks; otherwise the generated strings
quickly get too long.

In designing L-systems for profile drafts, the distinguishing characteristic
is the repetition of blocks to create varying pattern widths. A profile sequence
without block repetitions is, of course, possible, but it is indistinguishable from
a treadling sequence, and has limited utility for profile design.

Block repetition is easy to build into L-Systems. The problem is more one
of avoiding excessively long generation strings. See the preceding example,
which has only three symbols. In this L-System, every generation is three times
as long as the preceding one: 3, 9, 27, 81, 243, … Since profile drafts are the source
of threading drafts with more than one thread per block, the limitations are clear.

Another consideration is symmetry. Palindromic mirroring is a powerful

09 May 2006 J2: L-Systems1

221

tool for producing attractive, even compelling patterns. Palindromes can be
added after the fact, but they can be designed into L-System by the simple
expedient of making all the rules palindromic. Here is an example:

seed: A

rules: A � ABBA

B � CC

C � BB

The generations are
 generation

ABBA 1
ABBACCCCABBA 2
ABBACCCCABBABBBBBBBBABBA

 CCCCABBA 3
ABBACCCCABBABBBBBBBBABBA 4
 CCCCABBACCCCCCCCCCCCCC

 CCABBACCCCABBABBBBBBBBA

 BBACCCCABBA

A profile draft for generation 4 is

09 May 2006 J2: L-Systems1

222

Other Ideas

There is a wealth of ways that profile drafts can be produced from L-
Systems.

One idea is to use one L-System for the threading and another for the
treadling.

Remember that interpretation is a very powerful tool when using L-
Systems. Among the many possibilities is the use of a width sequence to replicate
each successive block in a string by some number of times.
T-Sequence Design

One obvious ue of L-Systems is in the design of threading and treadling
sequences.

Here is an example:
seed: 123456787654321

rules: 1 � 23432

2 � 34543

3 � 45654

4 � 56765

5 � 67876

6 � 78187

7 � 81218

8 � 12321

Thus every 1 in a string is replaced by 23432 and so on.
The length of successive generations increases by a factor of 5. The first

generation is
23432345434565456765678767818781218

 12321812187818767876567654565434

 5432343

Here is a partial draft using the third generation of this L-System for
threading and treadling sequences:

09 May 2006 J2: L-Systems1

223

Here’s the weave design:

Note: This is a crackle weave.
A Side Trip to Graphics

The first section on L-Systems showed an example in which the characters
W, C, S, and P had mnemonic value to suggest widths, colors, stripes, and
patterns. These characters themselves have no meaning — they are just sugges-
tions. Striped patterns were an interpretation of the characters. The characters
could just as well have stood for wind direction, capacity, speed, and pulse.

09 May 2006 J2: L-Systems1

224

L-Systems generate abstract patterns of characters. Interpretation trans-
lates these patterns into meaningful, concrete objects.

One of the most striking and well-known interpretations of L-Systems is to
produce graphic images. This section illustrates that. It has nothing to do with
weaving, per se, but it does suggest how L-Systems might be used in weave
design.

Consider this L-System:
seed: A

rules: A � BCDDAEFAEFBDFBAECA

B � BB

It’s not at all obvious what motivates this particular L-System or why it might be
interesting, although the complexity of the first rule suggests some intent. The
lack for rules for C, D, E, and F seems curious, although they proliferate during
rewriting since the default in such cases is to replace such characters by
themselves.

Now consider this L-System, which is the same as the one above except that
different characters are used.

seed: X

rules: X � F–[[X]+X]+F[+FX]–X

F � FF

The characters look a bit strange — this is the first L-System with characters
other than letters. There is a reason for the characters chosen, however. They
serve as mnemonic devices for the intended interpretation, which is as com-
mands for a drawing program:

F move forward a specified length, drawing a line
f move forward a specified length, without drawing a line (not included

in the example above)
+ turn right a specified number of degrees
– turn left a specified number of degrees
[save the current position and direction
] restore the previously saved position and direction

The character X in this L-System is a placeholder. It participates in an
important way in the patterns produced, but it is ignored in interpretation.

Two parameters are needed to carry out the interpretation:
• The length for a move, which determines the scale of the drawing.

09 May 2006 J2: L-Systems1

225

• The angle for turns, which is fundamental to the appearance of the result
produced. For this L-System it is 22.5º — 1/4 of 90º.

The drawing is accomplished by producing several generations of the L-
System and then interpreting the last one. For five generations, the image from
interpretation is

Each generation increases the size and detail of the “tree”.

The strings produced by this L-System become very long as rewriting
continues:

09 May 2006 J2: L-Systems1

226

generation length
1 90
2 380
3 1,552
4 6,264
5 25,160
6 100,840
7 403,752
8 1,615,784

Nevertheless, it is not necessary to look at these strings or even produce
them all at once. Only the drawing program uses them, and it can take the
characters one by one. What these lengths do indicate is how many drawing
actions are needed to produce the detail in the images.

Plants drawn by L-Systems may attempt reality or approch the bizarre.
Some examples are shown on the opposite page.

09 May 2006 J2: L-Systems1

227

09 May 2006 J2: L-Systems1

228

Although the most well-kown drawings produced by L-Systems are those
of plants, L-systems also can be used to draw fractals.

09 May 2006 J2: L-Systems1

229

T-Sequence Expressions

The last section showed showed how L-Systems. with appropriate inter-
pretation, can be used to produce pictures. A very different kind of interpreta-
tion can be used to produce t-sequence expressions. [Possible problem of
reference order.]

A t-sequence expression with undefined variables represents all the pos-
sible t-sequences that can be produced by giving all possible values to the
undefined variables during interpretation.

The usefulness of this idea is illustrated by the following examples.
Example 1

seed: S

rules: S � pal(T)

T � motif(X,V)

X � hor(Y)

Y � motif(U,V))

The terminal generation is
pal(motif(hor(motif(U,V)),V))

Given the values
U := [1,2,3,2]

V := [1,3, 5, 4, 2]

a draft based on the resulting sequence is:

09 May 2006 J2: L-Systems1

230

Here is the weave pattern:

On the other hand, given the values
U := [1,2,3]

V := [1,2,3,4,5]

a draft based on the resulting sequence is:

09 May 2006 J2: L-Systems1

231

Here is the weave pattern:

09 May 2006 J2: L-Systems1

232

Example 2

seed: S

rules: S � pal(T)

T � coll(U,V)

U � pal(X)

V � pal(Y)

The terminal generation is
pal(coll(pal(X),pal(Y)))

Given the values
X := [1,3,5,7,9,8,6,4,2]

Y := [6,4,2,7,5,3]

a draft based on the resulting sequence is:

Here is the weave pattern:

09 May 2006 J2: L-Systems1

233

On the other hand, given the values
X := [1,5,2,4,3,6,7,8]

Y := [6,4,2,7,5,3]

a draft based on the resulting sequence is:

Here is the weaving pattern:

09 May 2006 J2: L-Systems1

234

Resources

Many L-System programs are available on the Web as freeware and
shareware programs. Almost all of them are designed to produce images — to
such an extent that a person who didn’t know otherwise might assume that’s all
there is to L-Systems.

Lparser [2] is a particularly capable freeware L-System application. Here is
an “air horse”, which shows what is possible using Lparser:

18 May 2006 J3: L-Systems2

Articulated L-Systems
Variables and Constants

L-Systems have no concept of characters that play different roles. Most
rewriting systems distinguish between variables and constants. Variables have
associated replacement strings; constants do not and just stand for themselves.

In an L-system, if there is no rule for a character, it is replaced by itself. In
practical terms, it's a constant.
Articulated L-Systems distinguish between variables and constants. The

mechanism for rewriting and producing successive generation remains the
same. The only difference is in the classification of characters. In articulated L-
Systems, characters are divided into two classes as described above: constants
and variables.

This L-System to produce graphic images illustrates the difference:
seed: X
rules: X � F–[[X]+X]+F[+FX]–X

F � FF
Here X and F are variables, while –, +, [, and] are constants.

To help distinguish variables from constants in examples that follow,
uppercase letters are used for variables and all other characters are constants.
This typographic distinction is just a matter of convenience; there is nothing
fundamental about it.

Constants are just what their name implies. They are not replaced in
rewriting (which is a more useful idea than the one that they are replaced by
themselves).
Defined and Undefined Variables

Variables in turn are divided into two classes: defined and undefined. A
defined variable is one for which there is a rewriting rule. An undefined variable
is one that appears in an L-System but for which there is no rewriting rule.
During rewriting, undefined variables are treated like constants, but they play
a different conceptual role.

Previous examples of L-Systems have had no undefined variables. An
undefined variable can serve two purposes. One is as a placeholder for a long
constant string. An example is

seed: S
rules: S � STS

18 May 2006 J3: L-Systems2

236

Here, T is an undefined variable. Successive generations are
S
STS
STSTSTS
STSTSTSTSTSTSTS
 …

If T had been given the rule
T � abcbbca

the third generation would have 42 more characters.
Undefined variables used as placeholders need not be added to L-Systems;

values for them can be provided during interpretation.
Base L-Systems

Another use for undefined variables is in designing base L-Systems that can
be supplemented by definitions for undefined variables.

Consider the previous L-System supplemented by a definition for T:
seed: S
rules: S � STS

T � aSb
Successive generations are:

S
STS
STSaSbSTS
STSaSbSTSaSTSbSTSaSbSTS
 …
On the other hand, with a different definition for T, as in
seed: S
rules: S � STS

T � SabS
successive generations are

S
STS

18 May 2006 J3: L-Systems2

237

STSSabSSTS
STSSabSSTSSTSabSTSSTSSabSSTS
 …
Although the generations of these two L-Systems are different, they both

reflect the common part of their base L-System.
Base L-Systems can be used as a tool for designing L-Systems incrementally

by giving them variable definitions.
Termination

Most L-Systems produce longer and longer strings with each successive
generation, and do this endlessly. This is intentional in the design of most L-
Systems, where successive generations produce more complex and detailed
patterns. Generation goes on endlessly because the rewriting rules contain
variables [1]. Such L-Systems are called nonterminating.

It is possible to design nonterminating L-Systems that “loop” and have only
a fixed number of different generations. A simple example is

seed: X
rules: X � Y

Y � X
where the generations are:

X
Y
X
Y
…

Such L-Systems are contrived aberrations and are not interesting for design
purposes.

It is also possible to design L-Systems in which generation leads to a string
with no defined variables. In this case, all subsequent generations would be the
same, and generation effective terminates. Such L-Systems are called terminat-
ing.

An example of a terminating L-System is
seed: X
rules: X � YY

Y � ZaZ

18 May 2006 J3: L-Systems2

238

where the generations are
X
YY
ZaZZaZ

In this case, different strings can be provided for Z during interpretation to give
different results.

Although terminating L-Systems are limited in the variety of patterns they
can produce, they are nonetheless useful in design.

Consider, for example, this L-System:
seed: X
rules: X � Y, 1, 2, 3, Y

Generation quickly terminates with the string
Y, 1, 2, 3, Y

If a rule for Y is added
Y � 4, 3, 2

the result is
4, 3, 2, 1, 2, 3, 4, 3, 2

On the other hand, if
Y � 1, 2, 3, 4, 3, 2

the result is
1, 2, 3, 4, 3, 2, 1, 2, 3, 1, 2, 3, 4, 3, 2

Put in words, this L-System characterizes all strings that have two instances
of a given string separated by 1, 2, 3. This is, of course, obvious. But the idea can
be used as a design tool.

For example, the next step might be to provide a rule for Y that contains a
variable:

Y � 4, 3, 2, Y

18 May 2006 J3: L-Systems2

239

This results in a nonterminating L-System with endless generation:
X
Y, 1, 2, 3, Y
4, 3, 2, Y, 1, 2, 3, 4, 3, 2, Y
4, 3, 2, 4, 3, 2, Y, 1, 2, 3, 4, 3, 2, 4, 3, 2, Y
4, 3, 2, 4, 3, 2, 4, 3, 2, Y, 1, 2, 3, 4, 3, 2, 4,
 3, 2, 4, 3, 2, Y

…

18 May 2006 J4: L-Systems3

Generating T-Sequence Expressions
The section describes L-Sysstems that generate t-sequence expressions, as

opposed to actual t-sequences.
This example illustrates the idea:
seed: S
rules: S � pal(T)

T � rpt(U,I)
This is a terminating L-System with only two generations:

pal(T)
pal(rpt(U,N))

The interpretation of these strings, as the characters used suggest, is that pal
is a function that produces a palindrome from its argument and rpt is a function
that produces a repeat of its first argument a number of times specified by its
second argument. Note that although p, a, l, r, and t, are individual constant
characters in the L-System, pal and rpt can be treated as strings during interpre-
tation.

If U is given the value [1, 2, 3, 4] and N the value 2 during interpretation,
the result is

[1, 2, 3, 4, 1, 2, 3, 4, 3, 2, 1, 4, 3, 2, 1]
The L-System above could, of course, be derived from its final generation:

pal(rpt(U,N))
The value of using an L-System to characterize the patterns rather than just

using the t-sequence expression it produces is that the components are repre-
sented in separate rules and hence easy to understand, while t-sequence expres-
sions may be complicated and deeply nested, which is difficult for human beings
(but not computer programs) to understand, and may be difficult to construct by
hand.

The sections on t-sequneces cast operations in an abstract operator notation
using a variety of mathematical symbols and typographical devices.

For example, the expression from the example above,
pal(rpt(U,N))

is written in the abstract operator notation as
E(U × n)

18 May 2006 J4: L-Systems3

110

T-Sequence Models

The last section showed how terminal L-Systems can be used to character-
ize t-sequences in terms of t-sequence expressions.

A t-sequence expression with undefined variables represents all the pos-
sible t-sequences that can be produced by giving all possible values to the
undefined variables during interpretation.

The usefulness of this idea is illustrated by the following examples.
Example 1

seed: S
rules: S � pal(T)

T � motif(X,V)
X � hor(Y)
Y � motif(U,V))

The terminal generation is
pal(motif(hor(motif(U,V)),V))

Given the values
U := [1,2,3,2]
V := [1,3, 5, 4, 2]

a draft based on the resulting sequence is:

18 May 2006 J4: L-Systems3

111

Here is the weave pattern:

On the other hand, given the values
U := [1,2,3]
V := [1,2,3,4,5]

a draft based on the resulting sequence is:

18 May 2006 J4: L-Systems3

112

Here is the weave pattern:

Example 2
seed: S
rules: S � pal(T)

T � coll(U,V)
U � pal(X)
V � pal(Y)

The terminal generation is
pal(coll(pal(X),pal(Y)))

Given the values
X := [1,3,5,7,9,8,6,4,2]
Y := [6,4,2,7,5,3]

a draft based on the resulting sequence is:

18 May 2006 J4: L-Systems3

113

Here is the weave pattern:

On the other hand, given the values
X := [1,5,2,4,3,6,7,8]
Y := [6,4,2,7,5,3]

a draft based on the resulting sequence is:

18 May 2006 J4: L-Systems3

114

Here is the weave pattern:

Of course, just for these two example L-Systems, there is an infinite number
of sequences, not to mention how they are used in drafts.

18 May 2006 J4: L-Systems3

115

Non-Terminal T-Sequence Generation
The examples of L-Systems for generating t-sequence expressions in previ-

ous sections all have been terminal. While terminal L-Systems provide useful
models, they do not exploit the power of L-Systems to generate successively
more complex and detailed patterns — in this case, t-sequence expressions.

Consider this L-System:
seed: S
rules: S � pal(T)

T � motif(U,V)
U � hor(T)

It generates t-sequences expressions that are palindromes containing mo-
tifs along paths with horizontal reflection. But since T and U are defined in terms
of themselves, exactly what is going on is hardly clear. The first few generations
are:

pal(T)
pal(motif(U,V))
pal(motif(hor(T),V))
pal(motif(hor(motif(U,V)),V))

…
The first three of these generations are comprehensible, but the last one is too
intricate to comprehend; it is necessary to try examples and see what results.

Suppose U and V have the values
U := [1,2,3,2]
V := [1,2,3,4,5,6]

The resulting sequence starts like this:

A partial draft based on this sequence is:

18 May 2006 J4: L-Systems3

116

and the weave is:

Here is another example of a non-terminating L-System:
seed: S
rules: S � pal(T)

T � coll(U,V)

18 May 2006 J4: L-Systems3

117

U � pal(S)
V � ver(T)

The first few generations are:
pal(T)
pal(coll(U,V))
pal(coll(pal(S),vert(T)))
pal(coll(pal(pal(T)),vert(coll(U,V))))

…
Suppose T, U, and V have the values

T := [1,2,3,4,5,6,7,8]
U := [1,1,2,2,3,3,4,4,5,5]
V := [8,7,6,5,4,3,2,1]

The resulting sequence starts like this:

Here is a case of a sequence with adjacent duplicate values. Duplicates are not
surprising, since the expression from which it was created is not comprehensible
and hence the results unpredictable. Removing adjacent duplicates produces
this:

A partial draft based on this sequence is:

18 May 2006 J4: L-Systems3

118

and the weave is:

Of course other values for the variables give different results, sometimes
very different results.

There are four problems with using L-Systems in the manner described
above:

• It is difficult to design useful L-Systems.
• It is difficult to predict the results.
• It is difficult to assign useful values to undefined variables.

18 May 2006 J4: L-Systems3

119

• The sequences produced quickly become impossibly long.
The last problem is the easiest to handle: Simply truncate long sequences so

they are of a manageable length. Note the t-sequence expressions cannot be
truncated; trying to do so generally results in invalid expressions.

The other three problems are essentially intractable if any degree of
complexity it to be obtained. The best approach to problems like this is to try
many alternatives, extract the useful results, and learn from the process.

For this to be practical, it is necesary to use computer programs.

20 May 2006 J5: L-Systems4

L-System Design
Creating an L-System for a particular purpose is neither easy nor intuitive,

but, when successful, the results can be more than worth the effort. And as is the
case with many such things, the process becomes easier with practice and
experience.

When designing L-Systems, it is important to keep in mind their basic
properties and their inherent problems.
The Fractal Nature of L-Systems

L-Systems fundamentally are fractal generators. Although it is possible to
design L-Systems that produce simple, easily understood patterns, the L-System
mechanism by its nature is fractal.

This fractal nature comes from three sources:
• parallel operation on characters (global uniformity)
• characters defined in terms of themselves (recursion)
• repeated application of the rules (iteration)

The ways characters can be defined in terms of themselves is of central
importance. A simple example is

seed: A
rules: A � ABA

B � BBA

Here both A and B are defined in terms of themselves and each other.
Repeated applications of the rules produces increasingly long and intricate
combinations of the two characters:

A
ABA
ABABBAABA
ABABBAABABBABBAABAABABBAABA

…
Although the rules are simple, the patterns that develop are nonetheless

complex and not easy to characterize.
The Seed

The seed, with which generation begins, is not particularly important. In

20 May 2006 J5: L-Systems4

2

most L-Systems, the seed is a single character. The seed can be a string of
characters, but an L-System with such a seed can always be replaced by an L-
System whose seed is a single character.

Consider this example:
seed: ABCBA
rules: A � BC

B � AB
C � CB

A new character can be added as the seed and a new rule can be added
replacing it by the original seed:

seed: D
rules: D � ABCBA

A � BC
B � AB
C � CB

The only difference between these two L-Systems is an additional genera-
tion in the second. Note that D only appears once.
Alphabet

The alphabet of the characters used in an L-System really only matters as
to the number of characters. Characters are arbitrary. They may be chosen for
mnemonic value, but until the interpretation of a string generated by an L-
System, they have no meaning.

For example,
seed: A
rules: A � ABA

B � BBA

and
seed: 3
rules: 3 � 3X3

X � XX3
are equivalent.
Generation Length

20 May 2006 J5: L-Systems4

3

An inherent property of L-Systems is increase in length of successive
generations. In fact, this limited early work on L-Systems at a time when the
amount computer memory was very available was very small.

It is possible to design L-Systems in which generation length does not
increase. An example is

seed: A
rules: A � B

B � A

which generates
A
B
A
B
…

Such L-Systems are both contrived and trivial.
When a rule specifies replacement by more than one character, generation

length increases. This problem is addressed in a subsequent section.
Character Relationships

The way that characters are defined in terms of themselves and each other
has many effects on L-System generation.

If not all characters appear in all rules, there many be successive genera-
tions that have essentially different characteristics.

A simple and trivial example is
seed: A
rules: A � BB

B � CC
C � AA

for which the generations are
A
BB
CCCC
AAAAAAAA

20 May 2006 J5: L-Systems4

4

BBBBBBBBBBBBBBBBBB
 …

A subsequent section addresses the issue of character interaction in more
detail.
What is Possible

L-Systems are only one of many kinds of formal grammars [11]. Different
kinds of grammars have different “expressive power”. The issue of expressive
power is of both theoretical and practical importance.

Expressive power, roughly speaking, is a measure of what kinds of patterns
a formal grammar can produce. Expressive power is measured more in terms of
what patterns can be excluded than what may be included.

For example, almost all kinds of formal grammars can produce palin-
dromes, but they inevitably produce other patterns as well. That is, non-
palindromes cannot be excluded by grammars of most kinds. L-Systems can
generate purely palindromic sentences and in this sense are more powerful than
most other kinds of formal languages.
Interpretation

Although interpretation falls outside the scope of L-Systems proper, it is a
power design tool and its possible use needs to be kept in mind when L-Systems
are designed.

An L-System intended to produce a profile draft may not require any
interpretation other than the think of the characters as blocks. On the other hand,
an L-System designed to draw a pattern may require interpretation of characters
as navigation and drawing actions [1].

But interpretation can be used to change L-System strings in arbitrary
ways, including reordering them, deleting characters, and so forth. In some
sense, there is no limit to the power of interpretation.

08 Jun 2006 J6: CellularAutomata

Cellular Automata

A cellular automaton is an array of identical, interacting cells, as shown in
Figure 1.1

Figure 1. Cellular Automaton
The cells in cellular automata have states, indicated in Figure 1.1 by

different colors. We’ll confine our attention to cellular automata in which the
cells have only two states, 1 and 0, indicated by black and white respectively.
Figure 1.2 shows an example.

Figure 1.2. Two-Color Cellular Automaton
Notice the resemblance in appearance of two-color cellular automata to

drawdowns. In fact, that’s the role of cellular automata here.
A cellular automaton, as a whole, passes through a succession of configu-

rations corresponding to the states of its cells. The automaton goes from one
configuration to another at discrete intervals of time, the states of all its cells
changing in parallel. The change of state of a cell is determined by a transition
rule that depends on the neighbors of the cell and is the same for all cells in the
automaton.

The neighborhood of a cell can be defined in different ways. Figure 1.3
shows one of the most frequently used neighborhoods, which is named after
John von Neumann, who used it in his studies of self-reproducing machines. See
the side bar on the next page.

08 Jun 2006 J6: CellularAutomata

134 Cellular Automata

Figure 1.3. Von Neumann 5-Neighborhood

Cellular Automata Applications

John von Neumann, who played a major role
in the design of modern computers, was among
the first to use cellular automata as models for
abstract machines.

He proved that it is possible, in principle, to
design machines that not only are capable of re-
production but also of evolving into more compli-
cated machines.

Cellular automata are widely used as dis-
crete models of physical systems and have been
used to simulate a wide range of natural processes
such as turbulent fluid flow, gas diffusion, forest
fires, and avalanches. Cellular automata can even be used to generate
pseudo-random numbers.

Considered abstractly, cellular automata exhibit a wide variety of
behaviors: self organization, chaos, pattern formation, and fractals.

John Conway’s Game of Life [?] is the best known abstract application
of cellular automata. In it, a wide variety of patterns with life-like
properties are born, interact, and die in fascinating and complex ways.
Vast amounts of human and computer time have been expended explor-
ing this strange world.

John von Neumann
1903-1957

08 Jun 2006 J6: CellularAutomata

Cellular Automata 135

The cell itself is labeled C. Its four neighbors are labeled according to their
relative positions according to the points of the compass.

Figure 1.4 shows another commonly used neighborhood, named after
Edward F. Moore, an early pioneer in studies of cellular automata.

Figure 1.4. Moore 9-Neighborhood
Subscripts are used to denote times, which proceed 1, 2, 3, … . For example

C10 is the state of C at time 10.
A typical transition rule is the “parity rule” for the 5-neighborhood:

Ci+1 = (Ci + Ni + Ei + Si + Wi) mod 2

That is, Ci+1 = 1 if the sum of the neighborhood states (including C itself) is odd
and 0 otherwise.

Another interesting rule is the “voter rule” for the 5-neighborhood:
Ci+1 = 1 if (Ni + Ei + Si + Wi) > 2
Ci+1 = 0 if (Ni + Ei + Si + Wi) < 2
Ci+1 = ~Ci otherwise

where ~C is the complement of C: 1 if C = 0, 0 if C = 1.
Note that in the voter rule, the result may depend on the value of C, while

in the parity rule, it does not: In the parity rule, C is treated no differently than
its neighbors.
Cellular Automata Topology

There is a sticky issue: What happens to the cells at the edge of an

08 Jun 2006 J6: CellularAutomata

136 Cellular Automata

automaton? What are their neighbors?
This problem can be dealt with in several ways. The way chosen depends

on the context in which the cellular automaton is considered.
One way is to consider the cellular automaton to be infinite without edges,

with cells extending off indefinitely in all four directions. Another way is to treat
the cells at the edges as unchanging, serving as a kind of static border.

A less obvious but natural and useful way in the context of drawdowns is
to consider the cellular automaton to wrap around from edge to edge. See Figure
1.5.

Figure 1.5. Neighborhood Wrap-Around
Thus, the N neighbor of a cell on the top edge is the cell in the corresponding

row on the bottom edge, and so on.
From a topological point of view, this constitutes wrap-around of the

horizontal and vertical edges and also of the top and bottom edges. The result
is a three-dimensional surface known as a torus, as suggested by Figure 1.6.

Figure 1.6. Torus
The cells on this torus are distorted because the “horizontal” circumference

is larger than the “vertical” circumference so that the general shape to be seen

08 Jun 2006 J6: CellularAutomata

Cellular Automata 137

more easily. Perspective causes the shapes of the cells to be skewed.
It is not necessary to actually make a toroidal cellular automaton. It is only

necessary, when applying rules, to determine the neighbors according to the
wraparound topology.

It is worth noting that edge wrap-around is equivalent to an infinite plane
of repeats.
Pattern Sequences

When a cellular automaton is started in a specific configuration and a rule
is applied repeatedly, a pattern sequence results.

Figure 1.7 shows the beginning of the pattern sequence that results from
applying the 5-neighborhood parity rule to the pattern shown in Figure 1.2. The
complete sequence has 511 distinct patterns; at the next iteration, the original
pattern reappears; after this, there are no new patterns.

…
Figure 1.7. Parity Rule Sequence

08 Jun 2006 J6: CellularAutomata

138 Cellular Automata

Figure 1.8 shows the pattern sequence that results from applying the voter
rule to the pattern shown in Figure 2. In this case, there are only three distinct
patterns; the fourth is the same as the second.

Figure 1.8. Voter Rule Example
Figure 19 shows the beginning of the pattern sequence for the 5-neighbor-

hood parity rule starting with a symmetric pattern. There are 511 distinct
patterns in all, the 512th being the same as the first.

 Ç

08 Jun 2006 J6: CellularAutomata

Cellular Automata 139

…
Figure 1.9. Parity Rule with Symmetric Pattern

The voter rule, as in the previous example, yields fewer distinct patterns
starting with this initial pattern, the seventh being the same as the first. See
Figure 1.10.

08 Jun 2006 J6: CellularAutomata

140 Cellular Automata

Figure 10. Voter Rule with Symmetric Pattern
An interesting way to explore the effects of a rule is to start with a “seed”,

a single black cell in a field of white ones.
In such pattern sequences, it usually takes some time for the seed to spread

results to a sufficient extent that useful patterns result. Figure 1.11 shows the
pattern sequence for a single seed and the 5-neighborhood parity rule. There are
511 different patterns in all. The first eight are shown in this Figure. Figure 1.12
shows four of the more interesting patterns from the first 64.

…

08 Jun 2006 J6: CellularAutomata

Cellular Automata 141

…
Figure 11.1. Parity Pattern Sequence Start-up

Figure 1.12. Selections from First 64
An apparently uninteresting 9-neighborhood rule, called “1-of-8”, is

Ci+1 = 1 if (NWi + Ni + NE i + Ei + SEi +
 Si + SWi + Si) = 1

Ci+1 = Ci otherwise

08 Jun 2006 J6: CellularAutomata

142 Cellular Automata

This rule, starting with a single seed, produces a fascination fractal pattern. See
Figure 1.13.

08 Jun 2006 J6: CellularAutomata

Cellular Automata 143

Figure 1.13. 1-of-8 Rule Fractal Pattern
All patterns after the 10th are the same as the 10th.

Putting the seed off center illustrates the effect of wraparound topology.
See Figure 1.14.

08 Jun 2006 J6: CellularAutomata

144 Cellular Automata

Figure 1.14. Offset and Wrap-Around
The patterns in Figure 1.14 are the same as those in Figure 1.13; they are

just at different positions on the torus.
Structural and Aesthetic Concerns

Many patterns produced by cellular automata are unsuitable for weaving
for structural reasons. Notable examples are the initial patterns in sequences
starting with a single seed. Other patterns simply are unattractive.

Cellular automata can produce thousands of patterns quickly. Even with
the rejection of obviously unsuitable patterns, the problem is one of excess. How
can really good patterns be found in seas of possibilities?

One approach is to start with a conventional drawdown pattern such as the
one shown in Figure 1.2 and look for interesting examples “of type”.

Another approach is to start with an attractive and structurally sound
symmetric pattern and apply a symmetric rule (one, like the parity rule, in which
the result does not depend on the actual positions of specific neighbors). This
avoids the problem with an overwhelming cascade of chaotic patterns that may
result by starting with a pattern without much structure and applying an
asymmetric rule.

Size matters also. 19 × 19 patterns are used in this article for presentation
purposes. Large patterns usually lead to longer pattern sequences and allow
more interesting results, as illustrated by this large 1-of-8 pattern.

08 Jun 2006 J6: CellularAutomata

146 Cellular Automata

30 Jul 2006 J7: T-Sequences

201

A T-Sequence Language

Introduction

[This section now assumes t-sequences have been defined and discussed in
the early parts of the book. The section has been renamed to distinguish t-
sequences from a language that describes them]

This section describes a language that can be used for constructing and
manipulating t-sequences. The formalism that is introduced here allows t-
sequences to be described precisely and compactly and provides conceptual
focus. There is no mathematics, per se, just as these is no mathematics in the
notation used for weaving drafts. Like draft notation, the t-sequence notation
must be understood to be useful. The t-sequence language uses many “special”
characters to describe operations concisely. Because of this, the t-sequence
language may appear to be daunting. But the ideas are simple.
Terminology and Notational Conventions

The term sequence implies linear order. The terms in a sequence come one
after another. There is a first term, a second term, and so on.

T-sequence terms may be explicit, as in 1, 4, 6, and so on, or they may be
given as variables that take on different values in different contexts. Variables are
indicated by lowercase italic letters, such as i, j, and k. Subscripts may be used to
distinguish different term variables, such as i1, i2, j5, and so on.

Sequences may be given explicitly by enclosing their terms in square
brackets, as in

[1, 2, 3, 4, 3, 2, 3, 4, 5, 6, 7, 8, 7, 6, 5, 4]
[i1, i2, i3, i4, i5, i6, i7, i8]

It is also possible to have an empty sequence with no terms. Although an
empty sequence is not useful in weaving, it may arise in operations used to create
other t-sequences. The empty sequence is denoted explicitly by [] and is
represented by the symbol O.

Ellipses are used to indicate one or more terms in a sequence that are not
given explicitly, as in

[1, 2, 3, 4, 5, … 15, 16, 15, … 1]

30 Jul 2006 J7: T-Sequences

202 A T-Sequence Language

Variables are used to name sequences so that they can be referred to
without specifying their terms. Sequence variables are indicated by uppercase
italic letters, such as S, T, and U. Sequence variables also may have subscripts to
distinguish different sequences in a common context. Examples are S1, S2, and T5.

A specific sequence can be given a name. This is called assignment and is
indicated by a colon followed by an equal sign, as in

S := [1, 2, 3, 4, 3, 2, 3, 4, 5, 6, 7, 8]
Then S can be used to refer to this sequence without giving all the terms.

Two t-sequences are identical, denoted by S = T, if they are the same, term
by term.
Graphic Representation

Patterns in t-sequences usually are easier to detect in graphical representa-
tions than by examining sequences of integers.

In this section, the values in grid plots increase upward:

B

In the grid plots used in this section, the axes usually are not marked, since
such markings tend to distract the human visual system and interfere with
pattern recognition.

The bottom row corresponds to the value 1 and the left column corresponds
to the first value in the sequence.
T-Sets and T-Numbers

Sometimes it is useful to specify the particular shafts/treadles used in a t-
sequence. This is called the t-set of the t-sequence. Braces are used to denote t-
sets, as in {1, 2}.

In many cases, all the shafts and treadles are used, as illustrated in the
example above. For example, the t-set for the plot above is

{1, 2, 3, 4, 5, 6, 7, 8}.
Finally, to avoid having to say shaft/treadle numbers repeatedly, t-numbers

is used to cover both.

30 Jul 2006 J7: T-Sequences

A T-Sequence Language 203

Sequence Metrics

There are three important properties associated with a sequence: its length,
its minimum value (usually 1), and its maximum value, called its bound. These
are given by functions whose names are lowercase Greek letters:

h(S) length
+(S) minimum value
a(S) maximum value (bound)

For the sequence S in the preceding section, h(S) = 12, +(S) = 1, and a(S) =
8.
Extension

Concatenation

The most fundamental operation on t-sequences is appending one to
another to form a longer one. This is called concatenation.

Concatenation of t-sequences is denoted by
S | T

in which the result is a new sequence consisting of the terms of S followed by the
terms of T.

For example if
S = [1, 2, 3, 4, 5, 6, 5, 4, 3, 2]

and
T = [1, 2, 3, 2, 1, 2, 3, 4, 5, 6, 7, 8]

then
S | T = [1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1, 2, 3, 2,
 1, 2, 3, 4, 5, 6, 7, 8]

Here is the graphic representation:

S

30 Jul 2006 J7: T-Sequences

204 A T-Sequence Language

T

S | T

The empty sequence O is the identity with respect to concatenation. That is,
(S | O) = (O | S) = S

for all S.
Often many t-sequences are concatenated, one after the other. To handle

such cases conveniently, the notation
|(S1, S2, …, Sn)

denotes the concatenation of S1, S2, …, Sn .
Repetition

Repetition is one of the most common operations on t-sequences. Repetition
consists of concatenating a sequence with itself, perhaps several times.

Repetition is denoted by
S × i

where i, an integer * 0, specifies the number of repetitions.
For example, if S is as given in the preceding section, then

(S × 3) = [1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1, 2, 3,
 4, 5, 6, 5, 4, 3, 2, 1, 2, 3, 4, 5, 6, 5, 4, 3, 2]

Here is what it looks like as a grid plot:

(S × 1) = S and (S × 0) = O, the empty sequence for all S.
Extension

It sometimes is desirable to repeat a sequence to a specific length that is not

30 Jul 2006 J7: T-Sequences

A T-Sequence Language 205

an even multiple of the length of the sequence.
This operation is called extension and is denoted by S � i, where i * 0 is the

length of the new sequence.
For example, if T is as given previously,

(T � 23) = [1, 2, 3, 2, 1, 2, 3, 4, 5, 6, 7, 8,
 1, 2, 3, 2, 1, 2, 3, 4, 5, 6, 7]

Here is what it looks like as a grid plot:

The extension length i may be less than h(S), in which case truncation at the
right occurs. For example,

(T � 9) = [1, 2, 3, 4, 5, 6, 5, 4, 3]
Of course, (S � 0) = O for all S.

Duplicate Terms

Although concatenation and its two specialized forms, repetition and
extension, are simple and fundamental operations, problems may arise if the last
term in a sequence is the same as the first term in the sequence appended to it.
Such duplicate terms may appear as undesirable artifacts of the concatenation
and in some weaving contexts may cause structural problems.

For example, if
S = [1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1]

and duplicates at the boundaries of concatenation are not removed, S × 3 would
be as shown as:

If duplicate terms at the boundaries of concatenation are removed, how-
ever, the result is as shown here:

30 Jul 2006 J7: T-Sequences

206 A T-Sequence Language

Whether or not duplicates that result from concatenation should be re-
moved is a matter of context and not a property of the sequences involved. More
often than not, duplicate removal is desired, so the operations of concatenation,
repetition, and extension do that.

There are alternative versions of these operations that do not remove
duplicates. These are denoted by S |+ T, S ×+ i, and S �+ i. For example, for the
sequence S given above,

(S ×+ 3) = [1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1, 1, 2,
 3, 4, 5, 6, 5, 4, 3, 2, 1, 1, 2, 3, 4, 5, 6, 5,

 4, 3, 2, 1]
Note: Any duplicates within a sequence are unaffected by any of the

concatenation operations.
Runs

Runs — integers in numerical sequence — occur very frequently in t-
sequences.

A simple run consists of integers in order from a starting value to an ending
value. If the starting value is less than the ending value, the run is up, else it is
down. Here is an up run followed by a down run.

Simple Runs
There are two different kinds of runs that are composed of simple runs:

connected runs and disconnected runs.

Connected Run

30 Jul 2006 J7: T-Sequences

A T-Sequence Language 207

Disconnected Runs

Simple Runs

A simple run is denoted by
i A j

For example,
(2 A 8) = [2, 3, 4, 5, 6, 7, 8]

and
(5 A 1) = [5, 4, 3, 2, 1]

Connected Runs

In a connected run, runs go up and down (or down and up) between a
beginning point, inflection points, and an ending point with no gaps. Beginning
points, inflection points, and ending points collectively are called anchor points.

Connected runs can be constructed using simple runs and concatenation
(with duplicate removal [1]). For example, the connected run shown in Figure 2
can be constructed by

(1 A 8) | (8 A 2) | (2 A 6) | (6 A 1)
where parentheses are used to make the grouping of operations unambiguous.

Constructing a connected run using concatenation is unnecessarily cum-
bersome, however, since the run is completely described by its anchor points: the
sequence [1, 8, 2, 6, 1]. This is emphasized in the figure below, where the anchor
points are set off by color. The sequence of anchor points follows.

Highlighted Anchor Points

30 Jul 2006 J7: T-Sequences

208 A T-Sequence Language

Anchor-Point Sequence
The operation for constructing a connected run from an anchor-point

sequence S is denoted by A S. Note that the operator symbol is in prefix position
before its operand as opposed to the same symbol used to denote simple runs,
which is in infix position between its operands.

For example,
 A [1, 8, 2, 6, 1]

produces the same connected run as the concatenation of simple runs shown
earlier.
Disconnected Runs

In a disconnected run, there are breaks in the numerical sequence of values.
Disconnected runs can, of course, be constructed by concatenating simple

runs. For example, the disconnected run shown in Figure 3 can be constructed
by

(1 A 5) | (2 A 6) | (3 A 7) | (4 A 8) |
 (6 A 3) | (5 A 2) | (4 A 1)

This also is unnecessarily cumbersome, since the runs are completely
characterized by pairs of beginning and ending points: the sequences

[1, 2, 3, 4, 6, 5, 4]
and

[5, 6, 7, 8, 3, 2, 1]
This picture shows the disconnected runs with the end points highlighted.

Following two pictures show the sequences of beginning and end points.

Highlighted End Points

30 Jul 2006 J7: T-Sequences

A T-Sequence Language 209

Beginning-Point Sequence

End-Point Sequence
The operation for constructing disconnected runs from sequences of end

points is denoted by S / T, where S is the sequence of beginning points and T is
the sequence of ending points.

For example, the disconnected runs shown in Figure 6 can be constructed
by

[1, 2, 3, 4, 6, 5, 4] / [5, 6, 7, 8, 3, 2, 1]
It is worth noting that the sequences of beginning and ending points are

concatenations of simple runs, so the same result can be obtained by
((1 A 4) | (6 A 4)) / ((5 A 8) | (3 A 1))

Although this form is more complicated than the one using explicit se-
quences, it reveals underlying structure in this disconnected run. Another form
is perhaps more revealing:

((1 A 4) / (5 A 8)) | ((6 A 4) / (3 A1))
This is the concatenation of a sequence of upward disconnected runs with a
sequence of downward connected runs. This is, of course, evident in the grid
plot.
Symmetries

Symmetry is one of the most powerful tools for producing aesthetically
pleasing patterns. In t-sequences, the main use of symmetry is in concatenating
a sequence and its reversal to produce a palindrome. Geometrically, reversal is
horizontal reflection.
Horizontal Reflection

Horizontal reflection reverses the order of the terms in a sequence left to
right. Horizontal reflection is denoted by CS. For example, if

30 Jul 2006 J7: T-Sequences

210 A T-Sequence Language

S = [2, 4, 6, 8, 1, 3, 5, 7, 1, 2, 3, 1, 2, 3]
then

CS = [3, 2, 1, 3, 2, 1, 7, 5, 3, 1, 8, 6, 4, 2]

S

CCCCCS

Vertical Reflection

It is also possible to reflect a sequence vertically by reversing the values, so
that the largest becomes 1, the next-to-largest becomes 2, and so on. If this
operation is denoted by i(i), then

i(i) = a(i) – i + 1
The operation of vertical reflection is denoted by S. For example, if

S = A[1, 3, 1, 6, 2, 8]
then

S = A[8, 6, 8, 3, 7, 1]

S

30 Jul 2006 J7: T-Sequences

A T-Sequence Language 211

S

Palindromes

A palindrome is a sequence that is the same forwards and backwards. A
palindrome is created by concatenating a sequence with its horizontal reflection
(reversal):

S | CS
This operation is so important that it has its own notation: ES. For example,

if
S = A[1, 3, 1, 6, 2, 8]

then
ES = A[1, 3, 1, 6, 2, 8, 2, 6, 1, 3, 1]

EEEEES
Note that the duplicate value at the middle is removed, as it is with

concatenation. In the case that duplicate removal is not desired,
S |+ CS

can be used.
“Palinforms”

The coined the word “palinforms” refers to concatenations of a sequence
with one of its reflections other than the horizontal one.

There are two reflections other than horizontal that can be used to create
palinforms: vertical and combined horizontal and vertical. Consider

S = A[1, 3, 1, 6, 2, 8]

30 Jul 2006 J7: T-Sequences

212 A T-Sequence Language

CCCCCS

S | S

S | CCCCCS
Although these palinforms do not have the obvious symmetry of palin-

dromes, the inherent relationships produce visual interest, if of a more subtle
form.
Motifs along Paths

Some of the most interesting patterns in t-sequences come from placing a
(usually) short sequence, called a motif, at successive points along a path. Here
is an example:

The motif is

and the path is a straight draw:

30 Jul 2006 J7: T-Sequences

A T-Sequence Language 213

.
The operation of placing a motif M along a path P is denoted by
M @ P
Placing a motif along a path is concatenation with an offset. Adjacent

duplicates may arise, and as for other forms of concatenation [1], duplicate
values at boundaries are removed by default. The operation

M @+ P
does not remove duplicates that arise at boundaries.

It is worth noting that if the path is a constant sequence (all terms the same),
a motif along the path simply is a repeat . In other words, the concept of a
Summary

S | T concatenation
|(S1, S2, …, Sn) concatenation
S × i repetition
S � i extension
i A j simple run
AS connected run
S / T disconnected runs
CS horizontal reflection

S vertical reflection
ES palindrome formation
M @ P motif along a path

Concatenation operations without duplicate removal:
S |+ T concatenation
|+(S1, S2, …, Sn) concatenation
S ×+ i repetition
S �+ i extension
M @+ P motif along a path

10 Jun 2006 K1: Introduction

Introduction

There are numerous freeware, shareware, and commercial weaving
programs. While the vary somewhat in the features they offer, they all are based
on a common model in which the user can create and modify drafts in conven-
tional ways.

This chapter describes some programs that use ideas contained in this
book.

The first program, Painter’s Weaving Language, is hidden inside a
commercial software package designed for artists. It is was the initial inspiration
that led to the explorations in this book.

The second program uses Boolean algebra as the basis of design. The
third program focuses on designing draftable color patterns.

The final program is one based on the ability to evaluate functions
dynamically; it is a “programmer’s program“, not one for the general user — but
the one used by the author of this book for developing and testing most of the
ideas in it.

Look at these programs for ideas — and for unconventional approaches
to weave design.

02 Jul 2006 K2: PWL

141

The Painter Weaving Language

Corel’s Painter application provides facilities for creating images using
tools that mimic natural media.

One of Painter’s facilities is a “weaving engine” for an eight-shaft, eight
treadle loom. On the surface, the weaving engine offers a variety of built-in
weaves that can be displayed in various ways — basically a way to produce
patterns. Behind the scenes is an “advanced weaving language” [1]. The user can
compose and edit expressions that describe the threading, treadling, and warp
and weft color sequences. The tie-up is handled in the conventional manner.
Figure 1.1 shows an example of the weaving dialog for a shadow weave and
Figure 1.2 shows part of the corresponding image.

Figure 1.1. Dialog for a Shadow Weave

Figure 1.2. Image of a Shadow Weave
The weaving language consists of expressions that produce sequences of

characters. In the case of the threading and treadling, sequences are composed

02 Jul 2006 K2: PWL

of digits 1 though 8, which identify the shafts and treadles, respectively.
For example, in threading the shafts, the sequence 1346 means the first

warp thread goes through shaft 1, the second through shaft 3, the third through
shaft 4 and the fourth through shaft 6. In treadling, 1346 means treadle 1 is
pressed for the first weft thread, treadle 3 for the second weft thread, 4 for the
third, and 6 for the fourth. Full sequences are, of course, much longer than this.

Colors are represented by letters, with the actual color values being
assigned elsewhere in the application.

The power of the weaving language lies in its repertoire of expressions,
which can used to describe sequence structure — patterns. There are 15 expres-
sions in all, ranging from simple to complex in terms of their descriptive power.

The expressions are essentially the same for colors as for the threading and
treadling, but some operators do not apply to colors. In our examples, we’ll use
the threading and treadling expressions.
The Domain

The concept of domain plays an important role in the weaving language. The
domain consists of the digits that label the shafts and treadles. The sequence
12345678 is called the domain run. Sequences “wrap around” on the domain.
That is, 1 follows 8 in situations involving domain runs. This is just arithmetic
modulo 8 with the numbering starting at 1 instead of 0 to accommodate the
convention used in weaving drafts.
Expression Syntax

Expressions are composed of operators and operands on which they operate.
In ordinary arithmetic, 3 + 5 is an expression in which the operator + (addition)
operates on its operands, 3 and 5 to produce 8. The operands of weaving
operators are sequences and integers. The operators produce sequences. For
example, in the weaving expression

16243 # 2

is the rotation operator, its left operand is a sequence and its right operand is
the number of places to rotate to the left. The result is

24316

Most operators can be written in terms of names, short names, and symbols.
For example, rotate, rot, and # are equivalent. We’ll use symbols where they are
available.

Spaces between operators and operands are optional in most situations and
can be used to improve readability. Parentheses can be used to group operators

02 Jul 2006 K2: PWL

143

and their operands and also to improve readability.
The Operators

Concatenation

Concatenation (concat or ,) appends one sequence to another to produce a
longer sequence. For example,

(16243#2),432

appends 432 to the result of rotating 16242 by two places and produces
24316432

Repetition

Repetition (repeat, rep, or �) repeats its left-operand sequence the number
of times given by its right operand. For example,

1346�7

produces
1346134613461346134613461346

Blocks

In creating blocks (block or []), the left operand is a pattern and the right
operand is a sequence of integers. Each character in the left operand is repeated
individually by the corresponding integer in the right operand. For example,

1346[]9231

expands to
111111111334441

Integers greater than 9 can be specified by enclosing them in braces. For example,
1345[]12{10}3

produces
1334444444444666

There also is an interleaved form. For example,
[1 1 3 2 4 10 5 3]

produces the same result as the example above.

02 Jul 2006 K2: PWL

Extension

The concept of extension permeates the weaving language, as it does
weaving itself. Extension (extend, ext, or –>) replicates its left operand to
produce a result whose length is given by its right operand. For example,

1346 –> 16

produces
1346134613461346

If the replication does not come out even, it is truncated on the right. For
example,

1346 –> 15

produces
134613461346134

Reversal

Reversal (reverse, rev, or `) reverses the order of a sequence. In this case,
there is only one operand the operator follows it in suffix position. For example,

12365238`

produces
83256321

Rotation

Rotation was described earlier but is included here for completeness. The
left operand of rotation (rotate, rot, or #) is a sequence and its right operand an
integer, which may be negative. It moves the specified number of characters
from the beginning of the sequence and places them at the end. If the number is
negative, the characters are moved from the end to the beginning. For example,

16243#–2

produces
43162

Palindromes

Palindromes are common in weaving and other design contexts. The
palindrome operator (palindrome, pal, |), like rotation, is in suffix position. For
example

 1346|

02 Jul 2006 K2: PWL

145

produces
134643

Note that this is not a true palindrome — it does not read the same forward
and backward. The center value, 6, is not duplicated and the value, 1, is omitted.
It is what is called a pattern palindrome.

The reason pattern palindromes are not true palindromes has to do with
their use in repeats. Consider, for example, the (true) palindrome 1346431,
derived from 1346. If this is repeated, the result is

1346431134643113464311346431 …
Note the duplication of 1s at the boundaries of the repeats. This produces
unavoidable and generally undesirable artifacts. On the other hand, if the
pattern palindrome 134643 is repeated, there is no such artifact:

134643134643134643134643 …

When creating a true palindrome from a sequence, the last character of the
sequence could be repeated, as in 13466431. This also produces artifacts:

13466134664314311346643113466431…

This also is not done in pattern palindromes.
Interleaving

Interleaving (interleave, int, ~) interleaves the characters of two sequences.
For example,

1234 ~ 5678

produces
15263748

If one operand is shorter than the other, it is extended to the length of the
other.
Domain Runs

There are four operators related to domain runs.
“Upto” (upto, <, or –) concatenates its left and right operands but inserts

between them the portion of the domain between the last character of the left
operand the first character of the right operand. For example,

1346 < 8

produces

02 Jul 2006 K2: PWL

134678

If, however, the last character in the left operand is greater than the first character
in the right operand, the intervening portion “cycles” through the domain, so
that

1346 < 3

produces
134678123

“Tick marks”, indicated by a single quotes, can be placed in front of the right
operand. When this is done, the number of tick marks specifies the number of
complete domain runs to be added in. For example,

1346 <'' 8

adds two domain runs and produces
1346781234567812345678

The operator – can be used in place of < if the last character of the left
operand is less than the first character of the right operand, as in

123 – 765

There is a corresponding “downto” operator (downto, >, or –). For example,
8 > 3

produces
876543

The operator – can be used in place of > if the last character of the left
operand is greater than the first character of the right operand.

The ”updown” operator, (updown or <>) produces alternating ascending
and descending domain runs. The first, ascending, run starts at the first character
of the left operand and goes to the first character of the second operand. The
second, descending, run starts from there and goes to the second character of the
right operand, and so on, alternating between ascending and descending runs.
For example,

1234<>5678

produces
12345432345654345676545678

As in “upto”, tick marks can be used to indicate domain cycles between

02 Jul 2006 K2: PWL

147

runs.
The “downup” operator, (downup or ><), is like “updown” except that the

order is descending, ascending, … .
Permutation

The permutation operator (permute or perm) applies a permutation vector
(right operand) to a pattern (left operand). The pattern is permuted in sections
whose lengths are the lengths of the permutation vector. The permutation vector
specifies the positions of the elements in a section. For example, 4123 puts the
fourth character of the section first, the first second, the second third and the
third fourth. Thus,

1346 perm 4123

produces 6134.
In the case that the pattern is not the same length as the permutation vector,

the pattern is extended to an integer multiple of the length of the vector.
Pattern Boxes

The pattern box operator (pbox), like perm, has a left operand pattern and
a right operand permutation vector. The permutation vector is extended to the
length of the pattern and the permutation is applied. For example,

123456787654321 pbox 21436587

produces
214365878563412

Templates

The template operator (template, temp, or :) provides for “sub-articulation”
of a pattern (left operand) by a “texture pattern” (right operand). The first
character (digit) in the template pattern is taken as the root. The remaining digits
in the template pattern are taken with respect from their distance from the root.
For example, in the template pattern 342 the root, r, is 3 and the template is r, r
+ 1, r – 1. The template is applied to each character in the pattern with the
character replacing the root. For example,

12345678:121

has the template r, r + 1, r and produces
121232343565676787818

Note that values wrap around on the domain, so that for the last character of the
pattern, 8, r + 1 produces 1.

02 Jul 2006 K2: PWL

Comments

It is interesting to note that the weaving language, as rich as it is, does not
have operators for some patterns that occur frequently in weaving. Two missing
ones are true palindromes and the interleaving of more than two sequences.

Another problem relates to domains. Although some of Painter’s built-in
weaves use only four shafts and four treadles, and only the labels 1, 2, 3, and 4,
there is no way to restrict domain runs to this subset. For example, 4<2 produces
4567812, not 412 as it would if the domain could be restricted. Of course, 5678
does nothing.

The restriction to 8 shafts and 8 treadles is more fundamental, since it limits
the kinds of things that can be woven. More shafts and treadles could be handled
by extending the domain to include more labeling characters. If the number of
shafts and treadles is not the same, the situation becomes more complicated,
especially for domain operators.

The weaving language is difficult to use in the context of Painter. Expres-
sions are limited to 256 characters. The fields for entering expressions are small
and there is no way to find out what sequence an expression produces except by
trying to puzzle it out in a resulting image.

It also is much harder to produce desired results in an expression-based
language than it is to do so with a graphic representation.

The Painter weaving language is, nonetheless, very powerful. It allows
complicated patterns to be expressed concisely and built up from simpler ones.
It could well serve as a basis for a more powerful language that has variables,
data structures, conditionals, control structures, and recursion. Such a language
might not be suitable for designing weaves directly, but it could serve as a
foundation for a powerful weaving program with graphical capabilities. [Men-
tion article on an extension to PWL.]

02 Jul 2006 K2: PWL

149

03 Apr 2006 K3: BooleanDesign

A Boolean Design Program

Previous sections described the use of Boolean operations for designing
drawdowns. The techniques described can be done by hand, at least for small
patterns, but the process is so time consuming and error prone that it is not likely
to be used, despite its potential for creating attractive and novel patterns.

This section describes an interactive program that makes it easy to design
drawdowns using Boolean operations.
The Program

The program has three components:
• a design laboratory
• a drawdown editor
• a Boolean operator array editor

The editors are invoked from the design laboratory and are subordinate to it.
The Design Laboratory

Figure 1.1 shows the Design Laboratory interface.

Figure 1.1 Program Interface

03 Apr 2006 K3: BooleanDesign

310

The three lists at the left correspond to the components of a Boolean
operation:

X A Y A Z
where X and Y are Boolean arrays representing drawdowns, A is an array of
Boolean operations [2], and Z is the drawdown resulting from applying A to X
and Y.

The X and Y lists are the same, and contain the names of available
drawdowns. The A list contains the names of the available Boolean operator
arrays.

Some drawdowns and arrays are built in; others can be added when the
program is run.

Clicking on a name in one of the lists makes the corresponding drawdown
or operator array current. Windows show the current drawdowns and operator
array. Selecting plain for X, rings for A, and 2/2 twill for Y produces the result
shown in Figure 1.2.

The panel on the right side of the design laboratory interface shown in
Figure 1.1 contains buttons for selecting a Boolean operator that applies to all
cells in the X and Y drawdowns. Three forms of identification are provided for
the operators: the associated color [2], the value pattern, and a symbolic form.

Selecting an operator replaces the current array by one in which all
operators are the selected one. The Z drawdown is updated accordingly. Figure
1.3 shows the result of selecting exclusive or operation.

Figure 1.2. Drawdown and Operator Array Windows

03 Apr 2006 K3: BooleanDesign

311

The complement button at the bottom left of the design laboratory interface
brings up a dialog in which X, Y, or Z can be complemented. See Figure 1.4.

Figure 1.4. Complement Dialog
The Save Z button at the bottom right of the design laboratory interface

brings up a dialog in which a name can be specified for saving the Z pattern. See
Figure 1.5.

Figure 1.5. Save Z Dialog

Figure 1.3. Drawdown and Operator Array Windows After Selecting exclusive or

03 Apr 2006 K3: BooleanDesign

312

The Z pattern is saved and the name is added to the X and Y lists.
The File menu, shown in Figure 1.6, provides items for saving the current

design-laboratory configuration in a database, loading a saved database, im-
porting and exporting patterns and arrays, and quitting the application.

Figure 1.6. The File Menu
The notations at the right provide reminders of keyboard shortcuts that can

be used in place of the menu. The symbol @ indicates that a keyboard shortcut
is invoked by depressing the meta modifier key and pressing the letter that
follows. For example, pressing q while the meta modifier key is depressed quits
the application.

The Edit menu, shown in Figure 1.7, provides items for invoking the
drawdown and operator array editors.

Figure 1.7. The Edit menu
If drawdown is selected, a dialog listing the available patterns is presented.

See Figure 1.8.

03 Apr 2006 K3: BooleanDesign

313

Figure 1.8. Drawdown Editor Dialog
The drawdown editor is launched with the selected drawdown.

If array is selected, a dialog listing the available operator arrays is pre-
sented. See Figure 1.9.

Figure 1.9. Operator Array Editor Dialog

03 Apr 2006 K3: BooleanDesign

314

The operator array editor is launched with the selected array.
The Drawdown Editor

Figure 1.10 shows the drawdown editor.

Figure 1.10. The Drawdown Editor

The drawdown to be edited is displayed on the right side of the editor
window. Various editing tools are available through the panel on the left side of
the window.

These buttons allow the drawdown to be rotated circularly in

03 Apr 2006 K3: BooleanDesign

315

each of the four directions, one cell at a time.

These buttons allow the drawdown to be flipped around the axes
indicated.

These buttons allow the drawdown to be rotated in increments of
90º as indicated.

These buttons affect the contents of cells. The left button clears all
cells to white. The middle button inverts the drawdown, changing white cells to
black and vice versa. The right button randomizes the pattern.
The Operator Array Editor

The operator array editor operates in a fashion similar to the application for
creating weaveable patterns [3]. See that article for a basic description.

The operator array editor window is shown in Figure 1.11 .

Figure 1.11. Operator Array Editor Window

The palette of colors used to identify Boolean operators is displayed in a
separate window. See Figure 12.

03 Apr 2006 K3: BooleanDesign

316

Figure 1.12. Boolean Operator Palette
A third window displays the current operator array. See Figure 13.

Figure 1.13. Boolean Operator Array

03 Apr 2006 K3: BooleanDesign

317

The File menu provides the usual items for importing and exporting
patterns and dismissing the editor. When the array operator editor is dismissed,
a dialog is presented to name the array. The array then is added to the A list.

09 Jun 2006 K4: ColorDesign

A Color Design Application

Most handweavers design using drafts — threading sequences, treadling
sequences, tie-ups, and the resulting drawdown. The warp and weft threads
may be assigned colors, and the resulting pattern viewed in a “color draw-
down”. This process assures a weaveable pattern. There is no way to produce
one that is not weaveable.

A previous section described how to ensure weaveability in algorithmically
constructed patterns and showed transformations on weaveable patterns that
preserve weaveability [1].

The program designed here uses a different approach to constructing
weaveable color patterns; one in which a designer constructs color patterns
“from scratch” but not in the context of drafting. Instead, the designer uses an
interactive computer application that prevents anything that would result in an
unweavable pattern.
The Application

The application displays several windows: an interface window that
provides controls for the user, a design window in which the user creates
designs, and a palette window that displays the colors available for design.
The Interface

The application interface, shown in Figure 1.1, displays three colors
associated with the left, middle, and right mouse buttons, respectively.

Figure 1.1. The Interface Window
The initial colors are red, green, and blue. These colors can be changed as

described later.
The Design Window

The design window consists of a rectangular array of cells. Initially all cells
are colored with the middle mouse button color. See Figure 1.2.

09 Jun 2006 K4: ColorDesign

2

Figure 1.2. The Design Window
If the user clicks on a cell in the design window, the cell is colored with the

color associated with the button used — provided the result would be weaveable.
If the result would not be weaveable, the change is not made and there is an
audible alert.

The user also can click and drag to color several cells at one time. The test
for weaveability is not made until the mouse button is released. If the result
would not be weaveable, the application backtracks, removing the most recently
colored cells until there is a weaveable result.
The Palette Window

The color associated with a mouse button can be changed by clicking with
that button on a cell in the palette window. The initial palette provides a range
of colors as shown in Figure 1.3, but other palettes are available and can be
selected as described later.

Figure 1.3. The Palette Window
Symmetrical Designing

The application supports symmetrical designing in which cells in symmet-
ric positions are colored. Symmetries can be selected from the symmetry panel

09 Jun 2006 K4: ColorDesign

3

on the application interface. See Figure 1.1.
The default is no symmetry, so only the color of the cell under the mouse

pointer is changed. This is indicated by the highlighted button in the upper-left
corner of the symmetry panel. Various combinations of symmetries can be
selected by clicking on the icons for individual symmetries. See Reference 2 for
a detailed explanation.

All symmetries can be enabled by choosing the all radio button below the
symmetry panel. Figure 1.4 shows a design produced by using symmetries.

Figure 1.4. A Symmetrical Design
Layout

The default layout for the design window is a 20 × 20 array of 10-pixel
square cells. See Figure 1.5.

Figure 1.5. The Default Layout
The cells need not be square. Their widths and heights are determined by

the values in sequences in the first two fields of the layout window. These
sequences are repeated as necessary to fill out the specified number of cells. A
scaling factor is applied to these values.

09 Jun 2006 K4: ColorDesign

4

Finally, a palette can be specified. The default palette is named c1, which
is shown in Figure 1.3. See Reference 3 for information about the other palettes
that are available.

The initial colors for buttons for a new design are colors in the given palette
that are close to red, green, and blue, respectively.

Figure 1.6 shows a layout based on the Fibonacci sequence, which is
reflected to produce a symmetric result. The palette g8 provides eight equally
spaced shades of gray. The resulting design window is shown in Figure 1.7 and
the new interface and palette windows are shown in Figures 1.8 and 1.9.

Figure 1.6. A Fibonacci Layout

Figure 1.7. A Fibonacci Design Window

09 Jun 2006 K4: ColorDesign

5

Figure 8. New Interface Window

Figure 9. New Palette Window
Enforcing Weaveability

The enforce weavability button on the interface is a toggle, which initially
is on. If it is off, changes in the design window are not checked for weavability.

One reason for not enforcing weavability is that it often is not possible to get
from one weaveable pattern to another by changing the colors of cells one at a
time. One way to accomplish changes that preserve weavability but cannot be
done piecewise is to disable weavability testing, make the changes, and then
enable weavability testing. (Should the result not be weavable, the previous
changes are undone as necessary the next time a change is made.)
Legal Colors

The show legal colors button toggles the visibility of a window that mimics
the design window. Clicking on a button color region on the interface window
(see Figure 1) overlays on the legal color window all the cells in the design that
could be made that color while preserving weavability. See Figure 10.

09 Jun 2006 K4: ColorDesign

6

Figure 1.10. Design and Legal Colors Windows
The legal color window only shows individual cells that can be colored; it

does not show all combinations of cells that together would preserve weavability.
Indeed, all cells in the design window can be made one color with a result that
is trivially weavable.
Showing Weavability Testing

The show weavability button toggles the visibility of a window that shows
the result of the last weavability test [4]. This result shows the row and column
colors determined by the test. See Figure 1.11.

Figure 1.11. Weavability Solution
Menus

The File menu, shown in Figure 1.12, has items for saving an image of the
design window, loading a custom palette database, and quitting the application.

Figure 1.12. The File Menu
The Edit menu, shown in Figure 1.13, provides items for undoing and

redoing the last change to the design window.

09 Jun 2006 K4: ColorDesign

7

Figure 1.13. The Edit Menu
There is no limit to the number of changes that can be undone or redone; it

is possible to move backward and forward through the entire history of a design.
As indicated, the stack for saved designs can be cleared, which frees the memory
they occupy.

The Design menu, shown in Figure 1.14, provides items related to the
design.

Figure 1.14. The Design Menu
The new item brings up the layout dialog described previously. Entire

designs can be saved and loaded as indicated. The clear item clears the design
to a single color. It brings up a dialog in which the user can chose between the
left, middle, and right button colors.
Experience with the Application

Experience with the application is limited and the only users so far have
been familiar with the concepts of weaving and color weavability but not
experienced weavers.

If the user doesn’t think in terms of row and color assignments (doesn’t
know the rules) but considers the application as a game, the results can be more
frustrating than interesting.

Starting with a “blank” (solid-colored) design window, cells with a second
color can be drawn in any fashion, since all two-colored designs are weavable.
However, it may be impossible to change any cell to a third color unless the
second color was used judiciously.

The user learns to reserve areas of cells so that they can be colored with
other colors, the most notable being stripes (it’s always possible to change all the
cells in a row or column to a new color).

Figures 1.15-1.19 show examples of weavable color patterns created using
the application described here.

09 Jun 2006 K4: ColorDesign

8

Figure 1.15. Vivid Geometry

Figure 1.16. A Study in Grays

Figure 1.17. Skyline at Dawn

Figure 1.18. Shimmer

09 Jun 2006 K4: ColorDesign

9

Figure 1.19. Parquet

