
Reverse Engineering Self-Modifying Code: Unpacker Extraction

Saumya Debray Jay Patel
Department of Computer Science

The University of Arizona
Tucson, AZ 85721, USA

Email: {debray, jaypatel }@cs.arizona.edu

Abstract—An important application of binary-level reverse
engineering is in reconstructing the internal logic of computer
malware. Most malware code is distributed in encrypted (or
“packed”) form; at runtime, an unpacker routine transforms
this to the original executable form of the code, which is
then executed. Most of the existing work on analysis of such
programs focuses on detecting unpacking and extracting the
unpacked code. However, this does not shed any light on the
functionality of different portions of the code so obtained,
and in particular does not distinguish between code that
performs unpacking and code that does not; identifying such
functionality can be helpful for reverse engineering the code.
This paper describes a technique for identifying and extracting
the unpacker code in a self-modifying program. Our algorithm
uses offline analysis of a dynamic instruction trace both to
identify the point(s) where unpacking occurs and to identify
and extract the corresponding unpacker code.

Keywords-reverse engineering; binary analysis; malware
analysis; self-modifying code

I. I NTRODUCTION

One of the most important applications of binary-level
reverse engineering is in dealing with malware: when devel-
oping countermeasures against newly-discovered malware,
it is necessary to reverse-engineer the code to understand its
internal logic. However, this reverse engineering processis
complicated by the fact that malware binaries are typically
transmitted in “packed” form, i.e., they are encrypted or
compressed; estimates of the prevalence of such packing in
malware range from 79% [4] to 92% [3]. When the program
is executed at runtime, it invokes anunpackerroutine that
converts the packed code into its original executable form
and transfers control to the unpacked code. Packing serves a
number of purposes. First, it can hamper reverse engineering
of new malware and thereby slow down the development
of countermeasures. Second, even if countermeasures have
been developed and deployed, packing can make it harder for
anti-virus scanners to detect the malware. Finally, packing
can help reduce the size of the malware file and thus make it
less conspicuous. When reverse engineering malware code,
it is necessary to deal with the possibility of runtime code
unpacking. This can be challenging, however: malware may
be protected using multiple layers of packing, and in some
cases the code may modify itself many hundreds of times
during execution [12].

Because of the prevalence of packed code in malware,
researchers attempting to extract the actual malware code
usually resort to dynamic analysis: they execute the malware
sample, obtain a trace of the instructions executed, and work
back from this to obtain a more-abstract representation of
the program. It is useful, in this context, to be able to
distinguish unpacker code from unpacked code, for a number
of reasons. First, automatic identification of unpacking code
can reduce the time needed for reverse engineering by
allowing researchers to focus on code with non-unpacker
functionality. Second, unpacker identification can help im-
prove the precision of similarity analyses and phylogeny
analyses of malware [10], [11], [13]–[15] by allowing them
to focus on the actual malware payloads and not be misled
by similarities in unpacker code. Third, identifying the
unpacker code can help shed light on some aspects of a
malware’s behavior, e.g., the predicates in any conditional
invocation of an unpacker can help us understand the nature
and scope of time bombs or logic bombs embedded in
the malware code. Finally, the code and logic of unpacker
routines—especially specially-crafted custom unpackers—
may be interesting in themselves, and may shed light on
the specific ways in which the malware code was cloaked.

In addition to the large-scale code modification involved
in decrypting the entire payload of a malicious program,
malware sometimes also resort to small, tightly-targeted
code modifications whose primary aim is code obfuscation
in order to hamper reverse engineering (an example is the
Netsky.AAprogram discussed in Section IV). For the sake
of simplicity, the remainder of this paper uses the term
“unpacking” to refer to both kinds of code modification.

Existing tools for malware analysis include several that
detect unpacking and extract the code after unpacking occurs
[2], [12], [16], [19], but they typically do not offer additional
support to specifically identify the unpacker code. Much
of the literature on reverse engineering packed code seems
to make the explicit or implicit assumption that unpacking
is carried out by “tightly bound loops found immediately
after the entry point of the program” [18]. This assumption
may not be unreasonable for programs where the unpacker
is more or less separate from the program code and is
essentially layered on top of it. However, it is not difficultto



envision scenarios where the unpacker code and the malware
payload are tightly integrated. In such a scenario involving
incremental unpacking, for example, the unpacker might
decrypt a few payload instructions and execute them, then
decrypt some more and execute these, and so on. In this case,
unpacking is not manifested as a separate part of the program
that is conceptually independent from the payload—instead,
the two are closely interwoven, and pieces of unpacker code
alternate with pieces of payload code through the execution.
Without automated support for identifying unpacker code,
distinguishing between unpacker code and payload code can
be difficult in such situations.

The contribution of this paper is to describe an algorithm
for automatically identifying code responsible for making
modifications to the code of a program as it executes. Our
approach is based on an offline analysis of a dynamic
execution trace, and uses the notion of dynamic slicing
to identify instructions that cause or contribute to code
modification. Since traditional slicing algorithms assume
static programs where the code does not change during
execution, they do not carry over directly to self-modifying
code; to address this, we describe aphase semanticswhere
the execution of a self-modifying program can be modeled
semantically as a sequence of code snapshots, each of which
can be processed using classical algorithms [8].

The remainder of this paper is organized as follows.
Section II provides background material on unpacking and
phase semantics for self-modifying code, and introduces
some definitions and notation. Section III discusses algo-
rithms for identifying unpacking and the structure of the
corresponding unpackers. Section IV describes the resultsof
some of our initial experiments. Section V discusses some
of the underlying assumptions made by our approach and
obfuscations that could violate them. Section VI discusses
related work, and Section VII concludes.

II. BACKGROUND

A. Code Unpacking

Code unpacking refers to the runtime self-modification of
code. Figure 1 shows the structure of a very simple unpacker:
that for the Hybris-C email worm.1 Basic blockB0 initializes
three registers:%edx to the size of the region to be unpacked,
%eax to the address from where unpacking is to begin,
and %esi to a decryption key. BlockB1 is the decryption
loop. At each iteration, instruction 4 subtracts register%esi
from the contents of the memory word pointed at by%eax,
causing the contents of that word to change to its unpacked
executable form. After this the decryption key in%esi is
updated (instruction 5), the code pointer%eax incremented

1For simplicity of exposition we use a quasi-C notation rather than
conventional assembly code syntax. The numerical label to the left of each
instruction is given to make it easier to refer to individualinstructions.

%edx   =  0x152a
%eax   =  0x401000
%esi    =  0x44b3080

[%eax]  −= %esi
%esi    += 0x2431400
%eax   +=  4
%edx   −=  1
jne   B1

jmp  0x401000

to unpacked
code

(1)
(2)
(3)

(4)
(5)

(6)
(7)
(8)

(9)

B0

B1

B2

Figure 1. Structure of the unpacker routine for the Hybris-Cemail worm.

(instruction 6), and the count decremented (instruction 7). If
the count is non-zero, control loops back to the beginning
of the loop (instruction 8); otherwise, it falls through to an
unconditional jump to the decrypted code (instruction 9).

While this code is very simple—unpackers very often
have more complex structure—the example illustrates a
number of important issues that arise. The first of these
is that the identification of the unpacker code may require
some analysis. To see this, note that in order to understand
the structure and logic of the unpacker code it is not enough
to focus only on the instruction(s) that actually generate or
modify code in memory—in this example, instruction 4; it
is also important to take into account other code that plays
a supporting role. In Figure 1, for example, instructions 1,
7, and 8 do not directly affect the values that are written
to memory; they don’t even have any registers in common
with the code-modifying instruction 4. Nevertheless, thisset
of instructions plays an important role in the unpacking
process because it controls the location and size of the
memory region where code self-modification takes place.
In general, malware code may be littered with otherwise-
useless instructions added for obfuscation purposes [6], and
program analysis is necessary to tease apart their relation-
ships to determine which instructions affect the unpacking
and which are semantically irrelevant. This brings us to the
second issue: how can we perform program analysis when
the program may be changing during execution? The reason
this is an issue is that traditional program analyses make the
fundamental assumption that the program being analyzed
is static and immutable, which means that they cannot be
applied as is to self-modifying code.

This simple example is also misleading in some ways.
First, Hybris.C has a simple execution structure consisting of
a phase where the malware payload is unpacked, followed by
a phase where this payload is executed (the notion of “phase”

2



is discussed in more detail in Section II-B). Many malware
have much more complex execution structures, and Kanget
al. report malware samples with over 500 distinct execution
phases [12]. Second, the Hybris.C unpacker is clean and
minimal, and does not contain any extraneous obfuscation
code, making the unpacker logic fairly obvious. This is not
always the case, e.g., in the case of the unpacker for a
sample of the Rustock.C spambot [5], the initial unpacker
consists of 395 instructions, of which only 55—i.e., less
than 15%—actually pertain to unpacking; the remaining 340
consist of small groups of instructions that cancel each other
out, effectively behaving as NOPs whose only purpose is to
obfuscate. A different kind of anti-detection trick often used
by unpackers is to try to “out-wait” anti-virus scanners by
stretching out the unpacking process over a large number of
instructions; this can result in unpacker instructions account-
ing for a nontrivial portion of the execution trace. Finally,
in the case of Hybris.C the unpacker code and the payload
code are distinct and therefore relatively easy to tell apart.
However, it is not difficult to imagine self-modifying code
where the unpacker code is interspersed with the payload
code, and teasing the two apart is nontrivial.

B. Phases

To deal with the issue of analysis of self-modifying code,
we have developed a low-level formal semantics for self-
modifying programs [8]. A detailed discussion of this work
is beyond the scope of this paper; the essential intuition
is that the semantics of a program is expressed in terms
of its possible execution traces, and the effect of code
self-modification during an execution is to partition the
corresponding trace into a sequence ofphases. A phase is
a maximal sequence of instructionsS in an execution trace
that does not execute any location that has been modified
by an instruction inS—in other words, one phase ends and
another begins when a program attempts to execute code it
has just modified. An execution of a self-modifying program
can then be modeled as a sequence of distinct phases. Each
phaseφ induces acode snapshotCode(φ) that consists of the
program code as it exists at the beginning of the execution of
φ together with an instruction in this code where execution
begins. A key result is thatCode(φ) has the property that
it is safely analyzable—in the sense that the runtime effects
of the execution ofφ on the instructions comprisingφ can
be computed safely—using traditional analyses [8].2 The
notion of phases forms the foundation for our analysis of
self-modifying programs.

A phaseφ is thus a dynamic notion, namely, a part of

2A phase obviously cannot always be safely analyzed in isolation: it may
be necessary to take into account the preceding or succeeding phases. For
example, in order to remove obfuscation code via dead code elimination,
it is necessary to take into account uses of registers and memory locations
in later phases. The point is that phases allow us to deal withthe effects
of code modification in a precise and well-defined way.

an execution trace; the corresponding code snapshot is a
static notion, i.e., a code fragment which, when executed,
produces the instruction sequenceφ. This is illustrated in
Figure 2, which shows an execution trace consisting of five
phases. Each phase is shown together with the corresponding
code snapshot. Notice that while each phase (except the first)
necessarily has its code modified by the previous phase—
this follows from the definition of a phase—there is no
requirement that its code be modifiedonly by the previous
phase. In Figure 2, for example, phase 3 is modified by
both phases 1 and 2, while phase 5 is modified by phases
1, 3, and 4. Such arbitrary code-modification relationships
between phases can complicate the task of characterizing
unpacker code in self-modifying programs.

We can identify phase boundaries in an execution trace by
keeping track of the memory locations that are modified by
each memory write; for any given phaseφ, this information
can then be used to determine the end of that phase and the
beginning of the next one, namely, when execution is about
to go to a location that was modified by some instruction in
φ. In this way, each execution trace can be partitioned into
a sequence of phases〈φ0,φ1,φ2, . . .〉, whose behavior can be
understood in terms of a sequence of code snapshots

〈Code(φ0),Code(φ1),Code(φ2), . . .〉

The case of a conventional program with static codeP can
then be seen as a degenarate case where every execution has
a single phase and the corresponding code snapshot isP.

As a concrete example, the execution of the Hybris-C
unpacker shown in Figure 1 consists of two phases: the first
phase is the execution of the unpacker code, upto and includ-
ing the execution of instruction 9, ‘jmp 0x401000,’ which
transfers control to the unpacked code; the corresponding
code snapshot consists of just the code for the unpacker.
The second phase consists of the execution of the unpacked
code, and the code for this snapshot consists of the unpacked
code together with that of the unpacker.3

C. Definitions and Notation

An instruction at the machine level occupies one or more
adjacent bytes of memory. Let the number of bytes occupied
by an instructionI be denoted bysz(I). Suppose that these
bytes start at memory addressa and comprise the set of
locations with addresses{a,a+ 1, . . . ,a+ sz(I)− 1}, then
we say thatI occurs ataddressa.

This paper is concerned with dynamic execution traces,
which makes it necessary to be able to reason about prop-
erties or behaviors of particular runtime occurrences of
an instruction. We refer to a particular runtime instance
of an instruction in an execution by its position in the

3Since the unpacking process does not overwrite the unpackercode in
this case, the latter remains part of the program.

3



abc defg hij
pqr st abc 
abfh aasix
wux  asz a
ap sh 010n
vzs azhs jhn
hvs hb aajj

phase 1
code
snapshot

abc defg hij
pqr st abc 
abfh aasix
wux  asz a
ap sh 010n
vzs azhs jhn
hvs hb aajj

phase 2
code
snapshot

abc defg hij
pqr st abc 
abfh aasix
wux  asz a
ap sh 010n
vzs azhs jhn
hvs hb aajj

phase 3
code
snapshot

abc defg hij
pqr st abc 
abfh aasix
wux  asz a
ap sh 010n
vzs azhs jhn
hvs hb aajj

phase 5
code
snapshot

abc defg hij
pqr st abc 
abfh aasix
wux  asz a
ap sh 010n
vzs azhs jhn
hvs hb aajj

phase 4
code
snapshot

code
snapshots

instruction
trace

time

phase 2phase 1 phase 3 phase 4 phase 5

: code modification actions

Figure 2. Phases, code modification, and code snapshots

corresponding execution trace. LetS be a sequence, then the
ith element ofS is denoted byS[i]. An execution trace for
a program is a sequence of triples(addr, instr, regs), where
addr is a memory address,instr the instruction occurring at
that address, andregs is a set of register-value pairs giving
the values of the machine registers just before the instruction
is executed. The reason for including register values in the
trace is that they allow us to determine which memory
locations are accessed—and, in particular, modified—by
indirect memory references.

Consider a trace

T = (a1, I1,R1),(a2, I2,R2), . . . ,(ai , Ii ,Ri), . . .

The ith element of this trace isT[i] = (ai , Ii ,Ri). The address,
instruction, and register components of theith element of
T are denoted by, respectively,Addr(T[i]), Instr(T[i]), and
Regs(T[i]). The set of locations occupied by the instruction
at positioni in traceT is denoted byLocns(T[i]):

Locns(T[i]) = {ai,ai +1, . . . ,ai + sz(Ii)−1}.

We use the notationWrite(T[i]) to denote the set of memory
locations that are written by the instruction at positioni of
a traceT.

Since the instructions for a program reside in memory, the
only way to modify code at runtime is to modify the contents
of memory by writing to it. In order to identify unpackers,
therefore, a first step is to identify which instructions have
been unpacked, i.e., are being executed after being modified.
To this end, we have the following definitions:

Definition 2.1: An instruction at positionk in a traceT
is unpackedif one or more of the locations it occupies have
been modified earlier in the execution, i.e., if there exists
j < k such thatLocns(T[k])∩Write(T[ j]) 6= /0. 2

In general, a memory location may be modified many times
during the execution of a program. When an unpacked
instructionI is executed, therefore, we would like to focus
on those instructions that actually wrote one or more of the
bytes comprisingI . To this end, we use the notion of the set
of modifiers ofI . Intuitively, an instructionI j is a modifier
of an unpacked instructionIk if I j makes some change to
the memory locations occupied byIk that “survives” untilIk
is executed. More formally, we have:

Definition 2.2: An instruction at positionj in a traceT
is a modifier of an instruction at positionk in T iff ∃w ∈
Locns(T[k]) such that the following hold:

(i) w∈Write(T[ j]), i.e., Instr(T[ j]) modifies some loca-
tion occupied byInstr(T[k]); and

(ii) there is no positioni such that j < i < k and w ∈
Write(T[i]), i.e., locationw is not overwritten by any
intervening instruction between positionsj andk.

The set of modifiers of an instruction at positioni in a trace
T is denoted byModifiers(T[i]). 2

In general, an unpacked instruction may have more than
one modifier. For example, an instruction that occupies three
bytes of memory may have three different modifiers, each
of which modifies one of its constitutent bytes.

III. U NPACKING AND UNPACKERS

Our approach to identifying unpackers consists of three
main steps. Starting with an execution trace for a program,
we first identify the different phases and the unpacked
instructions in each phase. The second step is to identify the
modifier instructions for each of the unpacked instructions.
Finally, we use slicing techniques to identify the unpacker

4



code. The remainder of this section describes these steps in
more detail.

A. Identifying Phases and Unpacked Instructions

Once an execution traceT has been collected, we identify
its phases along with the set of unpacked instructions, in
a single forward pass over its instructions. The algorithm
maintains two sets of memory locations:GlobalWriteSet
keeps track of the set of locations that have been modi-
fied since the beginning of the program’s execution, while
CurrWriteSet gives the set of locations modified so far
in the current phase. For each position in the trace, the
set of locations occupied by the corresponding instruc-
tion is compared with these two sets: if it overlaps with
GlobalWriteSet, the instruction has been unpacked; if it
overlaps withCurrWriteSet, that instruction position marks
the beginning of a new phase. Pseudocode for the algorithm
is as follows:

PhaseNo:= 1; CurrWriteSet:= /0; GlobalWriteSet:= /0;
mark the first position inT as the start of phase 1;
for each positioni in the trace, going forward,do

if Locns(T[i])∩GlobalWriteSet6= /0 then
mark positioni as unpacked;

fi
if Locns(T[i])∩CurrWriteSet6= /0 then

incrementPhaseNo;
mark positioni as the start of phasePhaseNo;
CurrWriteSet:= /0;

fi
GlobalWriteSet:= GlobalWriteSet∪Write(T[i]);
CurrWriteSet:= CurrWriteSet∪Write(T[i]);

od

B. Identifying Modifier Instructions

The set of modifier instructions can be identified via a
single backward pass over the execution trace, as follows:

ModInsLocs:= /0;
for each positioni in T, going backwards,do

if Write(T[i])∩ModInsLocs6= /0 then
mark positioni as a modifier;
ModInsLocs:= ModInsLocs\Write(T[i]);

fi
if position i is unpackedthen /* A */

ModInsLocs:= ModInsLocs∪Locns(T[i]);
fi

od

At each iteration of this loop, the setModInsLocsgives the
set of locations that are occupied by unpacked instructions
later in the execution trace. Thus, an instruction is a modifier
if it writes to some location that is occupied by an instruction

at a later position in the trace. Note that since an instruction
that is not unpacked will never have its locations overlap
with the locations written to by any instruction, we can make
this loop a little faster by eliminating the check labeled ‘A’
above, i.e., making the update toModInsLocsunconditional,
without affecting the correctness of the algorithm. The effect
of this change is to remove a test from the loop; however, it
results in a larger number of values in the setModInsLocs,
which can lead to more expensive set operations elsewhere
in the loop.

C. Identifying Unpackers

The concepts introduced in the previous section allow us
to identify which instructions in a phase have been unpacked
and which instructions actually performed the corresponding
memory modifications. This information, while useful, may
not be enough, however. For example, consider the Hybris.C
unpacker shown in Figure 1: for each unpacked instruction in
the second phase of this program, the modifier is instruction
5 in basic blockB1: ‘ [%eax] - = %esi.’ This instruction, by
itself, does not tell us much about the unpacker.

To see what else we need, consider an unpacked instruc-
tion at positionk in a traceT; for simplicity of discussion,
suppose that it has a single modifier instruction, which is at
position j, i.e.,

Modifiers(T[i]) = {Instr(T[ j])}.

To understand the behavior of the unpacker, we need to iden-
tify the instructions and program logic involved with com-
puting the valuev that is written to memory byInstr(T[ j]).
But this is exactly the dynamic slice of the program for
the slicing criterion(inp,v, j), whereinp is the set of inputs
to the program for traceT. If the unpacked instruction has
more than one modifier instruction, then this applies to each
modifier: we combine the dynamic slice for each modifier.
We can generalize the idea to an entire phaseφ: compute the
appropriate dynamic slice for each modifier of each modified
instruction inφ and combine the results. This is illustrated
by the following example.

Example 3.1:Figure 3(a) shows a variation on the Hy-
bris.C unpacker of Figure 1, where an additional code
modification phase has been added before the main unpacker
loop. Execution now consists of three phases: Phase A,
which modifies two instructions in the code for Phase B;
Phase B, the main unpacker loop; and Phase C, the execution
of the unpacked code. The program behaves as follows:

• Initially, when Phase A begins execution, the locations
occupied by instructions B1 and B4 (in Phase B) are
occupied bynop instructions.4

4For the sake of simplicity of discussion, we assume in this example that
all instructions are the same size.

5



nop

nop@(B1) :=    %edx  =  0x152a

%esi    += 0x2431400
%eax   +=  4
%edx   −=  1

jmp  0x401000

: code modification

...

unpacked code

Code(Phase A) Code(Phase B) Code(Phase C)

%eax   =  %ebx
(A1)

(A6)

(A2)
(A3)
(A4)
(A5)

(B1)
(B2)
(B3) %esi    =  0x44b3080

(B4)
(B5)
(B6)
(B7)

(B8)

(B9)

%ebx   =  0x401000
jmp  @(B1)

push  %eax
%eax  =  0x27
@(B4) :=    [%eax] −= %esi

jne   @(B4)

[%eax]  −= %esi

%edx   =  0x152a @(B1) :=    %edx  =  0x152a
@(B4) :=    [%eax] −= %esi

%esi    += 0x2431400
%eax   +=  4
%edx   −=  1

%esi    =  0x44b3080

%ebx   =  0x401000

%edx   =  0x152a
%eax   =  %ebx

[%eax]  −= %esi

%eax  =  0x27

jmp  0x401000

Slice(Phase A) Slice(Phase B)

push  %eax

(A2)
(A1)

(A5)
(A6)

(A3)
(A4)

(B1)
(B2)
(B3)

(B4)
(B5)

(B6)
(B7)
(B8)

(B9)

jmp  @(B1)

jne   @(B4)

(a) Code snapshots for the original program (b) The unpacker code

Figure 3. An example unpacked program and its unpacker. Instructions in the original program that are not in the dynamic slice comprising the unpacker
are shown in light color and crossed out.

• Instruction A1 writes the binary encoding of the in-
struction %edx = 0x152a to the memory location(s)
occupied by instruction B1. In Figure 3(a), the binary-
level encoding of an instructionI is denoted by≪I≫,
while the location(s) occupied by an instructionJ is
written ‘@J’. The nop instruction at this location is thus
overwritten, which is indicated by showing thenop as
crossed out.

• Instruction A2 writes the binary encoding of the in-
struction [%eax] -= %esi to the locations occupied by
instruction (B4) of Phase B.

Once Phase A ends, the code for Phase B is essentially the
same as that in Figure 1—the one minor difference is that
instruction B2, which is in Phase B, uses register%ebx,
which is defined by instruction A5 in Phase A. This change
was made to introduce a cross-phase data dependency and
make the slicing problem more interesting.

The unpacked instructions in Phase C all have instruction
B4 as their modifier. If the instruction in Phase C at position
j in the execution traceT is unpacked by an execution of
instruction B4 at positionj ′ in the trace, then the slicing
criterion is the value that is written toLocns(T[ j]) by
T[ j ′], i.e., the value of the expression ‘[%eax] − %esi’ at
position j ′ in T. This slice consists of instructions A5 and
A6 from Phase A and instructions B1, . . . , B8 from Phase
B. Since instructions B1 and B4 are themselves unpacked,
with modifiers A1 and A2 respectively, we include the
dynamic slices for these as well. When these slices are all
merged together, the result is the code shown in Figure 3(b).
This matches what we would intuitively consider to be the
unpacker code for this program.2

To make this work, we have to compute program slices
for self-modifying programs. We do this using the notion

of phases described earlier. Recall that the code for a self-
modifying program can be expressed as a sequence of static
programs—i.e., code snapshots—one per phase. A dynamic
slice for a self-modifying program can, correspondingly, be
expressed as a corresponding sequence of dynamic slices,
one for each phase. The main issue that has to be taken
into account is that dependencies due to code modification
have to be taken into account. These are very similar to
ordinary data dependencies, with the difference that while
a data dependenceA−→ B exists between two instructions
(statements)A and B if A defines a location whose value
is used by byB, a code-modification dependenceA −→ B
exists if A defines a location that is occupied byB, i.e., if A
is a modifier ofB. The key intuition here is that in order to
execute an instruction it is necessary to read—and, therefore,
to “use”—the memory locations it occupies.

Existing dynamic slicing algorithms can be extended to
incorporate the notion of code-modification dependences in
a number of different ways; here we discuss one simple
approach. The idea is to extend each instruction to take a
number of “pseudo-arguments” that correspond to the mem-
ory locations it occupies. Thus, consider ak-byte instruction
I(y1, . . . ,yn,x1, . . . ,xm), with source operandsx1, . . . ,xm and
destination operandsy1, . . . ,yn, whose semantics is given as

〈y1, . . . ,yn〉 := fI (x1, . . . ,xm)

for some appropriate functionfI that depends on the instruc-
tion I . We rewrite this instruction to incorporatek additional
arguments, one corresponding to the address of each byte
that it occupies:

I(y1, . . . ,yn,x1, . . . ,xm,a1, . . . ,ak),

The semantics of the rewritten function remains the same as
before; however, the set of locations it “uses” is defined

6



to be {x1, . . . ,xm,Mem[a1], . . . ,Mem[ak]}, where Mem[a]
denotes the memory location with addressa. The additional
arguments thus serve to capture the semantic property that
the behavior of this instruction depends on the most recent
instructions that modify any of the locations with addresses
a1, . . . ,ak. Thus, suppose thatadd(y,x1,x2) is a four-byte
instruction that computesy = x1 + x2, then a particular
add instruction ‘add(r2, r0, r1)’ occupying memory locations
1000 . . .1003 would be rewritten as

add(r2, r0, r1,1000,1001,1002,1003).

With instructions rewritten in this manner to make explicit
the memory locations they occupy, code modification de-
pendences are translated to data dependences and can be
handled in the same way without any additional changes to
the slicing algorithm.

IV. EXPERIMENTAL RESULTS

We have implemented our ideas in a prototype tool for re-
verse engineering malware code. We applied our tool to four
different malware samples:Breatle.J, Hybris.C, Mydoom.Q,
andNetsky.AA. Of these,Hybris.CandNetsky.AAuse custom
packers,Mydoom.Quses the UPX packer [17], andBreatle.J
uses a combination of two commercial packers: Aspack
[1] and UPX. We collected traces for these programs by
executing them under the control of the OllyDbg debugger
[21] and using the tracing facility of OllyDbg to record the
instructions executed (however, our approach is not tied to
OllyDbg, and will work with any tracing tool that provides
a minimal set of information about executing instructions
(see Section II-C), and we are currently in the process of
switching to a tracing tool called Ether [9]). These programs
were run on Windows XP on a VMware virtual machine
that, for security reasons, was configured to have no network
connectivity; because of this, the behaviors we observed
were most likely incomplete—the malware would typically
attempt to connect to the Internet and quit after repeated
unsuccessful attempts. However, in order to get to this point
they had to unpack their code, so we were able to observe
their unpacking behavior.

The results obtained using our unpacker extraction tool on
the resulting execution traces are discussed below. We man-
ually verified correctness for the smaller unpackers obtained
(Hybris.C, Mydoom.Q, the first two phases ofNetsky.AA);
for the larger unpackers, where the size and complexity of
the code made manual verification impractical, we checked
that the modifying instructions were being found correctly
and that dependencies between instructions were being com-
puted correctly, which gives us confidence that the slices
computed are also correct.

Hybris.C: This program, whose unpacker was dis-
cussed in Section II (see Figure 1), is the simplest program
in our test suite. The execution of this program consists of

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

  

  

 

 

 

Figure 4. Unpacker structure forMydoom.Q

two phases: an unpacking phase followed by the execution
of the unpacked code.

The unpacker extracted by our algorithm for this program
is identical to that shown in Figure 1, with the single
difference that the unpacker slice computed does not contain
instruction 9, which branches to the unpacked code. This
exclusion is appropriate, since instruction 9 does not belong
in the slice for the modifier instruction.

Mydoom.Q: This program uses a commercial packer,
UPX [17], to pack its code. UPX was originally developed to
compress executable files to reduce file size—and, therefore,
the size of the packed code. In keeping with this goal,
the unpacker code is such that the size of the unpacker

7



[0x403e5f ]   mov eax,  0x403e6e
[0x403e64]   add byte [eax] ,  0x28
[0x403e67]  inc eax
[0x403e68]   add dword [eax] ,  0x1234567

(a) Phase 1

[0x403e84]  mov [eax],  ecx
[0x5cbc32]  mov eax, 0xf05cabd3
[0x5cbc37]   lea ecx,  [eax+0x10001082]
[0x5cbc3d]  mov [ecx+0x1],  eax
[0x5cbc44]  mov edx, [edx+0xc]
[0x5cbc47]  mov byte [edx],  0xe9
[0x5cbc4a]  add edx, 0x5
[0x5cbc4d]  sub ecx, edx
[0x5cbc4f]  mov [edx-0x4], ecx

(b) Phase 2

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

(c) Phase 3

Figure 5. Unpacker structure forNetsky.AA

is kept as small as possible, even at the cost of more
complex unpacking logic. Program execution consists of two
phases: an unpacking phase followed by the execution of the
unpacked code. The structure of the control flow graph for
the unpacker is shown in Figure 4 (due to space constraints
we show only the basic blocks and control flow edges, but
not the instructions within the blocks).

Netsky.AA:This program’s execution consists of four
phases, of which the first three are given to unpacking;
the code structure for these are shown in Figure 5. What
is interesting about this is the wide disparity in size and
complexity between the first two unpacker phases and the
last. The first two unpacking phases involve only small
amounts of code modification—in each case the unpacker
consists of a small piece of straight-line code that modifies
only a few bytes of memory—and seem to be intended
purely for obfuscation:

• The two add instructions in Phase 1 (Figure 5(a))
modify the locations immediately following the second
of these add instructions. Execution then falls through
to this modified code (thus, there is no explicit jump
to the unpacked code), which installs an exception
handler, with code address0x5cbc32, and prepares to
raise an exception.

• The second phase begins with a deliberate null-pointer-
dereference via an indirect store through the register
eax, which was zeroed out in the previous phase. This
causes an exception and transers control to the excep-
tion handler installed in the previous phase (note the
large difference in addresses between the first instruc-
tion in Figure 5(b), which raises the exception, and the
second instruction, which handles it5). The exception
handler modifies the code at two widely different places
in the program: it overwrites code at address0x5cbc56
(corresponding to the Phase 3 unpacker), and changes
the instruction at address0x403e84, which originally
raised the exception that transferred control to the
handler, with an instruction ‘jmp 0x5cbc55’. Thus, when
control returns from the exception handler it finds this
newly-written unconditional jump that causes control to
be transferred to the Phase 3 unpacker.

• The third phase is considerably larger than the two
preceding phases and has more complex control flow
logic. It is this phase that carries out the real unpacking
of the malware payload. The control flow graph for this
phase is shown in Figure 5(c): due to space constraints
we only indicate the control-flow relationships between
basic blocks but do not show the instructions within
each block. (This graph seems to have disconnected
components because it does not show call/return edges
for indirect function calls.)

Breatle.J: Of the programs we tested,Breatle.Jhas the
greatest complexity of unpacking: it has the largest number
of execution phases: a total of six, of which five involve
unpacking, and the unpackers for the different phases also
have fairly complex control flow logic. Figure 6 shows the
structures of the control flow graphs for the first two of
the five unpacking phases of this program. The unpacker
structure for these two phases, as well as those not shown,
suggests that parts of the unpacker logic are similar across
the various unpacking phases. The section names in the
file suggest that it is protected using a combination of two
commercial packers, Aspack [1] and UPX [17], but the
actual unpacker code found seems to be significantly more
complex than what one would expect for these two packers;
this suggests that there may be additional layers of packing
involved. We are currently investigating this in more detail.

5Arguably, these two instructions should be in different basic blocks that
are connected by some sort of exception edge. Our control flowanalysis
is currently not smart enough to infer that themov instruction in reality
effects a control transfer through an exception.

8



 

  

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  

  

  

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

  

  

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  

  

  

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

(a) Phase 1 (a) Phase 2

Figure 6. Unpacker structure forBreatle.J(the first two of five unpacking phases)

V. D ISCUSSION

A fundamental assumption in the work described above—
and one that is also made by other tools that detect un-
packing [2], [12], [16]—is that we can detect unpacking
by comparing the virtual addresses of instructions that are
executed with the virtual addresses of memory locations that
are written to. This assumption may not hold if a technique
known asdual mapping[20] is used. The basic idea of
this obfuscation is to map a physical page to two virtual
pages, one of which is mapped as a writable page and the
other is mapped as an executable page. This has an effect
similar to pointer aliasing: since both virtual pages refer
to the same physical page, writing to the writable virtual
page changes what is seen on the executable virtual page.
However, since the two virtual pages have different virtual
addresses, it appears as though the executed locations have
disjoint virtual addresses from the modified ones.

It turns out that not all automatic unpackers are susceptible
to this obfuscation technique [20]. The investigation of how
the techniques used by such unpackers might be incorporated
into our system is a topic of future work.

VI. RELATED WORK

A number of authors have described tools to detect
runtime code modification and extract the dynamically un-
packed code [2], [12], [16], [19]. However, these tools
typically simply present all of the unpacked code in an
execution phase as a collection of instructions without any
indication of any of their possible roles, e.g., as unpacker
vs. malicious payload.

Quist and Liebrock describe a visualization tool that
can assist users with identifying unpacker code [18]. The
tool’s function is to provide a high-level visualization of
various characteristics of different portions of the program
rather than to specifically extract and identify unpacker
code. It reconstructs a program’s control flow graph from
an execution trace and uses heuristic rules, based on a
comparison of the program’s code in memory with that
in the original executable file, to identify unpacker loops.
While the tool provides a great deal of information about
the functionality of different parts of the program, the
heuristic nature of unpacker identification means that errors
in unpacker identification cannot be ruled out.

Cooganet al. have investigated the use of static analysis
techniques for static identification and extraction of unpacker
code [7]. While the goals of both works are conceptually

9



similar, the details of the approaches used are very different.
In particular, the work of Cooganet al. assumes accurate
static disassembly, which is not always easy to guarantee,
and requires a sophisticated pointer analysis to obtain rea-
sonable precision; the dynamic approach described here, by
contrast, allows the use of simpler analysis algorithms and
generally obtains more precise results, albeit for the single
execution path covered by the execution that is considered.

VII. C ONCLUSIONS

An important application of binary-level reverse engi-
neering is in dealing with malware. Since most malware
are transmitted in encrypted form and are decrypted, i.e.,
“unpacked,” at runtime, the reverse engineering process has
to contend with runtime unpacking as well. In this context,
an interesting question is that of automatically identifying
and characterizing the code that carries out such unpacking.
This paper describes an approach that can be used to identify
code that carries out unpacking. Our approach is based on
a low-level semantics that can be used to reason about self-
modifying code. We use dynamic analysis to extract an exe-
cution trace for the program and then apply dynamic slicing
(appropriately adapted to handle self-modifying code) to
identify unpacker code. Our ideas have been implemented
in a prototype tool; experiments indicate that it is effective
in identifying unpacker code even for programs with fairly
complex unpacking logic.

REFERENCES

[1] ASProtect software. http://www.aspack.com/asprotect.aspx.

[2] Lutz Böhne. Pandora’s Bochs: Automated Unpacking of
Malware. PhD thesis, Aachen University, January 2008.

[3] T. Brosch and M. Morgenstern. Runtime packers: The hidden
problem? InBlack Hat Briefings, August 2006.

[4] P. Bustamante. Mal(ware)formation statistics, May 2007.
PandaResearch Blog.
http://research.pandasecurity.com/malwareformation-
statistics/.

[5] K. Chiang and L. Lloyd. A case study of the Rustock rootkit
and spam bot. InProc. HotBots ’07: First Workshop on Hot
Topics in Understanding Botnets. Usenix, April 2007.

[6] Mihai Christodorescu, Johannes Kinder, Somesh Jha, Stefan
Katzenbeisser, and Helmut Veith. Malware normalization.
Technical Report 1539, University of Wisconsin, Madison,
Wisconsin, USA, November 2005.

[7] K. Coogan, S. Debray, T. Kaochar, and G. Townsend. Auto-
matic static unpacking of malware binaries. InProc. 16th.
IEEE Working Conference on Reverse Engineering, pages
167–176, October 2009.

[8] S. K. Debray, K. P. Coogan, and G. M. Townsend.
On the semantics of self-unpacking malware
code. Technical report, Dept. of Computer
Science, University of Arizona, Tucson, July 2008.
http://www.cs.arizona.edu/˜debray/Publications/
self-modifying-pgm-semantics.pdf .

[9] Artem Dinaburg, Paul Royal, Monirul I. Sharif, and Wenke
Lee. Ether: malware analysis via hardware virtualization
extensions. InProceedings of the 2008 ACM Conference on
Computer and Communications Security, CCS 2008, Alexan-
dria, Virginia, USA, October 27-31, 2008, pages 51–62, 2008.

[10] M. Gheorghescu. An automated virus classification system.
In Virus Bulletin Conference, pages 294–300, October 2005.

[11] L. A. Goldberg, P. W. Goldberg, and C.A.Phillips,
G.B.Sorkin. Constructing computer virus phylogenies.J.
Algorithms, 26(1):188–208, January 1998.

[12] M. G. Kang, P. Poosankam, and H. Yin. Renovo: A hidden
code extractor for packed executables. InProc. Fifth ACM
Workshop on Recurring Malcode (WORM 2007), November
2007.

[13] M. E. Karim, A. Walenstein, A. Lakhotia, and L. Parida.
Malware phylogeny generation using permutations of code.
J. in Computer Virology, 1(1):13–23, 2005.

[14] A. Lakhotia, Md. E. Karim, A. Walenstein, and L. Parida.
Malware phylogeny using maximalπ patterns. InEICAR 2005
Conference: Best Papers Proceedings, pages 167–174, 2005.

[15] Z. Liang, T. Wei, Y. Chen, X. Han, and J. Zhuge. Component
similarity based methods for automatic analysis of malicious
executables. InVirus Bulletin Conference, September 2007.

[16] L. Martignoni, M. Christodorescu, and S. Jha. OmniUnpack:
Fast, Generic, and Safe Unpacking of Malware. InPro-
ceedings of the 21st Annual Computer Security Applications
Conference, ACSAC 2007, Miami Beach, Florida, USA.IEEE
Computer Society, December 2007.

[17] M. F. X. J. Oberhumer, L. Molnár, and J. F. Reiser. UPX: the
Ultimate Packer for eXecutables. http://upx.sourceforge.net/.

[18] D. A. Quist and L. M. Liebrock. Visualizing compiled
executables for malware analysis. InProc. VizSec 2009:
Workshop on Visualization for Cyber Security, October 2009.

[19] P. Royal, M. Halpin, D. Dagon, R. Edmonds, and W. Lee.
Polyunpack: Automating the hidden-code extraction of
unpack-executing malware. InACSAC ’06: Proceedings of
the 22nd Annual Computer Security Applications Conference
on Annual Computer Security Applications Conference, pages
289–300. IEEE Computer Society, 2006.

[20] skape. Using dual-mappings to evade automated
unpackers. Uninformed Journal, 10(1), October 2008.
http://www.uninformed.org/?v=10&a=1&t=sumry .

[21] O. Yuschuk. Ollydbg.http://www.ollydbg.de/ .

10


