Join Operations in Temporal Databases

Dengfeng Gao¹, Christian S. Jensen², Richard T. Snodgrass¹*, Michael D. Soo³

¹ Dept. of Computer Science, University of Arizona, e-mail: {dgao, rts}@cs.arizona.edu
² Dept. of Computer Science, Aalborg University, Fredrik Bajers Vej 7E, DK-9220 Aalborg Ø, Denmark e-mail: caj@cs.auc.dk
³ Amazon.com, e-mail: soo@amazon.com

Received: date / Revised version: date

Abstract. Joins are arguably the most important relational operators. Poor implementations are tantamount to computing the Cartesian product of the input relations. In a temporal database, the problem is more acute for two reasons. First, conventional techniques are designed for the evaluation of joins with equality predicates, rather than the inequality predicates prevalent in valid-time queries. Second, the presence of temporally-varying data dramatically increases the size of the database. These factors indicate that specialized techniques are needed to efficiently evaluate temporal joins.

We address this need for efficient join evaluation in temporal databases. Our purpose is two-fold. We first survey all previously proposed temporal join operators. While many temporal join operators have been defined in previous work, this work has been done largely in isolation from competing proposals, with little, if any, comparison of the various operators. We then address evaluation algorithms, comparing the applicability of various algorithms to the temporal join operators, and describing a performance study involving algorithms for one important operator, the temporal equi-join. Our focus, with respect to implementation, is on non-index based join algorithms. Such algorithms do not rely on auxiliary access paths, but may exploit sort orderings to achieve efficiency.

Key words. attribute skew, interval join, partition join, sort-merge join, temporal Cartesian product, temporal join, timestamp skew

1 Introduction

Time is an attribute of all real-world phenomena. Consequently, efforts to incorporate the temporal domain into database management systems (DBMSs) have been on-going for more than a decade [41,58]. The potential benefits of this research include enhanced data modeling capabilities and more conveniently expressed and efficiently processed queries over time.

Whereas most work in temporal databases has concentrated on conceptual issues such as data modeling and query languages, recent attention has been on implementation-related issues, most notably indexing and query processing strategies. We consider in this paper an important subproblem of temporal query processing, the evaluation ad-hoc temporal join operations, i.e., join operations for which indexing or secondary access paths are not available or appropriate. Temporal indexing, which has been a prolific research area in its own right [46], and query evaluation algorithms that exploit such temporal indexes are beyond the scope of this paper.

Joins are arguably the most important relational operators. This is so because efficient join processing is essential to the overall efficiency of a query processor. Joins occur frequently due to database normalization and are potentially expensive to compute [37]. Poor implementations are tantamount to computing the Cartesian product of the input relations. In a temporal database, the problem is more acute. Conventional techniques are aimed toward the optimization of joins with equality predicates, rather than the inequality predicates prevalent in temporal queries [28]. Moreover, the introduction of a time dimension may significantly increase the size of the database. These factors indicate that new techniques are required to efficiently evaluate joins over temporal relations.

This paper aims to present a comprehensive and systematic study of join operations in temporal databases, including both semantics and implementation. Many temporal join operators have been proposed in previous re-
search, but little comparison has been performed with respect to the semantics of these operators. Similarly, many evaluation algorithms supporting these operators have been proposed but little analysis has appeared with respect to their relative performance, especially in terms of empirical study.

The main contributions of this paper are the following.

- To provide a systematic classification of temporal join operators as natural extensions of conventional join operators.
- To provide a systematic classification of temporal join evaluation algorithms as extensions of common relational query evaluation paradigms.
- To empirically quantify the performance of the temporal join algorithms for one important, frequently occurring, and potentially expensive temporal operator.

We intend that DBMS vendors can use the contributions of this paper as part of a migration path to incorporating temporal support into their products. Specifically, we show that nearly all temporal query evaluation work to date has extended well-accepted conventional operators and evaluation algorithms. In many cases, these operators and techniques can be implemented with small changes to an existing code base, and with acceptable, though perhaps not optimal, performance.

Research has identified two orthogonal dimensions of time in databases, valid time, modeling changes in the real-world, and transaction time, modeling the update activity of the database [53,23]. A database may support none, one, or both of the given time dimensions. In this paper, we consider only single dimension temporal databases, so-called valid-time and transaction-time databases. Databases supporting both time dimensions, so-called bitemporal databases, are beyond the scope of this paper, though many of the described techniques extend readily to bitemporal databases. We will use the terms snapshot, relational, or conventional database to refer to databases that provide no integrated support for time.

The remainder of the paper is organized as follows. We propose a taxonomy of temporal join operators in Section 2. This taxonomy extends well-established relational operators to the temporal context, and it classifies all previously defined temporal operators. In Section 3 we develop a corresponding taxonomy of temporal join evaluation algorithms, all of which are non-index based algorithms. In Section 5, we empirically investigate the performance of the evaluation algorithms with respect to one particular, and important, valid-time join operator. The algorithms are tested under a variety of resource constraints and database parameters. Finally, conclusions and directions for future work are offered in Section 6.

2 Temporal Join Operators

In the past, temporal join operators have been defined in different temporal data models; at times the essentially same operators have even been given different names when defined in different models. Further, the existing join algorithms have also been constructed within the contexts of different data models. This section enables the comparison of join definitions and implementations across data models. We thus proceed to propose a taxonomy of temporal joins and then use this taxonomy to classify all previously defined temporal joins.

We take our outset in the core set of conventional relational joins that have long been accepted as “standard” [37]: Cartesian product (whose “join predicate” is the constant expression TRUE), theta-join, equijoin, natural join, left and right outer join, and full outer join. For each of these, we define a temporal counterpart that is a natural, temporal generalization of it. This generalization hinges on the notion of snapshot equivalence [26], which states that two temporal relations are equivalent if they consist of the same, sequence of time-indexed snapshots. We note that some other join operators do exist, including semi-join, anti-semi-join, and difference. Their temporal counterparts have been explored elsewhere [11] and are not considered here.

Having defined this set of temporal joins, we show how all previously defined operators are related to this taxonomy of temporal joins. The previous operators considered include Cartesian product, Θ-JOIN, EQUIJOIN, NATURAL-JOIN, and TIME-JOIN [6,7], TE-JOIN, TE-OUTERJOIN, and EVENT-JOIN [49,20,48,55], and those based on Allen’s [1] interval relations (cf. [28,30,38]). We show that many of these operators incorporate less restrictive predicates or use specialized attribute semantics, and thus are variants of one of the taxonomic joins.

2.1 Temporal Join Definitions

To be specific, we base the definitions on a single data model. We choose the model that is used most widely in temporal data management implementations, namely the one that timestamps each tuple with an interval. We assume that the time-line is partitioned into minimal-duration intervals, termed chronons [12], and we denote intervals by inclusive starting and ending chronons.

We define two temporal relational schemas, R and S, as follows.

$$R = (A_1, \ldots, A_n, T_s, T_e)$$

$$S = (B_1, \ldots, B_m, T_s, T_e)$$

The A_i, $1 \leq i \leq n$, and B_i, $1 \leq i \leq m$, are the explicit attributes that are found in corresponding snapshot schemas, and T_s and T_e are the timestamp start and end attributes, recording when the information recorded by the explicit attributes holds (or held or will
hold) true. We will use T as a shorthand for the interval $[T_s, T_e]$, and A and B as a shorthand for $\{A_1, \ldots, A_n\}$ and $\{B_1, \ldots, B_m\}$, respectively. Also, we define r and s to be instances of R and S, respectively.

Example 1 Consider the following two temporal relations. The relations show the canonical example of employees, the departments they work for, and the managers who supervise those departments.

<table>
<thead>
<tr>
<th>EmployeeName</th>
<th>Dept</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ron</td>
<td>Ship</td>
<td>[1,5]</td>
</tr>
<tr>
<td>George</td>
<td>Ship</td>
<td>[5,9]</td>
</tr>
<tr>
<td>Ron</td>
<td>Mail</td>
<td>[6,10]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dept</th>
<th>MgrName</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load</td>
<td>Ed</td>
<td>[3,8]</td>
</tr>
<tr>
<td>Ship</td>
<td>Jim</td>
<td>[7,15]</td>
</tr>
</tbody>
</table>

Tuples in the relations represent facts about the modeled reality. For example, the first tuple in the Employee relation represents the fact that Ron worked for the Shipping department from time 1 to time 5, inclusive. Notice that none of the attributes, including the timestamp attributes T, are set-valued—the relation schemas are in 1NF.

2.2 Cartesian Product

The temporal Cartesian product is a conventional Cartesian product with a predicate on the timestamp attributes. To define it, we need two auxiliary definitions.

First, $\text{intersect}(U, V)$, where U and V are intervals, returns TRUE if there exists a chronon t such that $t \in U \land t \in V$, and FALSE otherwise. Second, $\text{overlap}(U, V)$ returns the maximum interval contained in its two argument intervals. If no non-empty intervals exists, the function returns \emptyset. To state this more precisely, let first and last return the smallest and largest of two argument chronons, respectively. Also let U_s and U_e denote the starting and ending chronons of U, and similarly for V.

\[
\text{overlap}(U, V) = \begin{cases}
\text{last}(U_s, V_s), \text{first}(U_e, V_e) & \text{if } \text{last}(U_s, V_s) \leq \text{first}(U_e, V_e) \\
\emptyset & \text{otherwise}
\end{cases}
\]

Definition 1 The temporal Cartesian product, $r \times^T s$, of two temporal relations r and s is defined as follows.

$r \times^T s = \{ z^{[m+n+2]} | \exists x \in r \ \exists y \in s (z[A] = x[A] \land z[B] = y[B] \land z[T] = \text{overlap}(x[T], y[T]) \land z[T] \neq \emptyset) \}$

The second line of the definition sets the explicit attribute values of the result tuple z to the concatenation of the explicit attribute values of x and y. The third line computes the timestamp of z and ensures that it is non-empty.

Example 2 Consider the query “Show the names of employees and managers where the employee worked for the company while the manager managed some department in the company.” This can be satisfied using the temporal Cartesian product.

<table>
<thead>
<tr>
<th>Employee</th>
<th>Dept</th>
<th>MgrName</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ron</td>
<td>Ship</td>
<td>Load</td>
<td>Ed</td>
</tr>
<tr>
<td>George</td>
<td>Ship</td>
<td>Load</td>
<td>Ed</td>
</tr>
<tr>
<td>George</td>
<td>Ship</td>
<td>Jim</td>
<td>[7,9]</td>
</tr>
<tr>
<td>Ron</td>
<td>Mail</td>
<td>Load</td>
<td>Ed</td>
</tr>
<tr>
<td>Ron</td>
<td>Mail</td>
<td>Ship</td>
<td>Jim</td>
</tr>
</tbody>
</table>

The overlap function is necessary and sufficient to ensure snapshot reducibility, as will be discussed in detail in Section 2.7. Basically, we want the temporal Cartesian product to act as though it is a conventional Cartesian product applied independently at each point in time. When operating on interval-stamped data, this semantics corresponds to an intersection: the result will be valid during those times when contributing tuples from both input relations are valid.

The temporal Cartesian product was first defined by Segev and Gunadhi [49,20]. This operator was termed the Time-join and the abbreviation T-join was used. Clifford and Croker [7] defined a Cartesian product operator that is a combination of the temporal Cartesian product and the temporal outerjoin, to be defined shortly. Interval Join is a building block of the (spatial) Rectangle Join [2]. The Interval Join is a one-dimensional spatial join, which can thus be used to implement temporal Cartesian product.

2.3 Theta-Join

Like the conventional theta-join, the temporal theta-join supports an unrestricted predicate P on the explicit attributes of its input arguments. The temporal theta-join, $r \bowtie^T P s$, of two relations r and s selects those tuples from $r \times^T s$ that satisfy predicate $P(r[A], s[B])$. Let σ denote the standard selection operator.

Definition 2 The temporal theta-join, $r \bowtie^T P s$, of two temporal relations r and s is defined as follows.

\[
r \bowtie^T P s = \sigma^P_{r[A], s[B]}(r \times^T s)
\]

A form of this operator, the Θ-JOIN, was proposed by Clifford and Croker [6]. This operator was later extended to allow computations more general than overlap on the timestamps of result tuples [56].

2.4 Equijoin

Like snapshot equijoin, the temporal equijoin operator enforces equality matching between specified subsets of the explicit attributes of the input relations.
Definition 3 The temporal equijoin on two temporal relations \(r \) and \(s \) on attributes \(A' \subseteq A \) and \(B' \subseteq B \) is defined as the theta-equis with predicate \(P \equiv r[A'] = s[B'] \):

\[
r \mathcal{W}_r s \quad | \quad r[A'] = s[B'] \quad .
\]

Like the temporal theta-join, the temporal equijoin was first defined by Clifford and Croker [6]. A specialized operator, the TE-join, was developed independently by Segev and Gunadi [49]. The TE-join required the explicit join attribute to be a surrogate attribute of both input relations. Essentially, a surrogate attribute would be a key attribute of a corresponding non-temporal schema. In a temporal context, a surrogate attribute value represents a time-invariant object identifier. If we augment schemas \(R \) and \(S \) with surrogate attributes \(ID \) then the TE-join can be expressed using the temporal equijoin as follows.

\[
r \mathcal{W}_r s \quad | \quad r \mathcal{W}_r s \quad | \quad r \mathcal{W}_r s \quad |
\]

The temporal equijoin was also generalized by Zhang, Tsotras and Seeger to yield the generalized TE-Join, termed the GTE-Join, which specifies that the joined tuples must have their keys in a specified range while their intervals should intersect a specified interval [59]. The objective was to focus on tuples within interesting rectangles in the key-time space.

2.5 Natural Join

The temporal natural join bears the same relationship to the temporal equijoin as does their snapshot counterparts. Namely, the temporal natural join is simply a temporal equijoin on identically named explicit attributes, followed by a subsequent projection operation.

To define this join, we augment our relation schemas with explicit join attributes, \(C_i \), \(1 \leq i \leq k \), which we abbreviate by \(C \).

\[
R = (A_1, \ldots, A_n, C_1, \ldots, C_k, T_s, T_e)
\]

\[
S = (B_1, \ldots, B_m, C_1, \ldots, C_k, T_s, T_e)
\]

Definition 4 The temporal natural join of \(r \) and \(s \), \(r \mathcal{W}_r s \), is defined as follows.

\[
r \mathcal{W}_r s \quad | \quad r \mathcal{W}_r s \quad | \quad r \mathcal{W}_r s \quad |
\]

This operator was first defined by Clifford and Croker [6] who named it the natural time-join. We showed in earlier work that the temporal natural join plays the same important role in reconstructing normalized temporal relations as does the snapshot natural join for normalized snapshot relations [25]. Most previous work in temporal join evaluation has addressed, either implicitly or explicitly, the implementation of the temporal natural join (or the closely related temporal equijoin).

2.6 Outerjoins and Outer Cartesian Products

Like the snapshot outerjoin, temporal outerjoins and Cartesian products retain dangling tuples, i.e., tuples that do not participate in the join. However, in a temporal database, a tuple may dangle over a portion of its time interval and be covered over others; this situation must be accounted for in a temporal outerjoin or Cartesian product.

We may define the temporal outerjoin as the union of two subjoins, analogous to the snapshot outerjoin. The two subjoins are the temporal left outerjoin and the temporal right outerjoin. As the left and right outerjoins are symmetric, we define only the left outerjoin.

We need two auxiliary functions. The coalesce function collapses value-equivalent tuples—tuples with mutually equal non-timestamp attribute values [23]—in a temporal relation into a single tuple with the same non-timestamp attribute values and a timestamp that is the finite union of intervals that precisely contains the chronons in the timestamps of the value-equivalent tuples. (A finite union of time intervals is termed a temporal element [15], which we represent in this paper as a set of chronons.) The definition of coalesce uses the function chronons that returns the set of chronons contained in the argument interval.

\[
\text{coalesce}(r) = \{x^{[m+1]} | \exists x \in r \exists y \in s \exists z \in C = y[C] \land z[A] = z[A] \land z[B] = z[B] \land z[C] = y[C] \land z[T] = overlap (x[T], y[T]) \land z[T] \neq \emptyset \}
\]

The second and third lines of the definition coalesce all value-equivalent tuples in relation \(r \). The last line ensures that no spurious chronons are generated.

We now define a function expand that returns the set of maximal intervals contained in an argument temporal element, \(T \).

\[
\text{expand}(T) = \{ [t_s, t_e] \mid t_s \in T \land t_e \in T \land \forall t \in \text{chronons}([t_s, t_e]) \land t \in T \land \exists t'_e \in T \land (t'_e > t_e) \land \forall t (t_e < t < t_e \Rightarrow t \in T) \land \exists t'_e \in T \land (t'_e > t_e) \land \forall t (t_e < t < t_e \Rightarrow t \in T) \}
\]

The second line ensures that a member of the result is an interval contained in \(T \). The last two lines ensure that the interval is indeed maximal.
We are now ready to define the temporal left outer-join. Let R and S be defined as for the temporal equijoin. We use $A' \subseteq A$ and $B' \subseteq B$ as the explicit join attributes.

Definition 5 The temporal left outer-join, $r \boxright_{\tau r}^{\forall r \in [A'] = [B'] \forall s \in [A]}^s r \boxright_{\tau r}^{\forall r \in [A'] = [B'] \forall s \in [A]}^s \{ z^{(n+m+2)} \} | \exists x \in \text{coalesce}(r) \exists y \in \text{coalesce}(s) \begin{align*} (z[A] = y[B] \land z[A] \land z[T] \neq \emptyset \land (z[B] = y[B] \land z[T] \in \text{expand}(x[T] \cap y[T])) \lor (z[B] = \text{null} \land z[T] \in \text{expand}(x[T] - y[T]))) \lor \exists x \in \text{coalesce}(r) \forall y \in \text{coalesce}(s) \begin{align*} (z[A'] \neq y[B'] \Rightarrow \{ z[A] = z[A] \land z[B] = \text{null} \land z[T] \in \text{expand}(x[T] \land z[T]) \neq \emptyset \}) \end{align*} \right. \end{align*} \} The first five lines of the definition handle the case where, for a tuple x deriving from the left argument, a tuple y with matching explicit join attribute values is found. For those time intervals of x that are not shared with y, we generate tuples with null values in the attributes of y. The final three lines of the definition handle the case where no matching tuple y is found. Tuples with null values in the attributes of y are generated. □

The temporal outerjoin may be defined as simply the union of the temporal left and the temporal right outerjoins (the union operator eliminates the duplicate equijoin tuples). Similarly, a temporal outer Cartesian product is a temporal outerjoin without the equijoin condition ($A' = B' = \emptyset$).

Gunadi and Segov were the first researchers to investigate outerjoins over time. They defined a specialized version of the temporal outerjoin called the EVENT JOIN [49]. This operator, of which the temporal left and right outerjoins were components, used a surrogate attribute as its explicit join attribute. This definition was later extended to allow any attributes to serve as the explicit join attributes [56]. A specialized version of the left and right outerjoins called the TE-outerjoin was also defined. The TE-outerjoin incorporated the TE-join, i.e., temporal equijoin, as a component.

Clifford and Croker [7] defined a temporal outer Cartesian product, which they termed simply Cartesian product.

2.7 Reducibility

We proceed to show how the temporal operators reduce to snapshot operators. Reducibility guarantees that the semantics of snapshot operator is preserved in its more complex, temporal counterpart.

For example, the semantics of the temporal natural join reduces to the semantics of the snapshot natural join in that the result of first joining two temporal relations and then transforming the result to a snapshot relation yields a result that is the same as that obtained by first transforming the arguments to snapshot relations and then joining the snapshot relations. This commutativity diagram is shown in Figure 1 and stated formally in the first equality of the following theorem.

The timeslice operation τt takes a temporal relation r as argument and a chronon t as parameter. It returns the corresponding snapshot relation, i.e., with the schema of r, but without the timestamp attributes, that contains (the non-timestamp portion of) all tuples x from r for which t belongs to $x[T]$. It follows from the theorem next that the temporal joins defined here reduce to their snapshot counterparts.

Theorem 1 Let t denote a chronon and let r and s be relation instances of the proper types for the operators they are applied to. Then the following hold for all t.

\[
\begin{align*}
\tau^t_t (r \bowtie^s s) &= \tau^t_t (r) \bowtie^t (s) \\
\tau^t_t (r \times^s s) &= \tau^t_t (r) \times^t (s) \\
\tau^t_t (r \bowtie_{\bowtie}^s s) &= \tau^t_t (r) \bowtie_{\bowtie}^t (s) \\
\tau^t_t (r \bowtie_{\bowtimes}^s s) &= \tau^t_t (r) \bowtie_{\bowtimes}^t (s) \\
\tau^t_t (r \bowtie_{\bowtimes}^s s) &= \tau^t_t (r) \bowtie_{\bowtimes}^t (s)
\end{align*}
\]

Proof: An equivalence is shown by proving its two inclusions separately. The non-timestamp attributes of r and s are AC and BC, respectively, where A, B, and C are sets of attributes and C denotes the join attribute(s) (cf. the definition of temporal natural join). We prove one inclusion of the first equivalence, that is, $\tau^t_t (r \bowtie^s s) \subseteq \tau^t_t (r) \bowtie^t (s)$. The remaining proofs are similar in style.

Let $x^0 \in \tau^t_t (r \bowtie^s s)$ (the left hand side of the equivalence to be proved). Then there is a tuple $x' \in r \bowtie^s s$ such that $x'[ABC] = x^0$ and $t \in x'[T]$. By the definition of \bowtie^s, there exist tuples $x_1 \in r$ and $x_2 \in s$ such that $x_1[C] = x_2[C] = x'[C]$, $x_1[A] = x'[A]$, $x_2[B] = x'[B]$, $x'[T] = \text{overlap}(x_1[T], x_2[T])$. By the definition of τ^t_t, there exist a tuple $x_1' \in \tau^t_t (r)$ such that $x_1' = x_1[AC]$ and a tuple $x_2' \in \tau^t_t (s)$ such that $x_2' = x_2[BC] = x'[BC]$. Then there exists $x_1' \in \tau^t_t (r) \bowtie^t (s)$ (the right hand side of the equivalence) such that $x_1'[AC] = x_1'$ and $x_1'[B] = x_2'[B]$. By construction $x'' = x''$. This proves the \subseteq inclusion. □

2.8 Summary

We have defined a taxonomy for temporal join operators. The taxonomy was constructed as a natural extension of corresponding snapshot database operators. We also briefly described how previously defined temporal operators are accommodated in the taxonomy.

Table 1 summarizes how previous work is represented in the taxonomy. For each operator defined in previous work, the table lists the defining publication, researchers, the corresponding taxonomy operator, and any restrictions assumed by the original operators. In early work,
Clifford [8] indicated that an intersection-join should be defined that represents the categorized non-outer joins and Cartesian products, and he proposed that a union-join be defined for the outer variants.

3 Evaluation Algorithms

In the previous section, we described the semantics of all previously proposed temporal join operators. We now turn our attention to implementation algorithms for these operators. As before, our purpose is to enumerate the space of algorithms applicable to the temporal join operators, thereby providing a consistent framework within which existing temporal join evaluation algorithms can be placed.

Our approach is to extend well-understood paradigms from conventional query evaluation to temporal databases. Algorithms for temporal join evaluation are necessarily more complex than their snapshot counterparts. Whereas snapshot evaluation algorithms match input tuples on their explicit join attributes, temporal join evaluation algorithms typically must in addition ensure that temporal restrictions are met. Furthermore, this problem is exacerbated in two ways. Timestamps are typically complex data types, e.g., intervals, requiring inequality predicates, which conventional query processors are not optimized to handle. Also, a temporal database is usually larger than a corresponding snapshot database due to the versioning of tuples.

We consider non-index-based algorithms. Index-based algorithms use an auxiliary access path, i.e., a data structure that identifies tuples or their locations using a join-attribute value. Non-index-based algorithms do not employ auxiliary access paths. While some attention has been focused on index-based temporal join algorithms, the large number of temporal indexes that have been proposed in the literature [46] precludes a thorough investigation in this paper.

We first provide a taxonomy of temporal join algorithms. This taxonomy, like the operator taxonomy of Table 1, is based on well-established relational concepts. Sections 3.2 and 3.3 describe the algorithms in the taxonomy and place existing work within the given framework. Lastly, conclusions are offered in Section 3.4.
3.1 Evaluation Taxonomy

All binary relational query evaluation algorithms, including those computing conventional joins, are derived from four basic paradigms: nested-loop, partitioning, sort-merge, and index-based [18].

Partition-based join evaluation divides the input tuples into buckets using the join attributes of the input relations as key values. Corresponding buckets of the input relations contain all tuples that could possibly match with one another, and the buckets are constructed to best utilize the available main memory buffer space. The result is produced by performing an in-memory join of each pair of corresponding buckets from the input relations.

Sort-merge join evaluation also divides the input relation, but uses physical memory loads as the units of division. The memory loads are sorted, producing sorted runs, and written to disk. The result is produced by merging the sorted runs, where qualifying tuples are matched and output tuples are produced.

Index-based join evaluation utilizes indexes defined on the join attributes of the input relations to locate joining tuples efficiently. The index could be pre-existing or built on the fly. Elmasri et al. presented a temporal join algorithm that utilizes a two-level time index, which used a B*-tree to index the explicit attribute in the upper level, with the leaves referencing other B*-trees indexing time points [13]. Son and Elmasri revised the time index to require less space and utilized this modified index to determine the partitioning intervals in a partition-based timestamp algorithm [55]. Bercken and Seeger proposed several temporal join algorithms based on multi-version B*-tree (MVBT) [4]. Later Zhang, Tsotras and Seeger described several algorithms based on B*-trees, R*-trees [3], and the MVBT for the related GTE-join. This operation requires that joined tuples have key values that belong to a specified range and have time intervals that intersect a specified interval [59]. The MVBT assumes that updates arrive in increasing time order, which is not the case for valid-time data. We focus on non-index-based join algorithms that apply both valid-time and transaction-time relations, and we do not discuss these index-based joins further.

We adapt the basic non-index-based algorithms (nested-loop, partitioning, and sort-merge) to support temporal joins. To enumerate the space of temporal join algorithms, we exploit the duality of partitioning and sort-merge [19]. In particular, the division step of partitioning, where tuples are separated based on key values, is analogous to the merging step of sort-merge, where tuples are matched based on key values. In the following, we consider the characteristics of sort-merge algorithms and apply duality to derive corresponding characteristics of partition-based algorithms.

For a conventional relation, sort-based join algorithms order the input relation on the input relations' explicit join attributes. For a temporal relation, which includes timestamp attributes in addition to explicit attributes, there are four possibilities for ordering the relation. First, the relation can be sorted using the explicit attributes exclusively. Second, the relation can be ordered on time, using either the starting or ending timestamp [31, 48]. The choice of starting or ending timestamp dictates an ascending or descending sort order, respectively. Third, the relation can be ordered primarily on the explicit attributes and secondarily on time [38]. Lastly, the relation can be ordered primarily on time and secondarily on the explicit attributes.

By duality, the division step of partition-based algorithms can partition using any of these options [31, 48]. Hence, four choices exist for the dual steps of merging in sort-merge or partitioning in partition-based methods.

We use this distinction to categorize the different approaches to temporal join evaluation. The first approach above, using the explicit attributes as the primary matching attributes, we term explicit algorithms. Similarly, we term the second approach timestamp algorithms. We retain the generic term temporal algorithm to mean any algorithm to evaluate a temporal operator.

Finally, it has been recognized that the choice of buffer allocation strategy, GRACE or hybrid [9], is independent of whether a sort or partition-based approach is used [18]. Hybrid policies retain most of the last run of the outer relation in main memory, and so minimize the flushing of intermediate buffers to disk, thereby potentially decreasing the I/O cost.

Figure 2 lists the choices of sort-merge versus partitioning, the possible sorting/partitioning attributes, and the possible buffer allocation strategies. Combining all possibilities yields sixteen possible evaluation algorithms, including the basic nested-loop algorithm and GRACE and hybrid variants of the sort-based Interval Join mentioned in Section 2.2 results in a total of nineteen possible algorithms. The nineteen algorithms are named and described in Table 2.

\[
\{ \text{Sort-merge} \} \times \left\{ \frac{\text{Explicit Timestamp}}{\text{Explicit/timestamp}} \right\} \times \{ \text{GRACE Hybrid} \}
\]

Fig. 2 Space of Possible Evaluation Algorithms

We noted previously that time intervals lack a natural order. From this point of view, spatial join is similar because there is no natural order preserving spatial closeness. Previous work on spatial join may be categorized into three approaches. Early work [39, 40] used a transformation approach based on space-filling curves, performing a sort-merge join along the curve to solve the join problem. Most of the work falls in the index-based
Table 2 Algorithm Taxonomy

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explicit sort</td>
<td>ES</td>
<td>GRACE sort-merge on explicit attributes</td>
</tr>
<tr>
<td>Hybrid explicit sort</td>
<td>ES-H</td>
<td>Hybrid sort-merge on explicit attributes</td>
</tr>
<tr>
<td>Timestamp sort</td>
<td>TS</td>
<td>GRACE sort-merge on timestamps</td>
</tr>
<tr>
<td>Hybrid timestamp sort</td>
<td>TS-H</td>
<td>Hybrid sort-merge on timestamps</td>
</tr>
<tr>
<td>Explicit/timestamp sort</td>
<td>ETS</td>
<td>GRACE sort-merge on explicit attributes/time</td>
</tr>
<tr>
<td>Hybrid explicit/timestamp sort</td>
<td>ETS-H</td>
<td>Hybrid sort-merge on explicit attributes/time</td>
</tr>
<tr>
<td>Timestamp/explicit sort</td>
<td>TES</td>
<td>GRACE sort-merge on time/explicit attributes</td>
</tr>
<tr>
<td>Hybrid timestamp/explicit sort</td>
<td>TES-H</td>
<td>Hybrid sort-merge on time/explicit attributes</td>
</tr>
<tr>
<td>Interval Join</td>
<td>TSI</td>
<td>GRACE sort-merge on timestamps</td>
</tr>
<tr>
<td>Hybrid Interval Join</td>
<td>TSI-H</td>
<td>Hybrid sort-merge on timestamps</td>
</tr>
<tr>
<td>Explicit partitioning</td>
<td>EP</td>
<td>GRACE partition on explicit attributes</td>
</tr>
<tr>
<td>Hybrid explicit partitioning</td>
<td>EP-H</td>
<td>Hybrid partition on explicit attributes</td>
</tr>
<tr>
<td>Timestamp partitioning</td>
<td>TP</td>
<td>Range partition on time</td>
</tr>
<tr>
<td>Hybrid timestamp partitioning</td>
<td>TP-H</td>
<td>Hybrid range partition on time</td>
</tr>
<tr>
<td>Explicit/timestamp partitioning</td>
<td>ETP</td>
<td>GRACE partition on explicit attributes/time</td>
</tr>
<tr>
<td>Hybrid explicit/timestamp partitioning</td>
<td>ETP-H</td>
<td>Hybrid partition on explicit attributes/time</td>
</tr>
<tr>
<td>Timestamp/explicit partitioning</td>
<td>TEP</td>
<td>GRACE partitioning on time/explicit attributes</td>
</tr>
<tr>
<td>Hybrid timestamp/explicit partitioning</td>
<td>TEP-H</td>
<td>Hybrid partitioning on time/explicit attributes</td>
</tr>
<tr>
<td>Nested-loop</td>
<td>NL</td>
<td>Exhaustive matching</td>
</tr>
</tbody>
</table>

approaches, utilizing spatial index structures such as the R-tree [21], R+-tree [50], R*-tree [3], Quad-tree [47], or seeded tree [33]. While some algorithms use preexisting indexes, others build the indexes on-the-fly.

In recent years, some work has focused on non-index-based spatial join approaches. Two partition-based spatial join algorithms have been proposed. One of them [34] partitions the input relations into overlapping buckets and uses an indexed nested loop join to perform the join within each bucket. The other [42] partitions the input relations into disjoint partitions and utilizes a computational geometry based plane-sweep algorithm which can be thought of as the spatial equivalent of the sort-merge algorithm. Arge et al. [2] introduced a highly optimized implementation of the sweeping-based algorithm that first sorts the data along the vertical axis, after which it partitions the input into a number of vertical strips. Data in each strip can then be joined by an internal plane-sweep algorithm. The above non-index based spatial join algorithms all use sort- or partition-based approach, or combine these two approaches in one algorithm, which is exactly the approach we adopt in some of our temporal join algorithms (cf., Section 4.3.2).

In the next two sections, we examine the space of explicit algorithms and timestamp algorithms, respectively, and classify existing approaches using the taxonomy developed in this section. We will see that most previous work in temporal join evaluation has centered on timestamp algorithms. However, for expository purposes, we first examine those algorithms based on manipulation of the non-timestamp columns, which we term “explicit” algorithms.

3.2 Explicit Algorithms

Previous work has largely ignored the fact that conventional query evaluation algorithms can be easily modified to evaluate temporal joins. In this section, we show how the three paradigms of query evaluation can support temporal join evaluation. To make the discussion concrete, we develop an algorithm to evaluate the validate-natural join, defined in Section 2, for each of the three paradigms. We begin with the simplest paradigm, nested-loop evaluation.

3.2.1 Nested Loop-Based Algorithms

Nested-loop join algorithms match tuples by exhaustively comparing pairs of tuples from the input relations. As an I/O optimization, blocks of the input relations are read into memory, with comparisons performed between all tuples in the input blocks. The size of the input blocks is constrained by the available main memory buffer space.

The algorithm operates as follows. One relation is designated as the outer relation, the other as the inner relation [37,18]. The outer relation is scanned once. For each block of the outer relation, the inner relation is scanned. When a block of the inner relation is read into memory the tuples in that “inner block” are joined with the tuples in the “outer block.”

The temporal nested-loop join is easily constructed from this basic algorithm. All that is required is that the timestamp predicate be evaluated at the same time as the predicate on the explicit attributes. Figure 3 shows the temporal algorithm. (In the figure, r is the outer relation and s is the inner relation. We assume their schemas are as defined in Section 2.)

While conceptually simple, nested-loop based evaluation is often not competitive due to its quadratic cost.
explicitNestedLoop(r, s):
 result ← Ø;
 for each block bᵢ ∈ r
 read(bᵢ);
 for each block bᵢ ∈ s
 read(bᵢ);
 for each tuple x ∈ bᵢ
 for each tuple y ∈ bᵢ
 if x[C] = y[C] and
 overlap(x[T], y[T]) ≠ Ø
 z[A] ← x[A];
 z[B] ← y[B];
 z[C] ← x[C];
 z[T] ← overlap(x[T], y[T]);
 result ← result ∪ {z};

 return result;

Fig. 3 Algorithm explicitNestedLoop

We now describe temporal variants of the sort-merge and partition-based algorithms that usually exhibit better performance.

3.2.2 Sort Merge-Based Algorithms Sort-merge join algorithms consist of two phases. In the first phase, the input relations r and s are sorted on their join attributes. In the second phase, the result is produced by simultaneously scanning r and s, merging tuples with identical values for their join attributes.

Complications arise if the join attributes are not key attributes of the input relations. In this case, multiple tuples in r, and in s, may have identical join attribute values. Hence, a given r tuple may join with many s tuples, and vice-versa. (This is termed skew [32].)

As before, we designate one relation as the outer relation, and the other as the inner relation. When consecutive tuples in the outer relation have identical values for their explicit join attributes, i.e., their non-timestamp join attributes, the scan of the inner relation is "backed-up" to ensure that all possible matches are found. Prior to showing algorithm explicitSortMerge, we define a suite of algorithms that manage the scans of the input relations. For each scan, we maintain the state structure shown in Figure 4.

structure state
 integer current_block;
 integer current_tuple;
 integer first_block;
 integer first_tuple;
 block tuples;

Fig. 4 State Structure for Merge Scanning

The fields current_block and current_tuple together indicate the current tuple in the scan, by recording the number of the current block and the index of the current tuple within that block. The fields first_block and first_tuple are used to record the state at the beginning of a scan of the inner relation, in order to back up the scan later if needed. Lastly, tuples stores the block of the relation currently in memory. For convenience, we treat the block as an array of tuples.

Algorithm initState shown in Figure 5 initializes the state of a scan. Essentially, counters are set to guarantee that the first block read and the first tuple scanned are the first block and first tuple within that block in the input relation. We assume that a seek operation is available which repositions the file pointer associated with a relation to a given block number.

initState(relation, state):
 state.current_block ← 1;
 state.current_tuple ← 0;
 state.first_block ← 1;
 state.first_tuple ← 1;
 seek(relation, state.current_block);
 state.tuples ← read_block(relation);

advance(relation, state):
 if (state.current_tuple = MAX_TUPLES)
 state.tuples ← read_block(relation);
 state.current_block ← state.current_block + 1;
 state.current_tuple ← 1;
 else
 state.current_tuple ← state.current_tuple + 1;

currentTuple(state):
 return state.tuples[state.current_tuple]

backup(relation, state):
 if (state.current_block ≠ state.first_block)
 state.current_block ← state.current_block + 1;
 seek(relation, state.current_block);
 state.tuples ← read_block(relation);
 state.current_tuple ← state.first_tuple;

markScanStart(state):
 state.first_block ← state.current_block;
 state.first_tuple ← state.current_tuple;

Fig. 5 Merge Algorithms

Algorithm advance advances the scan of the argument relation and state to the next tuple in the sorted relation. If the current block has been exhausted then the next block of the relation is read. Otherwise, the state is updated to mark the next tuple in the current block as the next tuple in the scan. Algorithm current_tuple merely returns the next tuple in the scan, as indicated by the scan state. Finally, algorithms backup and markScanStart manage the backing up of the inner relation
scan. Algorithm backUp reverts the current block and tuple counters to their last values. These values are stored in the state at the beginning of a scan by algorithm markScanStart.

We are now ready to exhibit algorithm explicitSortMerge, shown in Figure 6. The algorithm accepts three parameters, the input relations r and s, and the join attributes C. We assume that the schemas of r and s are as given in Section 2. Tuples from the outer relation are scanned in order. For each outer tuple, if the tuple matches the previous outer tuple, the scan of the inner relation is backed-up to the first matching inner tuple. The starting location of the scan is recorded, in case backing up is needed by the next outer tuple, and the scan proceeds forward as normal. The complexity of the algorithm, as well as its performance degradation, as compared with conventional sort-merge, is due largely to the bookkeeping required to back up the inner relation scan. We consider this performance hit in more detail in Section 4.2.2.

\[
\text{explicitSortMerge}(r, s, C):
\]

\[
r' \leftarrow \text{sort}(r, C);
\]

\[
s' \leftarrow \text{sort}(s, C);
\]

\[
\text{initState}(r', \text{outer_state}); \text{initState}(s', \text{inner_state});
\]

\[
x'[C] \leftarrow 1;
\]

\[
\text{result} \leftarrow \emptyset;
\]

\[
\text{advance}(s', \text{inner_state});
\]

\[
y \leftarrow \text{currentTuple}(\text{inner_state});
\]

\[\text{for } i \leftarrow 1 \text{ to } |r'|
\]

\[
\text{advance}(r', \text{outer_state});
\]

\[
x' \leftarrow \text{currentTuple}(\text{outer_state});
\]

\[
\text{if } x[C] = x'[C]
\]

\[
\text{backUp}(s', \text{inner_state});
\]

\[
y' \leftarrow \text{currentTuple}(s', \text{inner_state});
\]

\[
x'[C] \leftarrow x[C];
\]

\[
\text{while } (x[C] > y[C])
\]

\[
\text{advance}(s', \text{inner_state});
\]

\[
y' \leftarrow \text{currentTuple}(\text{inner_state});
\]

\[
\text{markScanStart}(\text{inner_state});
\]

\[\text{while } (x[C] = y[C])
\]

\[
\text{if } \text{overlap}(x[T], y[T]) \neq \emptyset
\]

\[
z[A] \leftarrow x[A]; z[B] \leftarrow y[B]; z[C] \leftarrow x[C];
\]

\[
z[T] \leftarrow \text{overlap}(x[T], y[T]);
\]

\[
\text{result} \leftarrow \text{result} \cup \{z\};
\]

\[
\text{advance}(s', \text{inner_state});
\]

\[
y' \leftarrow \text{currentTuple}(\text{inner_state});
\]

\[\text{return result};
\]

Fig. 6 Algorithm explicitSortMerge

Segev and Gunadhi developed three algorithms based on explicit sorting, differing primarily on the code in the inner loop and on whether backup is necessary. Two of the algorithms, TEJ-1 and TEJ-2, support the temporal equijoin [48]; the remaining algorithm, EJ-1, evaluates the temporal outerjoin [48].

TEJ-1 is applicable if the equijoin condition is on the surrogate attributes of the input relations. The surrogate attributes are essentially key attributes of a corresponding snapshot schema. TEJ-1 assumes that the input relations are sorted primarily on their surrogate attributes and secondarily on their starting timestamps. The surrogate matching, sort-ordering, and 1TNF assumption described in Section 3.3.1, allows the result to be produced with a single scan of both input relations, with no back-up.

The second equijoin algorithm, TEJ-2, is applicable when the equijoin condition involves any explicit attributes, surrogate or not. TEJ-2 assumes that the input relations are sorted first on their explicit join attribute(s) and secondly on their starting timestamps. Notice that since the join attribute can be a non-surrogate attribute, tuples sharing the same join attribute value may overlap in valid-time. Consequently, TEJ-2 requires the scan of the inner relation to be backed-up, in order to find all tuples with matching explicit attributes.

For the EVENT-JOIN, Segev and Gunadhi described sort-merge based algorithm, EJ-1. EJ-1 assumes that the input relations are sorted primarily on their surrogate attributes and secondarily on their starting timestamps. Like TEJ-1, the result is produced by a single scan of both input relations.

3.2.3 Partition-Based Algorithms As in sort-merge based algorithms, partition-based algorithms have two distinct phases. In the first phase, the input relations are partitioned based on their join attribute values. The partitioning is performed so that a given bucket produced from one input relation contains tuples that can only match with tuples contained in the corresponding bucket of the other input relation. Each produced bucket is also intended to fill the allotted main memory. Typically, a hash function is used as the partitioning agent. Both relations are filtered through the same hash function, producing two parallel sets of buckets. In the second phase, the join is computed by comparing tuples in corresponding buckets of the input relations. Partition-based algorithms have been shown to have superior performance when the relative sizes of the input relations differ [18].

A partitioning algorithm for the temporal natural join is shown in Figure 7. The algorithm accepts as input two relations r and s and the names of the explicit join attributes C. We assume that the schemas of r and s are as given in Section 2.

As can be seen, the explicit partition-based join algorithm is conceptually very simple. One relation is des-
Join Operations in Temporal Databases

3.3 Timestamp Algorithms

In contrast to the algorithms of the previous section, timestamp algorithms perform their primary matching on the timestamps associated with tuples. In this section, we enumerate, to the best of our knowledge, all existing timestamp-based evaluation algorithms for the temporal join operators described in Section 3. Many of these algorithms assume sort order-
developed timestamp sort-merge algorithms. Additionally, a one-dimensional spatial join algorithm proposed by Arge et al. can be used to implement temporal Cartesian product.

Segev and Gunadhi modified the traditional merge-join algorithm to support the T-join and the temporal equijoin [49,20]. We describe the algorithms for each of these operators in turn.

For the T-join, the relations are sorted in ascending order of starting timestamp. The result is produced by a single scan of the input relations.

For the temporal equijoin, two timestamp sorting algorithms, named TEJ-3 and TEJ-4, are presented. Both TEJ-3 and TEJ-4 assume that their input relations are sorted on starting timestamp only. TEJ-4 is applicable only if the equijoin condition is on the surrogate attribute. In addition to assuming that the input relations are sorted on their starting timestamps, TEJ-4 assumes that all tuples with the same surrogate value are linked, thereby allowing all tuples with the same surrogate to be retrieved when the first is found. The result is performed with a linear scan of both relations, with random access needed to traverse surrogate chains.

Like TEJ-2, TEJ-3 is applicable for temporal equijoins on both the surrogate and explicit attribute values. TEJ-3 assumes that the input relations are sorted in ascending order of their starting timestamps, but no sort order is assumed on the explicit join attributes. Hence, TEJ-3 requires that the inner relation scan be backed-up should consecutive tuples in the outer relation have overlapping interval timestamps.

Leung and Munzt developed a series of algorithms based on the sort-merge algorithm to support temporal join predicates such as “contains” and “intersect” [1]. Although their algorithms do not explicitly support predicates on non-temporal attribute values, their techniques are easily modified to support more complex join operators such as the temporal equijoin. Like Segev and Gunadhi, this work describes evaluation algorithms appropriate for different sorting assumptions and access paths.

Leung and Munzt use a stream-processing approach. Abstractly, the input relations are considered as sequences of time-sorted tuples where only the tuples at the front of the streams may be read. The ordering of the tuples is a trade-off with the amount of main memory needed to compute the join. For example, Leung and Munzt show how a contain-join [1] can be computed if the input streams are sorted in ascending order of their starting timestamp. They summarize for various sort orders on the starting and ending timestamps what tuples must be retained in main memory during the join computation. A family of algorithms are developed assuming different orderings (ascending/descending) of the starting and ending timestamps.

Leung and Munzt also show how checkpoints, essentially the set of tuples valid during some chronon, can be used to evaluate temporal joins where the join predicate implies some overlap between the participating tuples. Here, the checkpoints actually contain tuple identifiers (TIDs) for the tuples valid during the specified chronon and the TIDs of the next tuples in the input streams. Suppose a checkpoint exists at time t. Using this checkpoint, the set of tuples participating in a join over a time interval containing t can be computed by using the cached TIDs and “rolling forward” using the TIDs of the next tuples in the streams.

Rana and Fotouhi proposed several techniques to improve the performance of time-join algorithms, in which they claimed they used a nested loop approach [45]. Since they assumed the input relations were sorted by the start time and/or end time, those algorithms are more like the second phase of sort merge-based timestamp algorithms. The algorithms are very similar to the sort merge-based algorithms developed by Segev and Gunadhi.

Arge et al. described the Interval Join, a one-dimensional spatial join algorithm, which is a building block of a two-dimensional Rectangle Join [2]. Each interval is defined by a lower boundary and an upper boundary. The problem is to report all intersections between an interval in the outer relation and an interval in the inner relation. If the interval is a time interval instead of a spatial interval, this problem is equivalent to the temporal Cartesian product. They assumed the two input relations were first sorted into one list on their lower boundaries by the algorithm. The algorithm maintains two initially empty list of tuples with “active” intervals, each for one input relation. When the sorted list is scanned, the current tuple is put into the active list of the relation it belongs to and joins only with the tuples in the active list of the other relation. Tuples becoming inactive during the proceeding of the scan are removed from the active list.

Most recently, Pfoer and Jensen [43] applied the sort-merge approach to the temporal theta-join in a setting where each argument relation consists of a non-current and a current partition. Tuples in the former all have intervals that end before the current time, while all tuples of the latter have intervals that end at the current time. They assume that updates arrive in time-order, so that tuples in non-current partitions are ordered on their interval end times and tuples in current partitions are ordered on their interval start times. A join then consists of three different kinds of sub-joins. They develop two join algorithms for this setting and subsequently use these algorithms for incremental join computation.

As can be seen from the above discussion, a large number of timestamp-based sort-merge algorithms have been proposed, some for specific join operators. However, each of these proposals have been developed largely in isolation from other work, with little or no cross-comparison. Furthermore, performance figures that have been published have been derived mainly from analytical
models, rather than empirical observations. An empirical comparison, as provided in Section 5, is needed to truly evaluate the different proposals.

3.3.3 Partition-Based Timestamp Algorithms Partitioning a relation over explicit attributes is relatively straightforward, if the partitioning attributes have discrete values. Partitioning over time is more difficult since our timestamps are intervals, i.e., range data, rather than discrete values. Previous timestamp partitioning algorithms have therefore developed various means of range partitioning the time intervals associated with tuples.

In previous work, we described a valid-time join algorithm using partitioning [57]. This algorithm was presented in the context of evaluating the valid-time natural join, though it is easily adapted to other temporal joins. The range partitioning used by this algorithm mapped tuples to singular buckets and dynamically migrated the tuples to other buckets as needed during the join computation. This approach avoided data redundancy, and associated I/O overhead, at the expense of more complex buffer management.

Sitzmann and Stuchey extended this algorithm by using histograms to decide the partition boundary [51]. Their algorithm takes the number of long-lived tuples into consideration, which renders its performance insensitive to the number of long-lived tuples. However, it relies on a pre-existing temporal histogram.

Lu, Ooi, and Tan described another range-partitioning algorithm for computing temporal joins [35]. This algorithm is applicable to Theta-joins, where a result tuple is produced for each pair of input tuples with overlapping valid-time intervals. Their approach is to map intervals to a two-dimensional plane, which is then partitioned into regions. The join result is produced by computing the subjoins of pairs of partitions corresponding to adjacent regions in the plane. This method applies to a restricted temporal model where future time is not allowed. They utilize a spatial index to speed up the joining phase.

3.4 Summary

We have surveyed temporal join algorithms and proposed a taxonomy of such algorithms. The taxonomy was developed by adapting well-established relational query evaluation paradigms to the temporal operations.

Table 3 summarizes how each temporal join operation proposed in previous work is classified in the taxonomy. We believe that the framework is complete since, disregarding data model specific considerations, all previous work naturally fits into one of the proposed categories.

One important property of an algorithm is whether it delivers a partial answer before the entire input is read. Among the algorithms listed in Table 3, only the nested loop algorithm has this property. Partition-based algorithms have to scan the whole input relation to get the partitions. Similarly, sort-based algorithms have to read the entire input to sort the relation. We note, however, that it is possible to modify the temporal sort-based algorithms to be non-blocking, using the approach of Progressive Merge Join [10].

4 Engineering the Algorithms

As noted in the previous section, an adequate empirical investigation of the performance of temporal join algorithms has not been performed. We concentrate on the temporal equijoin, defined in Section 2.4. This join and the related temporal natural join, are needed to reconstruct normalized temporal relations [25]. To perform a study of implementations of this join, we must first provide state of the art implementations of the nine different types of algorithms outlined for this join. In this section, we discuss our implementation choices.

4.1 Nested Loop Algorithm

We implemented a simple block-oriented nested-loop algorithm. Each block of the outer relation is read into memory, in turn. The outer block is sorted on the explicit joining attribute (actually, pointers are sorted to avoid copying of tuples). Each block of the inner relation is then brought into memory. For a given inner block, each tuple in that block is joined by binary searching the sorted tuples.

This algorithm is simpler than the nested-loop algorithm, EJ-2, described in Section 3.3.1 [49,20]. In particular, our algorithm computes only the valid-time equijoin, while EJ-2 computes the valid-time outerjoin, which includes the equijoin in the form of the valid-time natural join. However, our algorithm supports a more general equijoin condition than EJ-2 in that we support matching on any explicit attribute, rather than solely on a designated surrogate attribute.

4.2 Sort Merge-Based Algorithms

We were careful to utilize a high-performance sort-merge algorithm with the features covered next.

4.2.1 Combining Last Sort Step with Merge Step Sort-merge join uses a disk-based sorting phase that starts by generating many small, fully-sorted runs, then repeatedly merges these into increasingly longer runs until a single run is obtained (this is done for the left-hand side and right-hand side independently). Each step of the sort phase reads and writes the entire relation. The merge phase then scans the totally-sorted left and right-hand
relations to produce the output relation. A common optimization is to stop the sorting phase one step early, when there are a small number of fully sorted runs. The final step is done in parallel with the merge phase of the join, thereby avoiding one read and one write scan. Our sort-merge algorithms implemented for the performance analysis are based on this optimization. We generated initial runs using an in-memory quicksort on either the explicit attributes (ES and ES-H), the timestamp attributes (TS and TS-H), or both (ETS and ETS-H), and then merged the two relations on multiple runs.

4.2.2 Efficient Skew Handling As noted in Section 3.2.2, sort-merge join algorithms become complicated when the join attributes are not key attributes. Previous work on conventional joins [32] shows that intrinsic skew is generally present in this situation. Even a small amount of intrinsic skew can result in a significant performance hit because the naive approach to handle skew is to reread the previous tuples in the same value packet (containing the identical values for the equijoin attribute); this rereading involves additional I/O operations. We previously proposed several techniques to handle skew efficiently [32]. Among them, SC-n (Spooled Cache on multiple runs) was recommended due to its strikingly better performance in the presence of skew for both conventional and band joins. This algorithm also exhibits virtually identical performance as traditional sort-merge join in the absence of skew. SC-n uses a small cache to hold the skewed tuples from the right-hand relation that satisfy the join condition. At the cache’s overflow point, the cache data is spooled to disk.

Skew is prevalent in temporal joins. SC-n can be adapted for temporal join by adding a supplemental predicate (requiring that the tuples overlap) and calculation of the resulting timestamps, by intersection. We adopt this spooled cache in ES instead of rereading the previous tuples. The advantage of using spooled cache is shown in Figure 8. ES Reread is the multi-run version of the algorithm explicitSortMerge exhibited in Section 3.2.2, which backup the right-hand relation when a duplicate value is found in the left-hand relation.

The two algorithms were executed in the TimeIT system. The parameters are the same as will be used in Section 5.1. In this experiment, the memory size was fixed at 8 MB and the cache size was fixed at 32 KB. The relations were generated with different percentages of smooth skew on the explicit attribute. A relation has 1% smooth skew when 1% of the tuples in the relation have one duplicate value on the join attribute and the remaining 98% of the tuples have no duplicates. Since the cache can hold the skewed tuples in memory, no additional I/O is caused by backing-up the relation. The performance improvement of using a cache is approximately 25% when the data has 50% smooth skew. We thus use a spooled cache to handle skew. Spooling will generally not occur, but is available in case a large value packet is present.

Table 3 Existing Algorithms and Taxonomy Counterparts

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Defined By</th>
<th>Taxonomy</th>
<th>Assumptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEJ-1</td>
<td>Segev & Gunadhi</td>
<td>Explicit/timestamp sort</td>
<td>Surrogate attribute and TTNF</td>
</tr>
<tr>
<td>TEJ-2</td>
<td>Segev & Gunadhi</td>
<td>Explicit/timestamp sort</td>
<td>None</td>
</tr>
<tr>
<td>EJ-2</td>
<td>Segev & Gunadhi</td>
<td>Nested-loop</td>
<td>Surrogate attribute and TTNF</td>
</tr>
<tr>
<td>EJ-1</td>
<td>Segev & Gunadhi</td>
<td>Explicit/timestamp sort</td>
<td>Surrogate attribute and TTNF</td>
</tr>
<tr>
<td>Time-join</td>
<td>Segev & Gunadhi</td>
<td>Timestamp sort</td>
<td>None</td>
</tr>
<tr>
<td>TEJ-3</td>
<td>Segev & Gunadhi</td>
<td>Timestamp sort</td>
<td>None</td>
</tr>
<tr>
<td>TEJ-4</td>
<td>Segev & Gunadhi</td>
<td>Timestamp sort</td>
<td>Surrogate attribute/Access chain</td>
</tr>
<tr>
<td>Several</td>
<td>Leung & Muntz</td>
<td>Timestamp sort</td>
<td>None</td>
</tr>
<tr>
<td>Interval</td>
<td>Arge et al.</td>
<td>Timestamp sort</td>
<td>None</td>
</tr>
<tr>
<td>Two</td>
<td>Pleser & Jensen</td>
<td>Timestamp sort</td>
<td>Partitioned relation; time-ordered updates</td>
</tr>
<tr>
<td></td>
<td>Soo et al.</td>
<td>Timestamp partition</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Sitzmann & Stuckey</td>
<td>Timestamp partition</td>
<td>Requires pre-existing temporal histogram</td>
</tr>
<tr>
<td></td>
<td>Lu, Ooi & Tan</td>
<td>Timestamp partition</td>
<td>Disallows future time; uses spatial index</td>
</tr>
</tbody>
</table>

Fig. 8 Performance Improvement of ES with Spooled Cache on Skewed Data

4.2.3 Time-Varying Value Packets and Optimized Prediction Rule
ES utilizes a prediction rule to judge if
skew is present. (Recall that skew occurs if the two tuples have the same join attribute value.) The prediction rule works as follows. When the last tuple in the right hand relation (RHR) buffer is visited, the last tuple in the left hand relation (LHR) buffer is checked to determine if skew is present and the current RHR value packet needs to put into the cache.

We also implemented an algorithm (TS) that sorts the input relations on start time rather than on the explicit join attribute. Here the RHR value packet associated with a specific LHR tuple is not composed of those RHR tuples with the same start time, but rather those RHR tuples that overlap with the interval of the LHR tuple. Hence, value packets are not disjoint, and they grow and shrink as one scans the LHR. In particular, TS puts into the cache only those tuples that could overlap in the future; the tuples that do not stop too early, that is, before subsequent LHR tuples start. For an individual LHR tuple, the RHR value packet starts with the first tuple that stops sometime during the LHR tuple’s interval, and goes through the first RHR tuple that starts after the LHR tuple stops. Value packets are also not totally ordered when sorting on start time.

These considerations suggest that we change the prediction rule in TS. When the RHR reaches a block boundary, the maximum stop time in the current value packet is compared with the start time of the last tuple in the LHR buffer. If the maximum stop time of the RHR value packet is less than the last start time of the LHR, none of the tuples in the value packet will overlap with the subsequent LHR tuples. Thus, there is no need to put them in the cache. Otherwise, the value packet is scanned and only those tuples with a stop time greater than the last start time of the LHR are put into the cache, thus minimizing the utilization of the cache and thus the possibility of cache overflow.

ETS sorts the input relations on the explicit attribute first and on the start time secondarily. Here the right value packet associated with a left tuple is composed of those right tuples that not only have the same value of the explicit attribute, but also overlap with the interval of the left tuple. The prediction rules used in ES and TS are combined to decide whether or not to put a tuple or a value packet into the cache.

To make our work complete, we also implemented TES, which sorts the input relations on the start time first and on the explicit attribute secondarily. The logic of TES is exactly the same as that of TS for the joining phase. We expect the extra sorting on explicitly attribute will not help to optimize the algorithm, but rather will simply increase the CPU time.

4.2.4 Specialized Cache Purging Since the cache size is small, it could be filled up if a value packet is very large or if several value packets accumulate in the cache. For the former, nothing but spoiling the cache can be done. However, purging the cache periodically can avoid unnecessary cache spool for the latter and may result in fewer I/O operations.

Purging the cache costs more in TS since the RHR value packets are not disjoint, while in ES they are disjoint both in each run and in the cache. The cache purging process in ES scans the cache from the beginning and stops whenever the first tuple that belongs to the current value packet is met. But in TS, this purging stage cannot stop until the whole cache has been scanned because the tuples belong to the current value packet are spread across the cache. An inner long-lived tuple could be kept in the cache for a long time because its time interval could intersect with many LHR tuples.

4.2.5 Using a Heap As stated in Section 4.2.1, the final step of sorting is done in parallel with the merging stage. Assuming the two relations are sorted in ascending order, in the merging stage, the algorithm first has to find the smallest value from the multiple sorted runs of each relation, then compare the two values to see if they can be joined. The simplest way to find the smallest value is to scan the current value of each run. Suppose one relation is divided into m runs, the cost of selecting the smallest value is O(m). A more efficient way to do this is to use a heap to select the smallest value. The cost of using a heap is O(log m) when m > 1. By utilizing a heap, the time complexity is reduced.

At the beginning of the merging step, the heap is built based on the value of the first tuple in each run. Whenever advance is called, the run currently on the top of the heap advances its reading pointer to the next tuple. Since the key value of this tuple is no less than the tuple in the current state, it should be propagated down to maintain the heap structure. When a run is backed up, its reading pointer is restored to point to a previously visited tuple, which has a smaller key value, and thus should be propagated up the heap.

When the memory size is relatively small, which indicates the size of each run is small, and therefore, a relation has to be divided into more runs (the number of runs m is large), the performance of using the heap will be much better than that without heap. However, using a heap causes some pointer swaps when sifting down or propagating up a tuple in the heap, which are not needed in the simple algorithm. When the memory size is sufficiently large, the performance of using heap will be close to or even worse than that of the simple algorithm.

Figure 9 shows the total CPU time of ES when using and not using a heap. The data used in Figure 9 are two 64M B relations. The input relations are joined while using different sizes of memory. Note that the CPU time includes the time of both the sorting step and the merging step. As expected, the performance of using a heap is better than that without a heap when the memory is small. The performance improvement is roughly 40% when the memory size is 2 MB. The performance difference decreases along with the increasing of the memory.
4.2.6 GRACE and Hybrid Variants We implemented both GRACE and hybrid versions of each sort-based algorithm. In the GRACE variants, all the sorted runs of a relation are written to disk before the merging stage. The hybrid variants keep most of the last run of the outer relation in memory. This guarantees saving one (multi-block) disk read and one disk write of the memory-resident part. When the available memory is slightly smaller than the data set, the hybrid algorithms will require relatively fewer I/O operations.

4.2.7 Adapting the Interval Join We consider the Interval Join as a variant of the timestamp sort merge algorithm (TS). We call it TSI and its hybrid variant TSI-H in this paper. To be fair, we do not assume the input relations are sorted into one list. Instead, TSI begins with sorting as its first step. Then it combines the last step of the sort with the merge step. The two active lists are essentially two spooled caches, one for each relation. Each cache has the same size as that in TS. This is different from the strategy of keeping a single block of each list in the original paper. A small cache can save more memory for the input buffer, thus reducing the random reads. However, it will cause more cache spoils when skew is present. Since timestamp algorithms tend to encounter skew, we choose the cache size same as that in TS, rather than one block.

4.3 Partition-Based Algorithms

Several engineering considerations also occur when implementing the partition-based algorithms.

4.3.1 Partitioning Details The details of algorithm TP are described elsewhere [57]. We changed TP to use a slightly larger input buffer (32KB) and a cache for the inner relation (also 32KB) instead of using a one-page buffer and cache. The rest of the available main memory is used for the outer relation. There is a tradeoff between a large outer input buffer and a large inner input buffer and cache. A large outer input buffer implies a large partition size, which results in fewer seeks for both relations. But the cache is more likely to spool. On the other hand, allocating a large cache and a large inner input buffer results in a smaller outer input buffer, thus a smaller partition size. This will increase random I/O. We chose 32 KB instead of 1 KB (page size) as a compromise. Identifying the best cache size is listed as future work in Section 6.

Algorithms ETP and TEP partition the input relations in two steps. ETP partitions the relations on the explicit attribute first. For each pair of the buckets to be joined, if none of them fits in memory, a further partition on the timestamp attribute will be done to these buckets to increase the possibility that the resulting buckets do not overflow the available buffer space. TEP is similar to ETP, except that it partitions the relations in the reversed order, first by timestamp and then, if necessary, by explicit attribute.

4.3.2 Joining the Partitions The partition-based algorithms perform their second phase, the joining of corresponding partitions of the outer and inner relations, as follows. The outer partition is fetched into memory, assuming that it will not overflow the available buffer space, and pointers to the outer tuples are sorted using an in-memory quicksort. The inner partition is then scanned, utilizing all memory pages not occupied by the outer partition. For each inner tuple, matching outer tuples are found by binary search. If the outer partitions overflow the available buffer space then the algorithms default to an explicit attribute sort-merge join of the corresponding partitions.

4.3.3 GRACE and Hybrid Variants In addition to the conventional GRACE algorithm, we implemented the hybrid buffer management for each partition-based algorithm. In the hybrid algorithms, one outer bucket is designated as memory-resident. Its buffer space is increased accordingly to hold the whole bucket in memory. When the inner relation is partitioned, the inner tuples that map to the corresponding bucket are joined with the tuples in the memory-resident bucket. This eliminates the I/O operations to write and read one bucket of tuples for both the inner and the outer relation. Similar to the hybrid sort-based algorithms, the hybrid partition-based algorithms are supposed to have better performance when the input relation is slightly larger than the available memory size.
4.4 Supporting the Iterator Interface

Most commercial systems implement the relational operators as *iterators* [18]. In this model, each operator is realized by three procedures called `open`, `next`, and `close`. The algorithms we investigate in this paper can be redesigned to support the iterator interface.

The nested-loop algorithm and the explicit partitioning algorithms are essentially the corresponding snapshot join algorithms except that a supplemental predicate (requiring that the tuples overlap) and the calculation of the resulting timestamps are added in the `next` procedure.

The timestamp partitioning algorithms determine the periods for partitions by sampling the outer relation and partition the input relations in the `open` procedure. The `next` procedure calls the `next` procedure of nested-loop join for each pair of partitions. An additional predicate is added in the `next` procedure to determine if a tuple should be put into the cache.

The sort-based algorithms generate the initial sorted runs for the input relations and merge runs until the final merge step is left in the `open` procedure. In the `next` procedure, the inner runs, the cache, and the outer runs are scanned to find a match. At the same time the inner tuple is examined to decide whether to put it in the cache. The `close` procedure destroys the input runs and deallocates the cache. The `open` and `close` procedures of interval join algorithms are the same as the other sort-based algorithms. The `next` procedure gets the next tuple from the sorted runs and scans the cache to find the matching tuple and purges the cache at the same time.

5 Performance

We implemented all nineteen algorithms enumerated in Table 2 and two variants of the timestamp sort merge algorithm and tested their performance under a variety of data distributions, including skewed explicit and timestamp distributions, timestamp durations, memory allocations, and database sizes. We ensured that all algorithms generated exactly the same output tuples in all of the experiments (the ordering of the tuples differs).

The remainder of this section is organized as follows. We first give details on the join algorithms used in the experiments, then describe the parameters used in the experiments. Sections 5.2 to 5.9 contain the actual results of the experiments. Section 5.10 summarizes the results of the experiments.

5.1 Experimental Setup

The experiments were developed and executed using the TIMEIT [17] system, a software package supporting the prototyping of temporal database components. Using TIMEIT, we fixed several parameters describing all test relations used in the experiments. These parameters and their values are shown in Table 4. In all experiments, tuples were 16 bytes long and consisted of two explicit attributes, both being integers and occupying four bytes, and two integer timestamps, each also requiring four bytes. Only one of the explicit attributes was used as the joining attribute. This yields result tuples that are 24 bytes long, consisting of 16 bytes of explicit attributes from each input tuple and 8 bytes for the timestamps.

We fixed the relation size at 64 MB, giving 4 M tuples per relation. We were less interested in absolute relation size than in the ratio of input size to available main memory. Similarly, the ratio of the page size to the main memory size and the relation size is more relevant than the absolute page size. A scaling of these factors would provide similar results. In all cases, the generated relations were randomly ordered with respect to both their explicit and timestamp attributes.

The metrics used for all experiments are listed in Table 5. In a modern computer system, a random disk access takes about 10 msec, whereas accessing a main memory location typically takes less than 60 nanoseconds [44]. It is reasonable that a sequential I/O takes about one tenth of that of random I/O. Modern computer systems usually have hardware data cache, which can reduce the CPU time on cache hit. Therefore, we chose the join attribute compare time as 20 nanoseconds, which was slightly less than, while in the same magnitude of, the memory access time. The cost metrics we used is the average memory access time given a high hit ratio (> 90%) of cache. It is possible that the CPU cache has lower hit ratio when running some algorithms. However, the magnitude of the memory access time will not change. We assumed the sizes of both a timestamp and a pointer were the same as the size of an integer. Thus, their compare times are the same as that of the join attribute. A pointer swap takes as three times as the pointer compare time because it needs to access three pointers. Tuple move takes as four times as the integer compare time since the size of a tuple is four times of that of an integer.

We measured both main memory operations and disk I/O operations. To eliminate any undesired system ef-

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relation size</td>
<td>64 MB</td>
</tr>
<tr>
<td>Tuple size</td>
<td>16 bytes</td>
</tr>
<tr>
<td>Tuples per relation</td>
<td>4 M</td>
</tr>
<tr>
<td>Timestamp size ([s,e])</td>
<td>8 bytes</td>
</tr>
<tr>
<td>Explicit attribute size</td>
<td>8 bytes</td>
</tr>
<tr>
<td>Relation lifespan</td>
<td>10000000 chronons</td>
</tr>
<tr>
<td>Page size</td>
<td>1 KB</td>
</tr>
<tr>
<td>Output buffer size</td>
<td>32 KB</td>
</tr>
<tr>
<td>Cache size in sort-merge</td>
<td>64 KB</td>
</tr>
<tr>
<td>Cache size in partitioning</td>
<td>32 KB</td>
</tr>
</tbody>
</table>
Table 5 Cost Metrics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequential I/O cost</td>
<td>1 msec</td>
</tr>
<tr>
<td>Random I/O cost</td>
<td>10 nsec</td>
</tr>
<tr>
<td>Join attribute compare</td>
<td>20 nsec</td>
</tr>
<tr>
<td>Timestamp compare</td>
<td>20 nsec</td>
</tr>
<tr>
<td>Pointer compare</td>
<td>20 nsec</td>
</tr>
<tr>
<td>Pointer swap</td>
<td>60 nsec</td>
</tr>
<tr>
<td>Tuple move</td>
<td>80 nsec</td>
</tr>
</tbody>
</table>

fecs from the results, all operations were counted using facilities provided by TimeIT. For disk operations, random and sequential access were measured separately. We included the cost of writing the output relation in the experiments since sort-based and partition-based algorithms exhibit dual random and sequential I/O patterns when sorting/coalescing and partitioning/merging. The total time was then computed by weighing each parameter by the time values listed in Table 5.

Table 6 summarizes the values of the system parameters that varied among the different experiments. Each row of the table identifies the figure(s) that illustrate the results of the experiments given the parameters for the experiment. The reader may have the impression that the intervals are so small that they are almost like the standard equi-join attributes. Are there tuples overlapping with each other? In many cases, we performed the self-join which guaranteed for each tuple in one relation, there is at least one matching tuple in the other relation. Long duration (100 chronons) were used in two experiments. It guaranteed there were four tuples valid in each chronon in average. Two other experiments examine the case that one relation has short duration timestamps ans the other has long duration timestamps. Therefore, our experiments actually examined different degree of overlap.

5.2 Simple Experiments

In this section, we perform three “base case” experiments, where the join selectivity is low, i.e., for an equi-join of valid-time relations \(r \) and \(s \), a given tuple \(x \in r \) joins with one, or few, tuples \(y \in s \). The experiments incorporate random data distributions in the explicit join attributes, and short and long time intervals in the timestamp attributes.

5.2.1 Low Explicit Selectivity with Short Timestamps

In this experiment, we generated a relation with little explicit matching and little overlap, and joined the relation with itself. This mimics a foreign key-primary key natural join that the cardinality of the result is the same as one of the input relations. The relation size was fixed at 64 MB, corresponding to 4 M tuples. The explicit joining attribute values were integers drawn from a space of \(2^{31} - 1 \) values. For the given cardinality, a particular explicit attribute value appeared, on the average, in only one tuple in the relation. The starting timestamp attribute values were randomly distributed over the relation lifespan and the duration of the interval associated with each tuple was set to one chronon. We ran each of the seventeen algorithms using the generated relation, with increasing main-memory allocations from 2 MB, a 1:32 memory to input size ratio, to 64 MB, a 1:1 ratio.

The results of the experiment are shown in Figure 10. In each figure, the ordering of the legend corresponds to the order of either the rightmost points or the leftmost points of each curve. The actual values of each curve in all the figures may be found in the Appendix of the associated technical report [16]. Notice that both the \(x \)-axis and \(y \)-axis are log-scaled. As suspected, nested-loop is clearly not competitive. The general nested-loop algorithm performs very poorly in all cases but the highest memory allocation. At the smallest memory allocation, the least expensive algorithm, EP, enjoys a 88% performance increase. Only at the highest memory allocation, that is when the entire left hand side relation can fit in main memory, does the nested-loop algorithm have comparable performance with other algorithms. Given the disparity in performance and given that various characteristics, such as skew or the presence of long duration tuples do not impact the performance of the nested loop algorithm, we will not consider this algorithm in the remainder of this section.

To get a better picture of the performance of the remaining algorithms, we plot them separately in Figure 11. From this figure on, we eliminate the non-competitive NL. We group the algorithms that have the similar performance and retain only a representative curve for each group in the figures. In this figure, TES-H and TSI-H have performance very similar to TS-H; ETS-H has performance very similar to ES-H; ETP-H, TP-H, and TEP-H have performance similar to EP-H; the rest algorithms all have the similar performance to EP.

In this graph, only the \(x \)-axis is log-scaled. The sort-based and partition-based algorithms exhibit largely the same performance, and the hybrid algorithms outperform their GRACE counterparts at high memory allocations, in this case when the ratio of main memory to input size reaches approximately 1:8 (2 MB of main memory) or 1:4 (4 MB of main memory). The poor performance of the hybrid algorithms stems from reserving buffer space to hold the resident run/partition, which takes buffer space away from the remaining runs/partitions, causing the algorithms to incur more random I/O. At small memory allocations, the problem is acute. Therefore, the hybrid group starts from a higher position and ends in a lower position. The GRACE group behaves in the opposite way.

The performance differences between the sort-based algorithms and their partitioning counterparts are small, and there is no absolute winner. TES, the sort-merge
Table 6 Experiment Parameters

<table>
<thead>
<tr>
<th>Figure Numbers</th>
<th>Explicit Skew (%)</th>
<th>Timestamp Skew (%)</th>
<th>Timestamp Duration (Chronons)</th>
<th>Outer Size (MB)</th>
<th>Inner Size (MB)</th>
<th>Memory Size (MB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 and 11</td>
<td>None</td>
<td>None</td>
<td>1</td>
<td>64</td>
<td>64</td>
<td>2-64</td>
</tr>
<tr>
<td>12</td>
<td>None</td>
<td>None</td>
<td>100</td>
<td>64</td>
<td>64</td>
<td>2-64</td>
</tr>
<tr>
<td>13</td>
<td>None</td>
<td>None</td>
<td>outer: 1; inner: 100</td>
<td>64</td>
<td>64</td>
<td>2-64</td>
</tr>
<tr>
<td>14</td>
<td>None</td>
<td>None</td>
<td>1</td>
<td>4-64</td>
<td>64</td>
<td>16</td>
</tr>
<tr>
<td>15 and 16</td>
<td>None</td>
<td>None</td>
<td>100</td>
<td>4-64</td>
<td>64</td>
<td>16</td>
</tr>
<tr>
<td>17</td>
<td>0-100% one side</td>
<td>None</td>
<td>outer: 1; inner: 100</td>
<td>4-64</td>
<td>64</td>
<td>16</td>
</tr>
<tr>
<td>18</td>
<td>0-100% one side</td>
<td>None</td>
<td>1</td>
<td>64</td>
<td>64</td>
<td>16</td>
</tr>
<tr>
<td>19</td>
<td>None</td>
<td>0-100% one side</td>
<td>1</td>
<td>64</td>
<td>64</td>
<td>16</td>
</tr>
<tr>
<td>20</td>
<td>0-100% one side</td>
<td>None</td>
<td>1</td>
<td>64</td>
<td>64</td>
<td>16</td>
</tr>
<tr>
<td>21</td>
<td>0-4% both sides</td>
<td>None</td>
<td>1</td>
<td>64</td>
<td>64</td>
<td>16</td>
</tr>
<tr>
<td>23</td>
<td>None</td>
<td>0-4% both sides</td>
<td>1</td>
<td>64</td>
<td>64</td>
<td>16</td>
</tr>
<tr>
<td>25</td>
<td>0-4% both sides</td>
<td>0-4% both sides</td>
<td>1</td>
<td>64</td>
<td>64</td>
<td>16</td>
</tr>
</tbody>
</table>

Fig. 10 Low Explicit Selectivity, Low Timestamp Selectivity

algorithm that sorts the input relation first on start time and then on the explicit attribute secondarily, has slightly worse performance than TS, which sorts the input relation on start time only. Since the order of the start time is not the order of the time interval, the extra sorting on the explicit attribute does not help in the merging step. The program logic is the same as TS, except for the extra sorting. We expect TES will always perform a little worse than TS. Therefore, neither TES nor TES-H will be considered in the remainder of this section.

5.2.2 Long Duration Timestamps In the experiment of the previous section the join selectivity was low, since explicit attribute values were shared among few tuples, and tuples were timestamped with intervals of short duration. We repeated the experiment using long-duration timestamps. The duration of each tuple timestamp was fixed at 100 chronons and the starting timestamps were randomly distributed throughout the relation lifespan. As before, the explicit join attribute values were randomly distributed integers, thus, the size of the result was just slightly larger due to the long duration timestamps.
Fig. 11 Low Explicit Selectivity, Low Timestamp Selectivity (without NL)

The results are shown in Figure 12, where the z-axis is log-scaled. In this figure, the group of ES-H and ETS-H are represented by ES-H; the group of ETP-H, EP-H, TEP-H, and TP-H are represented by TP-H; the group of TP, TEP, ES, ETS, EP, and ETP are represented by ES; the rest are retained. The timestamp sorting algorithms, TS and TS-H, suffer badly. Here, the long duration of the tuple lifespans did not cause overflow of the tuple cache used in these algorithms. To see this, recall that our input relation cardinality was 4 M tuples. For a 1,000,000 chronon relation lifespan, this implies that 4M / 1,000,000 = 4 tuples arrive per chronon. Since tuple lifespans were fixed at 100 chronons, it follows that 4 × 100 = 400 tuples should be scanned before any purging of the tuple cache can occur. However, a 64 KB tuple cache, capable of holding 4K tuples, does not tend to overflow. Detailed studies verified that the cache never overflows in these experiments. The poor performance of TS and TS-H are caused by the repeated in-memory processing of the long-lived tuples.

TSI and TSI-H also suffer in the case of long duration, but are better than TS and TS-H when the main memory size is small. TSI improves the performance of TS by 32% at the smallest memory allocation, while TSI-H improves the performance of TS-H by 13%. Our detailed results show that the TS had slightly less I/O time than TSI. TS also saved some time in tuple moving since it did not move every tuple into cache. However, it spent much more time in timestamp comparing and pointer moving. In TSI, each tuple only joined with the tuples in the cache of the other relation. The caches in TSI were purged during join process thus the number of timestamp comparing needed by the next tuple was reduced. In TS, an outer tuple joined with both cache tuples and tuples in the input buffer of the inner relation, and the input buffer was never purged. Therefore, TS had to compare more timestamps. Pointer moving is needed in the heap mainainance, which is used to sort the current tuples in each run. TS frequently back-uped the inner runs inside the inner buffer and scanned tuples in the value packets multiple times. In each scan, the heap for the inner runs had to sort the current inner tuples again. In TSI, the tuples are sorted once and kept in order in the caches. Therefore, the heap overhead is small. When the main memory size is small, the number of runs is large, so is the heap size and the heap overhead.

The timestamp partitioning algorithms, TP and TP-H, have very similar performance as in Section 5.2.1. Two main causes of the good performance of TP and TP-H exist. The first is that TP does not replicate long-lived tuples that overlap with multiple partition intervals. Otherwise, TP will need more I/O for the replicated tuples. The second is that TP sorts each partition on the explicit attribute. The long duration does not have any effects on the performance of the in-memory joining. All the other algorithms sort or partition the relations on the explicit attributes. Therefore, their performance is not affected by the long duration.

We may conclude from this experiment that the timestamp sort-based algorithms are quite sensitive to the durations of input tuple intervals. When tuple durations are long, the in-memory join in TS and TS-H performs poorly, due to the need to repeatedly backup the tuple pointers.

5.2.3 Short and Long Duration Timestamps In the experiments of the previous two sections, the timestamps are either short or long for both relations. We examined the case that the durations for the two input relations are different. The duration of each tuple timestamp in the outer relation was fixed at one chronon, while the duration of that in the inner relation was fixed at 100 chronons. We carefully generated the two relations so
that the outer relation and the inner relation had a one-to-one relationship. For each tuple in the outer relation, there is one tuple in the inner relation that has the same value of the explicit attributes and the start time as the outer tuple with a long duration instead of a short duration. This guaranteed the selectivity was between the previous two experiments. As before, the explicit join attribute values and the start time were randomly distributed.

The results are shown in Figure 13, where the x-axis is log-scaled. The groups of the curves are the same as in Figure 12. The relative positions of the curves are similar to those in the long duration experiment. The performance of the timestamp sorting algorithms were still worse than others, but better than that in the experiment where long duration tuples were in both input relations. Long duration tuples only in one side reduce the size of value packets for each tuple, and therefore result in fewer timestamp comparisons in all four timestamp sorting algorithms and fewer backups in TS and TS-H.

We also exchanged the outer and inner relations for this experiment and observed the almost identical results as in Figure 13. This indicates that whether the long duration tuples exist in the outer relation or the inner relation has little impact on the performance of any algorithm.

5.3 Varying Relation Sizes

It has been shown for snapshot join algorithms that the relative sizes of the input relations can greatly affect which sort or partition-based strategy is best [18]. We investigate this phenomenon in the context of valid-time databases.

We generated a series of relations, increasing in size from 4 MB to 64 MB, and joined them with a 64 MB relation. The memory allocation used in all trials was 16 MB, the size at which all algorithms performed most closely in Figure 11. The explicit joining attribute values in all relations were randomly distributed integers, as in the previous experiments. Short duration timestamps were used to mitigate the in-memory effects on TS and TS-H seen in Figure 12. As before, starting timestamps were randomly distributed over the relation lifespan. Since nested-loop algorithm is expected to be a competitor when one of the relations fits in the memory, we incorporated this algorithm in this experiment. The results of the experiment are shown in Figure 14. In this figure, ES is the representative of all the GRACE sorting algorithms; ES-H is the representative of all the hybrid sorting algorithms; EP is the representative of all the GRACE partitioning algorithms; TP-H is the representative of hybrid timestamp partitioning algorithms; and EP-H is the representative of hybrid explicit partitioning algorithms; NL is retained.

The impact of a differential in relation sizes for the partition-based algorithms is clear. When an input relation is small relative to the available main memory, the partition-based algorithms use this relation as the outer relation, and they build an in-memory partition table from it. The inner relation is then linearly scanned and, for each inner tuple, the in-memory partition table is probed for matching outer tuples. The benefit of this approach is that each relation is read only once, i.e., no intermediate writing and reading of generated partitions occurs. Indeed, the inner relation is not partitioned at all, further reducing main memory costs in addition to I/O savings.

The nested-loop algorithm has the same I/O costs as partition-based algorithms when one of the input re-
lations fits in the main memory. When the size of the smaller input relation is as twice as the memory size, the performance of NL is worse than any other algorithms. This is consistent with the results shown in Figure 10.

An important point to note is that this strategy is beneficial regardless of the distribution of either the explicit joining attributes and/or the timestamp attributes, i.e., it is unaffected by either explicit or timestamp skew. Furthermore, no similar optimization is available for sort-based algorithms. Since each input relation must be sorted, it is required that both relations be read and written once to generate sorted runs, and subsequently read once to scan and match joining tuples.

To further investigate the effectiveness of this strategy, we repeated the experiment of Figure 14 with long-duration timestamps, i.e., tuples were timestamped with 100 chronon duration timestamps. We did not include the nested-loop algorithm because we did not expect the long duration tuples to have any impact on it. The result are shown in Figure 15. The grouping of the curves in this figure is slightly different from the grouping in Figure 14 in that timestamp sorting algorithms are separated instead of grouped together.

As expected, long-duration timestamps adversely affect the performance of all the timestamp sorting algorithms for reasons stated in Section 5.2.2. The performance of TSI and TSI-H is slightly better than TS and TS-H, respectively. This is consistent with the results at 16 MB memory size in Figure 12. Repplotting the remaining algorithms in Figure 16 shows that the long-duration timestamps do not significantly impact the efficiency of other algorithms.

In both the short-duration and the long-duration case, the hybrid partitioning algorithms show the best performance. They save about half of the I/O operations of their GRACE counterparts when the size of the outer relation is 16 MB. This is due to the hybrid strategy.

We further changed the input relations so that the tuples in the outer relations have the fixed short duration of 1 chronon and those in the outer relations have the fixed long duration of 100 chronon. Other features of the input relations remain the same. The results, as shown in Figure 17, are very similar to the long duration case. The performance of timestamp sorting algorithms is slightly better than that in Figure 15. Again, we regenerated the relations such that the tuples in the outer relation have the long duration fixed at 100 chronons and those in the inner relation have the short duration fixed at 1 chronon. The results are almost identical to the results in Figure 17.

The graph shows that partition-based algorithms should be chosen whenever the size of one or both of the input relations is small relative to the available buffer space. We conjecture that the choice between explicit
partitioning and timestamp partitioning is largely dependent on the presence or absence of skew in the explicit and/or timestamp attributes. Explicit and timestamp skew may or may not increase I/O cost, however they will increase main-memory searching costs for the corresponding algorithms, as we now investigate.

5.4 Explicit Attribute Skew

As in the experiments of Section 5.3, we fixed the main memory allocation at 16 MB to place all algorithms on a nearly even footing. The inner and outer relation sizes were fixed at 64 MB each. We generated a series of outer relations with increasing explicit attribute skew, from 0% to 100% in 20% increments. Here we generated data with chunky skew. The explicit attribute has 20% chunky skew indicates that 20% of the tuples in this relation have the same explicit attribute value. Explicit skew was ensured by generating tuples with the same explicit joining attribute value. Short duration timestamps, randomly distributed over the relation lifespan, were used to mitigate the long duration timestamp effect on timestamp sorting algorithms. The results are shown in Figure 18. In this figure, TSI, TS, TEP, and TP are represented by TS; their hybrid counterparts are represented by TS-H; other algorithms are retained.

There are three points to emphasize in this graph. First, the explicit partitioning algorithms, i.e., EP, EP-H, ETP, and ETP-H, show increasing cost as the explicit skew increases. The performance of EP and EP-H degrades dramatically with increasing explicit skew. This is due to partitions overflowing main memory, causing subsequent buffer thrashing. The effect, while pronounced, is relatively small since only one of the input relations is skewed. Encountering skew in both relations would exacerbate the effect. Although the performance of ETP and ETP-H also degrades, the changes are much less pronounced. The reason is that they employ time partition to reduce the effect of explicit attribute skew.

The group of algorithms that perform sorting or partitioning on timestamps, TS, TS-H, TP, TP-H, TEP, and TEP-H, have relatively flat performance, as expected. By ordering or partitioning on time, these algorithms avoid effects due to explicit attribute distributions.

The explicit sorting algorithms, ES, ES-H, ETS, and ETS-H, perform very well. In fact, the performance of ES and ES-H increases as the skew increases. As the skew increases, the relations become increasingly sorted, by default. Hence, ES and ES-H expend less effort during run generation.

We conclude from this experiment that if high explicit skew is present in one input relation then explicit sorting, timestamp partitioning, and timestamp sorting appear to be the better alternatives. The choice among these is then dependent on the distribution and the length of tuple timestamps, which can increase the amount of timestamp skew present in the input, as we will see in the next experiment.

5.5 Timestamp Skew

Analogous with explicit attribute distributions, the distribution of timestamp attribute values can greatly impact the efficiency of the different algorithms. We now describe a study of the effect of this aspect.

As in the experiments of Section 5.3, we fixed the main memory allocation at 16 MB and the sizes of all input relations at 64 MB. We fixed one relation with randomly distributed explicit attributes and randomly distributed tuple timestamps, and we generated a series of relations with increasing timestamp attribute chunky skew, from 0% to 100% in 20% increments. The timestamp attribute has 20% chunky skew indicates that 20% of the tuples in the relation are in one value packet. The skew was created by generating tuples with the same interval timestamp. Short-duration timestamps were used in all relations to mitigate the long-duration timestamp effect on timestamp sorting algorithms. Explicit join attribute values were distributed randomly. The results of the experiment are shown in Figure 19. In this figure, all the GRACE explicit algorithms are represented by EP; hybrid explicit sorting algorithms are represented by ES-H; hybrid explicit partition algorithms are represented by EP-H; the remaining algorithms are retained.

Four interesting observations may be made. First, as expected, the timestamp partitioning algorithms, i.e., TP, TEP, TP-H, and TEP-H suffered increasingly poorer performance as the amount of timestamp skew increased. This skew causes overflowing partitions. The performance of all these four algorithms is good when the skew is 100%, because TP and TP-H become explicit sort-merge joins and TEP and TEP-H become explicit partition joins. Secondly, TSI and TSI-H also exhibited poor performance as the timestamp skew increased, because 20% skew in outer relation caused the outer cache to overflow. Third, TS and TS-H, show increased performance at the highest skew percentage. This is due to the sortedness of the input, analogous to the behavior of ES and ES-H in the previous experiment. Lastly, the remaining algorithms have flat performance across all trials, which is as expected.

When timestamp skew is present, timestamp partitioning is a poor choice. We expected this result, as it is analogous to the behavior of partition-based algorithms in conventional databases, and similar results have been reported for temporal coalescing. The interval join algorithms are also bad choices when the amount of timestamp skew is large. Small amount of timestamp skew can be handled efficiently by increasing the cache size in interval join algorithms. We will discuss this issue again in Section 5.8. Therefore, the two main dangers to good performance are explicit attribute skew and/or
timestamp attribute skew. We investigate the effects of simultaneous skew in the next.

5.6 Combined Explicit/Timestamp Attribute Skew

Again, we fixed the main memory allocation at 16 MB, and we set the input relation sizes at 64 MB. Timestamp durations were set to one chronon, to mitigate the long-duration timestamp effect on the timestamp sorting algorithms. We then generated a series of relations with increasing explicit and timestamps chunky skew, from 0% to 100% in 20% increments. Skew was created by generating tuples with the same explicit joining attribute value and tuple timestamp. The explicit skew and the timestamp skew are orthogonal. The results are shown in Figure 20. In this figure, ETS, ES, and TS are represented by ES; ETS-H, ES-H, and TS-H are represented by ES-H; the other algorithms are retained.
The algorithms are divided into three groups in terms of performance. Most of the partition-based algorithms and the interval join algorithms, TEP, TEP-H, TP, TP-H, EP, EP-H, TSI, and TSI-H, show increasingly poorer performance as the explicit and timestamp skew increases, which is as expected. The rest explicit/timestamp sorting algorithms show relatively flat performance across all trials, and the explicit sorting and timestamp sorting algorithms exhibit increasing performance as the skew increases, analogous to their performance in the experiments of Sections 5.4 and 5.5. While the elapsed time of ETP and ETP-H increase slowly along with increasing skew, these two algorithms perform very well. This is analogous to their performance in the experiments of Sections 5.4.

5.7 Explicit Attribute Skew in Both Relations

In previous work [32], we studied the effect of data skew on the performance of sort-merge join. There are three types of skew: outer relation skew, inner relation skew, and dual skew. Outer skew occurs when value packets in the outer relation cross buffer boundaries. Similarly, inner skew occurs when value packets in the inner relation cross buffer boundaries. Dual skew indicates that outer skew occurs in conjunction with inner skew. While outer skew does not cause any problems for TS and TSI-H, it degrades the performance of TSI and TSI-H; dual skew degrades the performance of TS and TS-H join. In this section, we compare the performance of the join algorithms in the presence of dual skew in the explicit attribute.

The main memory allocation was fixed at 16 MB and the size of all input relations were fixed at 64 MB. We generated a series of relations with increasing explicit attribute chunky skew, from 0% to 4% in 1% increments. To ensure dual skew, we performed self-join on these relations. Short-duration timestamps, randomly distributed over the relation lifespan, were used to mitigate the long-duration timestamp effect on the timestamp sorting algorithms. The results are shown in Figure 21. In this figure, all the explicit partitioning algorithms are represented by EP; all the timestamp partitioning algorithms are represented by TP; all the sort merge algorithms but ES and ES-H are represented by TS; ES and ES-H are retained.

Fig. 20 Combined Explicit/Timestamp Attribute Skew

Fig. 21 Explicit Attribute Skew in Both Relations
There are three points to discuss from the graph. First, the explicit algorithms, i.e., ES, ES-H, EP, EP-H, ETP, and ETP-H, suffer when the skew increases. Although the numbers of I/O operations of these algorithms increase along with the increasing skew, the I/O incurred difference between the highest and the lowest skew is only 2 seconds. The difference of the output relation size between the highest and the lowest is only 400 KB, which leads to about 4.6 seconds performance difference. Then what is the real reason of the performance hit of these algorithms? Detailed experiments reveal that it is in-memory operations that cause the poor performance of these algorithms. When data skew is present, these algorithms have to do substantial in-memory work to perform the join. This is illustrated in Figure 22, which shows the CPU time used by each algorithm. To present the difference clearly, we do not use a log-scale y-axis. Note that six algorithms, specifically, ETS, TSI, TS, ETS-H, TSI-H, and TS-H, have very low CPU cost (less than 30 seconds) in all cases. So their performance does not degrade when the degree of skew increases.

\[\text{CPU time (secs)} \]

\[\text{Elapsed time (secs)} \]

\[\text{Timestamp skew in both relations (percentage)} \]

5.8 Timestamp Dual Skew

Analogous with explicit dual skew, timestamp dual skew can affect the performance of the timestamp sort-merge join algorithms. We look into this effect.

We fixed main memory at 16 MB and input relations at 64 MB. We generated a series of relations with increasing timestamp chunky skew, from 0% to 4% in 1% increments. To ensure dual skew, we performed a self-join on these relations. Short-duration timestamps, randomly distributed over the relation lifespan, were used to mitigate the long-duration timestamp effect on timestamp sorting algorithms. The explicit attribute values were also distributed randomly. The results are shown in Figure 23. In this figure, GRACE explicit sort merge algorithms are represented by ES; all hybrid partitioning algorithms are represented by EP-H; TSI is the representative of TSI and TSI-H; EP is the representative of TEP, TP, ETP, EP, ETS-H, and ES-H; the remaining algorithms are retained.

Second, the performance of the timestamp partitioning algorithms, i.e., TP, TP-H, TEP and TEP-H, degrade with increasing skew, but not as badly as do the explicit algorithms. Although timestamp partitioning algorithms sort each partition on the explicit attribute, the explicit attribute inside each partition is not highly skewed. For example, if there \(n \) tuples have the same value of the explicit attribute, they will be put into one partition after being hashed in EP. In the join phase, there will be an \(n \times n \) loop within the join. In TP, this value packet will be distributed evenly across partitions. Assuming there are \(m \) partitions, each partition will have \(n/m \) of these tuples, which leads to an \(n^2/m^2 \) loop within the join per partition. The total number of join operations in TP will be \(n^2/m \), which is \(1/m \) of that of EP. This factor can be seen from Figure 22.

Finally, the timestamp sorting algorithms, i.e., TS, TS-H, TSI, TSI-H, ETS, and ETS-H, perform very well under explicit skew, TS and TS-H only use the timestamp to determine if a backup is needed. TSI and TSI-H only use the timestamp to determine if the cache tuples should be removed. We see the benefit of the secondary sorting on the timestamp in the algorithms ETS and ETS-H. Since these two algorithms define the value packet by both the explicit attribute and the timestamp, the big loop in the joining phase is avoided.

From this experiment, we conclude that when explicit dual skew is present, all the explicit algorithms are poor choices except for ETS and ETS-H. The effects of timestamp dual skew are examined next.
The algorithms fall into three groups. All the timestamp sort-merge algorithms exhibit poor performance. However, the performance of TS and TS-H is much better than that of TSI and TSI-H. At the highest skew, the performance of TS is 174 times better than that of TSI. This is due to the cache overflow in TSI. 1% of 64 MB is 640KB, which is 10 times the cache size. The interval join algorithm scans and purges the cache once for every tuple to be joined. The cache thrashing occurs when the cache overflows. As before, there is no cache overflow in TS and TS-H. The performance gap between these two algorithms and the group with flat curves is caused by in-memory join operations. The CPU time used by each algorithm is plotted separately in Figure 24. In this figure, all the explicit sort-merge algorithms are represented by ES; all the explicit partitioning algorithms are represented by EP; all the timestamp partitioning algorithms are represented by TP; TSI is the representative of TSI and TSI-H; the remaining algorithms are retained. Since all but timestamp sort-merge algorithms perform the in-memory join by sorting the relations or the partitions on the explicit attribute, their performance is not at all affected by dual skew.

It is interesting that the CPU time spent by TSI is less than that spent by TS. The poor overall performance of TSI due to the cache overflow can be improved by increasing the cache size of TSI. Actually, TSI performs the join operation in the two caches rather than in the input buffers. Therefore, a large cache size can be chosen when dual skew is present to avoid cache thrashing. In this case, a 1 MB cache size for TSI will result in the similar performance as that of TS.

5.9 Explicit/Timestamp Dual Skew

In this section, we investigate the simultaneous effect of dual skew in both the explicit attribute and the timestamp. This is a challenging situation for any temporal join algorithm.

The memory size is 16 MB, and we generated a series of 64 MB relations with increasing explicit and timestamp chunky skew, from 0% to 4% in 1% increments. Dual skew was guaranteed by performing a self-join on these relations. The results are shown in Figure 25. In this figure, TSI and TSI-H are represented by TSI; TS and ES are represented by ES; TS-H and ES-H are represented by TS-H; all the explicit partitioning algorithms are represented by EP; the remaining algorithms are represented by TP.

![Fig. 25 Explicit/Timestamp Attribute Skew in Both Relations](image)

The interesting point is all the algorithms are affected by the simultaneous dual skew in both the explicit and timestamp attributes. But they fall into two groups. The algorithms that are sensitive to the dual skew in either explicit attribute or timestamp attribute perform as badly as they do in the experiments described in Sections 5.7 and 5.8. The performance of the algorithms that are not affected by the dual skew in either explicit attribute or timestamp attribute degrades with the increasing of skew. However, their performance are better than that of the algorithms in the first group. This is due to the orthogonality of the explicit skew and the timestamp skew.

5.10 Summary

The performance study described in this section is the first comprehensive, empirical analysis of temporal join algorithms. We investigated the performance of nineteen non-index-based join algorithms, namely nested-loop (NL), explicit partitioning (EP and EP-H), explicit sorting (ES and ES-H), timestamp sorting (TS and TS-H), interval join (TSI and TSI-H), timestamp partitioning (TP and TP-H), combined explicit/timestamp sorting
(ETS and ETS-H) and timestamp/explicit sorting (TES and TES-H), and combined explicit/timestamp partitioning (ETP and ETP-H) and timestamp/explicit partitioning (TEP and TEP-H) for the temporal equijoin. We varied the following main aspects in the experiments: the presence of long-duration timestamps, the relative sizes of the input relations, and the explicit-join and timestamp attribute distributions.

The findings of this empirical analysis can be summarized as follows.

- The algorithms need to be engineered well to avoid performance hits. Care needs to be chosen in sorting, in purging the cache, in selecting the next tuple in the merge step, in allocating memory, and in handling intrinsic skew.
- Nested-loop is not competitive.
- The timestamp sorting algorithms, TS, TS-H, TES, TES-H, TSI, and TSI-H were also not competitive. They were quite sensitive to the duration of input tuple timestamps. TSI and TSI-H had very poor performance in the presence of large amounts of skew due to cache overflow.
- The GRACE variants were competitive only when there was low selectivity and a large memory size, relative to the size of the input relations. In all other cases, the hybrid variants performed better.
- In the absence of explicit and timestamp skew, our results parallel those from conventional query evaluation. In particular, when attribute distributions are random, all sorting and partitioning algorithms (other than those already eliminated as noncompetitive) have nearly equivalent performance, irrespective of the particular attribute type used for sorting or partitioning.
- In contrast with previous results in temporal coalescing [5], the binary nature of the valid-time equijoin allows an important optimization for partition-based algorithms. When one input relation is small relative to the available main memory buffer space, the partitioning algorithms have uniformly better performance than their sort-based counterparts.
- The choice of timestamp or explicit partitioning depends on the presence or absence of skew in either attribute dimension. Interestingly, the performance differences are dominated by main memory effects. The timestamp partitioning algorithms were less affected by increasing skew.
- ES and ES-H were sensitive to explicit dual skew.
- The performance of the partition-based algorithms, EP and EP-H were affected by both outer and dual explicit attribute skew.
- The performance of TP and TP-H degraded when outer skew was present. Except for this one situation, these partition-based algorithms are generally more efficient than their sort-based counterparts since sort-

ing, and associated main-memory operations, are avoided.
- It is interesting that the combined explicit/timestamp based algorithms can mitigate the effect of either explicit attribute skew or timestamp skew. However, when dual skew was present in the explicit attribute and the timestamp simultaneously, the performance of all the algorithms degraded, though again less so for timestamp partitioning.

6 Conclusions and Research Directions

As a prelude to investigating non-index based temporal join evaluation, this paper initially surveyed previous work, by first describing the different temporal join operators proposed in the past and then describing join algorithms proposed in previous work. The paper then developed evaluation strategies for the valid-time equijoin and compared the evaluation strategies in a sequence of empirical performance studies. The specific contributions are as follows.

- We defined a taxonomy of all temporal join operators proposed in previous research. The taxonomy is a natural one, in the sense that it classifies the temporal join operators as extensions of conventional operators, irrespective of special joining attributes or other model-specific restrictions. The taxonomy is thus model independent and assigns a name to each temporal operator consistent with its extension of a conventional operator.
- We extended the three main paradigms of query evaluation algorithms to temporal databases, thereby defining the space of possible temporal evaluation algorithms.
- Using the taxonomy of temporal join algorithms, we defined seventeen temporal equijoin algorithms, representing the space of all such possible algorithms, and placed all existing work into this framework.
- We defined the space of database parameters that affect the performance of the various join algorithms. This space is characterized by the distribution of the explicit and timestamp attributes in the input relation, the duration of timestamps in the input relations, the amount of main memory available to the join algorithm, the relative sizes of the input relations, and the amount of dual attribute and/or timestamp skew for each of the relations.
- We empirically compared the performance of the algorithms over this parameter space.

Our empirical study showed that some algorithms can be eliminated from further consideration: NL, TS, TS-H, TES, TES-H, ES, ES-H, EP and EP-H. Hybrid variants generally dominated GRACE variants, eliminating ETP, TEP and TP. When the relation sizes were different, explicit sorting (ETS, ETS-H, ES, ES-H) performed poorly.
This leaves three algorithms, all partitioning ones: ETP-H, TEP-H, TP-H. Each dominates the other two in certain circumstances. But TP-H performs poorly in the presence of timestamp and attribute skew and is significantly more complicated to implement. Of the other two, ETP-H came out ahead more often than TEP-H. So we recommend ETP-H, a hybrid variant of explicit partitioning that partitions first on the explicit attribute. If this attribute is skewed so that some buckets do not fit in memory, a further partition on the timestamp attribute increases the possibility that the resulting buckets will fit in the available buffer space.

The salient point of this study is that simple modifications to an existing conventional evaluation algorithm (EP) can be used to effect temporal joins, with acceptable performance, and at relatively small development cost. While novel algorithms (such as TP-H) may have better performance in certain circumstances, well-understood technology can be easily adapted and will perform acceptably in many situations. Hence, database vendors wishing to implement temporal coalescing may do so with a relatively low development cost, and still achieve acceptable performance.

The above conclusion focuses on independent join operations rather than a query consisting of several algebraic operations. Given the correlation between different operations, the latter is more complex. For example, one advantage of sort-merge algorithms is that the output is also sorted, which can be exploited in subsequent operations. This interesting order is used in traditional query optimization to reduce the cost of the whole query. We believe temporal query optimization can also take advantage of this [52]. Among the sort-merge algorithms we have examined, the output of explicit algorithms (ES, ES-H, ETS, ETS-H) is sorted on the explicit join attribute; interval join algorithms produce the output sorted on the start timestamp. Of these six algorithms, we recommend ETS-H due to the higher efficiency.

Several directions for future work exist. Important problems remain to be addressed in temporal query processing, in particular with respect to temporal query optimization. While several researchers have investigated algebraic query optimization, little research has appeared with respect to cost-based temporal query optimization.

In relation to query evaluation, additional investigation of the algorithm space described in Section 5 is needed. Many optimizations originally developed for conventional databases, such as read-ahead and write-behind buffering, forecasting, eager and lazy evaluation, and hash filtering, should be applied and investigated. Cache size and input buffer allocation tuning is also an interesting issue.

All of our partitioning algorithms generate maximal partitions, that of the main memory size, minus a few blocks for the join, for the left hand relation, then apply that partitioning to the right hand relation. In the join step, a full left hand partition is brought into main memory and joined with successive blocks from the associated right hand partition. Sitzmann and Stuecky term this a static buffer allocation strategy, and instead advocate a dynamic buffer allocation strategy, in which the left hand and right hand relations are partitioned in one step, so that two partitions, one from each relation, can simultaneously fit in the main memory buffer [51]. The advantage over the static strategy is that fewer seeks are required to read the right hand side partition; the disadvantages are that this strategy results in smaller, and thus more numerous, partitions, which increases the number of seeks and requires the right hand side to also be sampled, which also increases the number of seeks. It might be useful to augment the timestamp partitioning to incorporate dynamic buffer allocation, though it is not clear at the outset that this will yield a performance benefit over our TP-H algorithm or over ETP-H.

Dynamic buffer allocation for conventional joins was first proposed by Harris and Ramamohanarao [22]. They built the cost model for nested loop and hash join algorithms with the size of buffers as one of the parameters. Then, for each algorithm, they computed the optimal or suboptimal, but still good, buffer allocation that led to the minimum join cost. Finally, the optimal buffer allocation was used to perform join. It would interesting to see if this strategy can improve the performance of temporal joins. It would also be useful to develop cost models for the most promising temporal join algorithm(s), starting with ETP-H.

The next logical progression in future work is to extend this work to index-based temporal joins, again investigating the effectiveness of both explicit attribute indexing and timestamp indexing. While a large number of timestamp indexes have been proposed in the literature [46], and there has been some work on temporal joins that utilize temporal or spatial indexes [13,55,35, 39], a comprehensive empirical comparison is needed of these algorithms.

Orthogonally, more sophisticated techniques for temporal database implementation should be considered. In particular, we expect specialized temporal database architectures to have a significant impact on query processing efficiency. It has been argued in previous work that incremental query evaluation is especially appropriate for temporal databases [36,24,43]. In this approach, a query result is materialized and stored back into the database, if it is anticipated that the same query, or one similar to it, will be issued in the future. Updates to the contributing relations trigger corresponding updates to the stored result. The related topic of global query optimization, which attempts to exploit commonality between multiple queries when formulating a query execution plan, has also yet to be explored in a temporal setting.
Acknowledgements This work was sponsored in part by National Science Foundation Grants IIS-0100436, CDA-9500991, EAE-0080123, IRI-9632569, IIS-9817798, by the NSF Research Infrastructure Program Grants EIA-0080123 and EIA-9500991, by the Danish National Centre for IT-Research, and by grants from Amazon.com, the Boeing Corporation, and the Nykredit Corporation.

We also thank Wei Li and Joseph Dunn for their help in implementing the temporal join algorithms.

References

47. H. Samet (1990) *The Design and Analysis of Spatial Data Structures*. Addison-Wesley

