
Software Protection

T he current widespread interest in protecting soft-
ware from piracy, tampering, and reverse engi-
neering has been brought to bear for several rea-
sons. First, revenue derived from proprietary

software sales is vital to many software vendors’ survival.
Second, more vendors distribute software in forms that at-
tackers can easily manipulate, such as Java bytecode or Mi-
crosoft’s intermediate language. (In fact, these distribution
formats are essentially identical to source code.) Finally,
some new types of software, such as digital rights manage-
ment (DRM) systems, contain secrets that must be pro-
tected from attack. For example, users who can extract the
cryptographic key stored in a DRM media player will be
able to enjoy any media without having to pay for it.

Sandmark is a research tool we are developing to study
the effectiveness of software-based methods for protect-
ing software from piracy, tampering, and reverse engi-
neering. Our ultimate goal with Sandmark is to imple-
ment and evaluate all known software-based methods of
software protection. Sandmark currently contains several
code obfuscation and software watermarking algo-
rithms.1–8 Sandmark’s infrastructure makes it easy to add
and combine algorithms, evaluate their performance and
effectiveness, and launch automatic and manual attacks
against watermarking and obfuscation algorithms. It is
our hope that the tool will prove useful to software pro-
tection researchers in fairly evaluating their algorithms, to
potential software protection users who wish to evaluate
different protection mechanisms, and to software devel-
opers who wish to protect their software from piracy, re-
verse engineering, or tampering by using software pro-
tection algorithms.

Sandmark provides protection against malicious host at-

tacks, which at-
tackers launch to
extract or destroy part of a program. These attacks typically
target proprietary algorithms, cryptographic keys, and pro-
gram registration checks. The watermarking and obfusca-
tion algorithms that Sandmark provides can deter these
types of attack. Users can use obfuscation to make it diffi-
cult for an attacker to locate sensitive information and can
use watermarking to mark sensitive information so that it
can be traced to the person who distributed it illegally.

Previous articles have discussed algorithms for code
obfuscation, software watermarking, and tamper-proof-
ing in more detail. An understanding of these algorithms
will aid in the understanding of why Sandmark was de-
veloped.1–4,7 In this article, we describe Sandmark’s ca-
pabilities and overall design and how researchers can use it
to test and evaluate these algorithms.

Software protection
There have been a variety of techniques proposed for
software protection both in hardware and software. The
hardware-based approaches range from the use of dongles
to tamper-proof processors. The Sandmark framework is
designed for the implementation and evaluation of soft-
ware-based techniques such as software watermarking
and code obfuscation.

Watermarking
Software watermarking deters intellectual property theft
by embedding a secret message into a program. Water-
marking a program is similar to adding a copyright notice
to a textual document to assert copyright ownership. If
the message uniquely identifies the program’s seller, then
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Sandmark is a tool that measures the effectiveness of software-

based methods for protecting software from piracy, tampering,

and reverse engineering. The Sandmark team’s goal is to 

develop techniques that will let users determine empirically

which algorithms have the least performance overhead and

the highest resilience to attacks.
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we call it a watermark. If, instead, the message uniquely
identifies the program’s purchaser, then we call it a finger-
print. Pirated software that has been fingerprinted can be
traced back to its original purchaser.

Other researchers have proposed many software wa-
termarking algorithms.5–7,8,9 They typically embed the
watermark by reordering parts of the original code or
by inserting new code, which has no semantic effect
when executed.

Code obfuscation
Code obfuscation protects a secret contained in a piece of
software by making the software more difficult to read,
understand, and reverse engineer. The secret can be the
software’s design, algorithms used in the software, or data
(such as cryptographic keys) hidden in the software. The
protection an obfuscation algorithm affords a program
depends on the algorithm’s sophistication, the program’s
size and structure, and the types of attacks to which the
program will be subjected. More detailed work on code
obfuscation appears elsewhere.3,4,11

Threat models
To evaluate a software protection technique’s strength,
there must be a well-defined threat model, which de-
scribes the tools and techniques an adversary is likely to
employ. Manual attack models assume that a programmer
skilled in reverse-engineering techniques inspects and
modifies the software “by hand.” Automated attack mod-
els assume that software protection schemes are attacked
with tools that do not require user interaction. The auto-
mated attack tools are also called class attacks, an example
of which is DeCSS, a C program that subverts the con-
tent scrambling system that protects DVDs from unau-
thorized use.

Most adversaries use a variety of tools and a hybrid at-
tack model to execute a single attack. For example, an at-
tacker might wish to disable a license check that requires
the user to enter a valid registration number. The attacker
might begin by locating the registration number input
code using a debugger, and setting breakpoints in code

that open a new window in the user interface. He or she
might then perform a static data dependency analysis to
find where the registration number is used, disassemble
the code that uses it, and manually edit this code to disable
the license check. Thereafter, the attacker could con-
struct a fully automated attack that modifies the program
without performing any analysis.

Given enough time and motivation, a competent at-
tacker can subvert any software protection scheme. Most
schemes therefore focus on making the cost of a success-
ful attack as high as possible. For example, a code obfusca-
tion algorithm is an effective protection technique if the
cost of reverse engineering the obfuscated application is
the same as developing it from scratch. Similarly, a soft-
ware watermarking algorithm is an effective technique if
any attack that renders the mark unrecognizable also sig-
nificantly slows down the de-watermarked application or
disables it altogether. In other words, we want to develop
software protection techniques that

• make the cost of an initial attack high enough to dis-
suade an adversary from trying,

• make the construction of class attack scripts difficult—
for example, by making every distributed copy of a pro-
gram different, and

• make a successfully attacked application unusable by
being buggy, too large, or too slow.

The threat model for watermarking and fingerprint-
ing algorithms includes additive, subtractive, distortive,
and collusive attacks (see the “Attacks against watermark-
ing systems” sidebar, p. 44). With each of these attacks,
we assume that the adversary has knowledge of the water-
marking technique but is unaware of the embedded mes-
sage and the secret key. As noted earlier, the Sandmark
framework contains tools for launching these types of at-
tacks and evaluating the extent of their success. 

Sandmark system overview
Sandmark’s current implementation includes a variety of
software watermarking and code-obfuscation algorithms.
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Obfuscation—A technique that prevents reverse engineering by ap-

plying semantics-preserving code transformations in an attempt to

make the code as complex and confusing as possible.

Watermarking—A technique used to dissuade a user from illegally re-

distributing copies of software by embedding a message w into the

program P. If w uniquely identifies the owner of P, then w is a copy-

right notice, but if w identifies the purchaser, then it is a fingerprint.

Tamper-proofing—A technique used to protect a secret from alter-

ation. Tamper-proofing code must be able to detect that an alter-

ation has occurred and then cause the software to fail in a stealthy

manner. In this way, the attacker cannot detect the code that

caused the failure.

Malicious host—A computing system that compromises a program’s

integrity (the “client”) that it executes. A compromise in this con-

text includes reverse engineering, tampering, or piracy.

Malicious client—A program that compromises the integrity of the

computing system (the host) on which it executes. A compromise in

this context includes leaking or destroying the host’s data.

Software protection terminology
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The tool itself consists of 110,000 lines of Java source code
and operates on Java bytecode. The implementation has
been a team effort that has included 23 students, two pro-
fessors, and one staff programmer over two years. To ma-
nipulate class files, Sandmark depends on the ByteCode
Editing Library (BCEL; http://jakarta.apache.org/bcel),
which provides a simple and easy-to-use interface to Java
bytecode editing.

The Sandmark architecture is composed of eight main
parts: a set of watermarking and obfuscation algorithm
plugins, a set of static code analyses, a manager of program
objects (classes, methods, and fields that the algorithms
can manipulate), a set of software engineering metrics and
other static code statistics, a set of manual attack tools, sev-
eral “obfuscation executives” (which use different heuris-
tics to select an optimal sequence of obfuscations), a
graphical user interface (GUI), and a test suite for measur-
ing correctness and evaluating software protection algo-
rithms. 

We designed Sandmark’s system architecture to make
implementing new software protection algorithms as
straightforward as possible. Each algorithm implements as
a plugin to a simple interface. For example, to implement
a new static watermarking algorithm, a programmer
needs only to write a new Java class extending the class
StaticWatermarker. (See the “A simple Sandmark
plugin” sidebar for an example.) Any class located in the
Sandmark codebase that extends one of several algorithm
base classes (such as StaticWatermarker, Dynam-
icWatermarker, MethodObfuscator, and so on)
will load automatically and integrate into the Sandmark
infrastructure, including the GUI, the regression test
suite, and the obfuscation executives.

Although Sandmark strives to make extending the
system with new capabilities as simple as possible, imple-
menting new obfuscation and watermarking algorithms
is not trivial. Programmers must understand basic com-
piler techniques (such as static analysis and code opti-

mization) as well as in-depth knowledge of Java bytecode
and the BCEL bytecode editing toolkit.

Because software protection algorithms require seman-
tics-preserving code transformations, many of the same
analyses used in code optimization are also applicable to
watermarking and obfuscation. Sandmark currently im-
plements several common static code analyses including
control flow analysis, liveness analysis, inheritance hierar-
chy analysis, and execution stack element type analysis. 

Control flow analysis is used in several Sandmark algo-
rithms in which it is more natural to modify a method’s
control-flow graph than its instruction list representation.
We currently use liveness analysis when implementing a
watermarking algorithm that embeds the watermark in a
program’s methods register allocation, but it could also be
used by obfuscations that increase obscurity by increasing
the live ranges of variables. Any algorithm that changes
types of method parameters or moves methods between
classes uses the inheritance hierarchy analysis.

The stack contents often must be spilled to local
variables during an algorithm’s execution. Because the
spill instructions depend on the types and number of
stack elements, we must perform execution stack element
type analysis.

Sandmark provides a programmer with a simple rep-
resentation of an application and its component classes,
fields, methods, and files, referred to as program objects,
which ease the task of writing new plugins in several
ways. Given a method object, a plugin writer can easily
obtain its control flow graph, query the method for its
place in the class inheritance hierarchy, or request the
values of software engineering metrics applied to the
method. In addition, the program object application
programming interface (API) contains a cache consis-
tency protocol that ensures the different representations
are consistent.

Sandmark’s tools that evaluate and attack watermark-
ing and obfuscation algorithms, including standard
benchmark suites specjvm, caffeinemark, and the
kaffe regression tests, are well-known benchmarks for
testing and performance evaluation of Java compilers and
virtual machines. Sandmark supports a viewer that can
display classes, methods, and bytecode sorted by various
metrics. Users can take this viewer and simulate a collu-
sive attack against fingerprinted software with the byte-
code comparison tool.

Common optimizations also can effectively attack
some watermarks. Consider, for example, an algorithm
that embeds a watermark by reordering instructions. An
optimizing transformation that reorganized the code by
moving or deleting code segments would destroy this type
of watermark. Sandmark, therefore, provides access to the
BLOAT bytecode optimizer (www.cs.purdue.edu/
homes/hosking/bloat). Optimizations are also useful for
reducing the performance impact that obfuscation and
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Cloakware (www.cloakware.com)—Significant control and dataflow obfusca-

tions of C source code. 

DashO and Dotfuscator (www.preemptive.com)—Dead code removal and

identifier renaming for Java and MSIL, respectively.

Semantic Designs’ Source Code Obfuscators (www.semanticdesigns.com)—

Identifier renaming and optional whitespace removal for several high-level

languages. 

See www.cs.auckland.ac.nz/~cthombor/Students/hlai for a list of many

other obfuscation and watermarking tools.

Software protection tools 
and their capabilities
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watermarking often incur.
To allow novices to easily experiment with different

types of software protection algorithms, Sandmark sup-
ports a GUI that gives easy access to obfuscations, water-
marking algorithms, and various configuration and sup-

port tools. Its GUI presents users with seven panels that
characterize the seven main types of operations it supports:
static watermarking, dynamic watermarking, obfuscation,
optimization, viewing of software engineering metrics,
viewing of Java bytecode, and a bytecode comparison tool. 
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package sandmark.watermark.constantstring;

public class ConstantString extends StaticWatermarker {

public String getShortName() { return “ConstantString”; }

public String getAuthor() { return “Christian Collberg”; }

public String getAuthorEmail() { return “collberg@cs.arizona.edu”; }

public String getDescription() {

return “Embed a watermark in a string in the constant pool”;

}

public String getAlgURL() { return “path to html documentation”; }

public void embed(Application app, Properties props) 

throws WatermarkingException {

String watermark = props.getProperty(“WM_Encode_Watermark”);

Iterator classes = app.classes();

if (!classes.hasNext()) throw new WatermarkingException

(“There must be at least one class to watermark.”);

sandmark.program.Class aclass = 

(sandmark.program.Class)classes.next();

aclass.getConstantPool().addString(“sm$watermark=” + watermark);

}

class Recognizer implements Iterator {

Vector result = new Vector();

int current = 0;

public Recognizer(Application app) throws Exception {

for(Iterator classes = app.classes() ; classes.hasNext() ;) {

sandmark.program.Class aclass = 

(sandmark.program.Class)classes.next();

ConstantPoolGen cpg = aclass.getConstantPool();

for (int i=0; i < cpg.getSize() ; i++) {

if (cpg.getConstant(i) instanceof ConstantString) {

ConstantString s = (ConstantString)cpg.getConstant(i);

String v = (String)s.getConstantValue(cp);

if (v.startsWith(“sm$watermark”))

result.add(v.substring(“sm$watermark”.length()));

}

}

}

}

public boolean hasNext() { return current < result.size(); }

public Object next() { return result.get(current++); }

}

public Iterator recognize (Application app, Properties props) 

throws WatermarkingException {

return new Recognizer(app);

}

}

A simple Sandmark plugin 
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Watermarking in Sandmark
Sandmark’s watermarking module includes both static
and dynamic algorithms of varying complexity. Our goal
is to develop techniques that will let us determine empir-
ically which embedding and recognition algorithms have
the smallest performance overhead and the highest re-
silience to attacks.

A watermarking/fingerprinting system consists of
two functions: embed and recognize. Depending on the
algorithm type, these functions can take different argu-
ments. In the following, let P be a program, w a water-
mark, key a secret key, Pw a watermarked program, and P
a probability. The following signatures are possible:

embed (P, w, key) → Pw
recognize (Pw, key) → w

recognize (Pw, P, key) → w
informed fingerprint recognizer 

recognize (Pw, w) → P
blind watermark recognizer 

recognize (Pw, P, w, key) → P
informed watermark recognizer 

Typically, embed takes P, w, and a secret key as its argu-
ments and produces a new program Pw in which w has
been embedded. Ideally, without access to the key, an at-
tacker should be unable to extract the watermark. 

An informed recognizer has access to the original unwa-

termarked program, whereas a blind recognizer does not.
A watermark recognizer returns the probability of w ex-
isting in Pw. A fingerprint recognizer, on the other hand, re-
turns the mark w (typically an integer value) stored in Pw.

Informed recognizers (such as Julien Stern’s algo-
rithm5) have the disadvantage that the unwatermarked
program P must be disclosed to the public to prove an in-
tellectual property violation. 

If all generated watermarks w1, w2,…wn are known, a
watermark recognizer can be turned into a fingerprint
recognizer simply by testing whether each wi occurs in
Pw. Pure fingerprint recognizers (such as the CT algo-
rithm7) do not require this step.

Software watermarking algorithms can also be classi-
fied as static or dynamic. A static watermarking algorithm
stores the watermark directly in the program executable;
a dynamic watermarking algorithm embeds the water-
mark in the dynamic state of the program. The informa-
tion from the program’s execution can then be used to
recognize the watermark. 

Christian Collberg and Clark Thomborson proposed
the first dynamic watermarking algorithm, called the CT
algorithm.7 In it, the watermark is embedded in runtime
structures built by code inserted for that purpose. The se-
cret key is a sequence of inputs to the application. When
the application runs using the secret sequence, the water-
mark (a graph structure) is built and can be extracted by
the  recognizer.

Because embedding a static watermark does not re-
quire runtime information, the process of embedding
and recognition is far simpler, which has led to a
plethora of static watermarking algorithms. We have
implemented 11 algorithms in Sandmark and others
are under development. Of those, Table 1 describes
seven simplistic algorithms. The remaining four algo-
rithms are implementations of algorithms described
elsewhere.5,6,8-10, 12

Obfuscation algorithms
In other literature, Collberg, Thomborson, and Low
presented a taxonomy of obfuscating transforma-
tions.2–4 Layout obfuscations modify a program’s for-
matting, naming, or meta-information (such as com-
ments). Most commercial obfuscators fall in this
category. Control obfuscations modify a program’s con-
trol flow, for example, by inserting bogus branches using
opaque predicates. Data obfuscations modify the storage
and encoding of data structures, such as splitting one
variable into multiple parts.

Most obfuscating transformations are constructed
based on a few basic principles such as increasing a pro-
gramming construct’s inherent complexity or manipu-
lating the construct so that it is as far removed from the
original as possible.

If we let c be a programming language construct
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Assume Alice develops a program P that she watermarks with her

message w and secret key k prior to selling a copy to Bob. Bob must

destroy Alice’s watermark before he can illegally redistribute P. Bob could

employ additive, subtractive, distortive, and collusive attacks in an attempt

to destroy Alice’s watermark.

• In an additive attack, Bob adds a watermark of his own to Alice’s program.

Alice may be unable to prove that her watermark was embedded in the pro-

gram prior to Bob’s.

• In a subtractive attack, Bob examines the program in an attempt to discover

the watermark and remove it. He must perform the removal in such a way

that the program’s functionality is maintained. 

• In a distortive attack, Bob applies one or more semantics-preserving transfor-

mations to the watermarked application in an attempt to destroy the water-

mark. Bob aims to render Alice’s watermark unrecognizable but preserve the

functionality of P.

• In a collusive attack, Bob obtains two differently fingerprinted programs P1

and P2. He attempts to isolate the fingerprints’ location by comparing them,

and then he removes them.

Attacks against 
watermarking systems
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(such as a class, method, statement, or expression), we
get the following basic ideas for constructing obfuscat-
ing transformations:

• Increase or decrease c’s dimensionality, such as the
number of dimensions of an array. 

• Split c into subparts or merge several constructs c1,
c2,… into c.

• Wrap c in a layer of abstraction or remove a layer of ab-
straction from it.

• Add or remove a level of indirection to access c.
• Reorder two adjacent constructs.
• Rename a labeled construct.

Consider splitting transformations. To split a class C
we create a superclass C’ that holds some of the fields and
methods of C:

The splitting must be performed so that the identi-
fiers’ visibility is not affected. In this case, it would have
been wrong for x to be in C and m in C’. 

Similarly, we can split a basic block (a straight-line
code sequence) by inserting a bogus branch:

PT is an opaquely true predicate. This means that it
always evaluates to true, but attackers find determining
this invariant to be difficult. Constructing opaque predi-
cates that are computationally hard for an attacker to
break is an active area of research.3

We can apply the splitting principle to arrays:

Here, the elements of x are distributed over x1 and x2.
As our final example of the splitting principle, we

can split a Boolean variable into two integer variables:

In this case, we chose to represent true as either (0,1)
or (1,0) and false as (0,0) or (1,1).

It is unlikely that a single application of any of these
transformations will add much protection to an applica-
tion. However, when several different obfuscations are
applied to the same piece of code, the result will be far re-
moved from the original. Because most obfuscations have
some overhead associated with them, there will always be
a trade-off between the level of obfuscation and the per-
formance overhead induced.  

Obfuscation in Sandmark
Sandmark currently contains implementations of more
than 25 obfuscation algorithms and several different ob-
fuscation executives that automatically select optimal se-
quences of obfuscations.

Several of Sandmark’s obfuscations are reordering obfus-
cations that reorder method parameters, basic block in-
structions, local variables, and constant pool (Java’s sym-
bol table) entries. The parameter reordering obfuscation
takes care to reorder parameters so as not to interfere with
the program’s overloading structure. The following trans-
formation is illegal because both methods have the same
signature in the transformed code:

(1) bool A,B,C; T (1’)short
 ⇒       a1,a2,b1,b2,c1,c2; 
(2) A = True;  (2’) a1=0; a2=1; 
(3) B = False;  (3’) b1=0; b2=0; 
(4) C = A & B;  (4’) c1=(a1 ^ a2) &
(5) if (B) …;      (b1 ^ b2); c2=0; 
  (5’) if (b1 ^ b2) …;

method m(int i,int y) { T  method m  
  int[10] x; ⇒   (int x, int y){
  x[i] = y;  int [5] x1,x2;
}       if (i%2==0)
  x1[i/2]=y 
          else x2[i/2]=y;
  }

method m (int x, int y){   method m (int x, int y) { 
       T
   x++;    ⇒    x++;
   y += x;         if (PT) y += x;
}          }

  T class C’{
class C {      ⇒   int x;
  int x, y;     
  method m(){ x++; }   }
}   class C { 
    int y;
    method m(){ x++;}      
       }
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ALGORITHM DESCRIPTION

Bogus Expression Watermark is embedded as an expression

Bogus Initializer Watermark is embedded by adding bogus local variables into the constant pool

Constant String Watermark is embedded in a string in the constant pool

Add Method Field Watermark is split into two parts, which are embedded in the names of a method 

and field that are added to the class

Bogus Switch Watermark is embedded in the cases of a switch block

Method Renamer Watermark is embedded in the methods’ names 

Bogus Locals Watermark is embedded by encoding it as a series of special local variables in which 

the encoding is based on the local type (each type maps to a base-10 digit that encodes

a numerical watermark). 

Table 1. Seven simplistic algorithms contained in Sandmark.
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Sandmark provides an inheritance hierarchy module
(which describes inheritance relationships between
classes and methods) that lets obfuscations check if partic-
ular changes to method signatures are legal. It also pro-
vides a data dependency graph module that lets obfusca-
tions verify that two instructions can be swapped without
violating data dependency constraints. 

Reordering obfuscations are simple to implement
and have minimal performance impact, but they only
add a small amount of confusion for the attacker. How-
ever, they are very useful when protecting against collu-
sive fingerprinting attacks. By applying different re-
ordering obfuscations to all copies of a program, a
software distributor can ensure that each distributed
copy differs from all others. As a result, an attacker who
tries to compare two differently fingerprinted applica-
tions will find that they differ everywhere, not just in the
location where the fingerprint was inserted.

Several splitting obfuscations are available in Sand-
mark. Classes can be split, as can basic blocks and arrays. A
special node-splitting transformation is available as an ef-
fective (albeit expensive) attack against the CT water-
marking algorithm. (CT embeds the watermark in the
topology of a linked graph data structure.) The node-split-
ting obfuscation breaks every node in linked data struc-
tures (such as lists, trees, and graphs) into two parts, with an
extra field in the first part linking the two together. 

Sandmark supports obfuscations that merge methods,
parameters, and classes. In the example below, the two
classes C1 and C2 do not share any common behavior but
can be merged using false refactoring. The idea is to add a
bogus class C3 as the parent of both C1 and C2. If both
classes have instance variables of the same type, these can
be moved into C3. Its methods can be buggy versions of
some of C1 and C2’s methods:

Many standard code optimizations also make good ob-
fuscations. For example, Sandmark provides a method in-
liner, which substitutes the method body for the method
call. By inlining methods, we remove a level of abstraction

that makes the program harder to understand.
Sandmark supports several obfuscation executives, the

goal of which is to pick an optimal set of transformations
and program parts to obfuscate. The user guides the exec-
utive by indicating what “optimal’’ means: for example,
how much execution overhead he or she can accept, how
much obfuscation to add, and which parts of the applica-
tion are security- or performance-critical.

The executive is essentially a loop that repeatedly
chooses a part of the application to obfuscate, chooses an ap-
propriate obfuscating transformation from a pool of candi-
date algorithms, and then applies the transformation. An
obfuscation executive algorithm must address several issues:

• The executive must decide when the obfuscation
process should terminate.

• The user must be able to indicate the amount of protec-
tion each part of the program requires and the amount
of overhead each part can absorb.

• The executive must ensure that obfuscations are applied
in an acceptable order. This is essential because an ob-
fuscating transformation destroys the application’s
structures. This makes the obfuscated application more
difficult to analyze, and, as a result, it might not be pos-
sible to apply any further transformations.

Obfuscations should preserve program semantics. In
most cases, each obfuscation algorithm can determine
whether it can be safely applied by performing various
types of static analysis. Sometimes, however, this is not
possible. For example, it is generally not possible to deter-
mine if a class will dynamically load by name. If this is so,
an otherwise safe obfuscation that changes a class’s name
will create incorrect behavior by causing the dynamic
load to fail. The executive is designed to prevent this and
similar situations by letting the user specify which parts of
the program may exhibit unusual behavior, such as being
loaded by name, executed asynchronously, and so on.

Sandmark currently supports three obfuscation execu-
tives. The first is a simplistic set-based model that continu-
ously updates the list of algorithms that can run (referred
to as candidates) using set subtraction, and then uses heuris-
tics to choose the next algorithm to run from the set of
candidates. The second is an exhaustive, deterministic, fi-
nite-state automaton (DFA)-based model that accurately
captures all dependencies between obfuscation algorithms
using a finite-state machine model. Unfortunately, the re-
sulting DFAs are huge, and the executive performs poorly
for large programs. The third executive is a “lazy” version
of the DFA-based model that improves performance by
building the finite state machine on demand.

Statistics module
One important technique used to analyze programs is
computing various statistics associated with the program,

   class C3 {
class C1 { T  int k;
  int x; ⇒  method m() { k+=2;}
  float y;  }  
  method m() { x++; } class C1 extends C3 {
}    float y;
class C2 {    method m() { k++; } 
  int a;  }
  boolean z;  class C2 extends C3{
  method n() { a--; }   boolean z;
}         method n() { k--; }
    }

class C { T class C {
   method m(int a, ⇒    method m(int a,
     float b){ }        float b) { }
   method m(float x,         method m(int x,
     int y)  { }       float y) { }
}   }
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such as the number of occurrences of a particular opcode
in each method. We can use these statistical values in a
number of ways, in particular to evaluate a program’s
complexity before and after code obfuscation. Statistics
also can aid the type of manual analysis that many adver-
saries perform to isolate a watermark.

Included in Sandmark is a statistics module that com-
putes static code statistics. The statistics collected include
the number of classes, methods, and fields; the depth of
the inheritance hierarchy; the number of local variables;
the number of conditional statements; the number of API
calls; the level of loop nesting in a method; and the fre-
quency of opcode instructions. We can use these statistics
to manually evaluate the program or to compute various
software complexity metrics. Sandmark’s statistics mod-
ule includes six standard complexity metrics.13–18

The statistics module makes it possible to evaluate as-
pects of a software protection scheme’s overall effective-
ness from both developers’ and adversaries’ viewpoints.
For example, if a software watermarking scheme modi-
fies a program to such an extent that its statistical proper-
ties are far removed from that of other “normal’’ pro-
grams, then this could indicate to an attacker that the
program is, in fact, watermarked. He or she may then ex-
amine the program closer by concentrating efforts on
those methods with highly unusual statistical properties.

Obfuscation executives also use software complex-
ity metrics to evaluate how much obfuscation has been
applied to a program. After each round of obfuscation,
the executive evaluates the change in complexity of
each part of the program. Complexity changes guide
the executive to decide which part of the program most
needs obfuscation.

Sandmark manual attack tools
A common form of attack is to attempt to find code se-
quences with unique features that could indicate the
presence of software protection code. 

For example, xor instructions are not commonly
found in real code but are commonly used in software
protection techniques to encrypt a program’s instruc-
tions. To allow attackers to browse and search bytecode
for suspicious code, we incorporated a view pane into
Sandmark (see Figure 1).

The view pane lets users view an application’s Java
bytecode. The application is displayed in a tree structure
that illustrates the relationships between packages, classes,
and methods. Users can view a method’s bytecode by se-
lecting the desired method in the tree. 

The view pane also facilitates analysis by making use of
the statistics module. Users can sort the methods and classes
based on size, the number of times a specific instruction is
used, or by one of the software complexity metrics the sys-
tem supports. This type of analysis aids in evaluating the
level of obfuscation or in detecting a watermark.

Software fingerprinting’s most serious problem is its
susceptibility to collusive attacks. An adversary who ob-
tains several differently fingerprinted copies of the same
software can compare them to find the fingerprint’s loca-
tion. This type of attack can be simulated in Sandmark by
using the Java bytecode comparison tool. This tool ac-
cepts two Java programs as input and produces an interac-
tive view of the code where users can view pairs of similar
methods. The methods’ bodies are color-coded to make
locating the code segments that exist in only one copy
easier, as Figure 2 illustrates.

Sandmark 
evaluation techniques
There are currently no accepted metrics by which soft-
ware protection algorithms should be evaluated. Most
literature on software watermarking does not empiri-
cally or theoretically evaluate these algorithms against
attacks, nor do they specify what might consist of a rea-
sonable level of attack. It is an important aspect of the
Sandmark project to develop evaluation procedures for
software watermarking and code obfuscation algo-
rithms and to implement these procedures in Sand-
mark’s framework.

We believe a software watermarking algorithm
should be evaluated according to the following criteria,
which are analogous to the criteria used to evaluate
media watermarks:

Data rate. What is the ratio of size of the watermark that
can be embedded to the size of the program?

Embedding overhead. How much slower or larger is
the watermarked application compared to the original?

False positive rate. Given a random value to the water-
mark recognizer, what is the probability that it is recog-
nized as a valid watermark? Similarly, obfuscation algo-
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Figure 1. The Sandmark bytecode view pane, which lets users view
the bytecode of any method in an application.
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rithms must be evaluated according to the amount of
confusion they add to the program, the amount of com-
putational overhead they incur, and their resilience to at-
tacks from automatic deobfuscation tools.

Resilience against manual attacks (stealth). Does
the watermarked program have statistical properties that
differ from typical programs? Can an adversary use these
differences to locate and attack the watermark?   

Resilience against semantics-preserving transfor-
mations. Will the watermark survive transformations
such as code optimization and obfuscation? If not, what is
the overhead of these transformations? In other words,
how much slower or larger is the application after enough
transformations have been applied that the watermark no
longer can be recognized?

Resilience against collusive attacks. Given two or
more differently fingerprinted copies of the same appli-
cation, can the fingerprints’ location be determined?

W e are actively developing Sandmark; you can down-
load Version 3.1 from the Sandmark Web site at

http://sandmark.cs.arizona.edu. In the future, we hope to
provide more comprehensive coverage of algorithms, re-
verse-engineering tools, and software visualization tools.
We want to add tools for dynamic analysis of programs in
addition to the static statistics that the current implemen-
tation supports. We also plan to support other virtual ma-
chine architectures as well as watermarking and obfusca-

tion of native machine code. Future versions will include a
collection of tamper-proofing algorithms.11,19,20
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