int buf, p = 0, c = 0;
\{PC: c <= p <= c+1 ∧ a[0:n-1] == A[0:n-1] ∧
 (p == c+1) ⇒ (buf == A[p-1])\}

process Producer {
 int a[n]; # assume a[i] is initialized to A[i]
 \{IP: PC ∧ p <= n\}
 while (p < n) {
 \{PC ∧ p < n\}
 〈await (p == c);\} # delay until buffer empty
 \{PC ∧ p < n ∧ p == c\}
 buf = a[p];
 \{PC ∧ p < n ∧ p == c ∧ buf == A[p]\}
 p = p+1;
 \{IP\}
 }
 \{PC ∧ p == n\}
}

process Consumer {
 int b[n];
 \{IC: PC ∧ c <= n ∧ b[0:c-1] == A[0:c-1]\}
 while (c < n) {
 \{IC ∧ c < n\}
 〈await (p > c);\} # delay until buffer full
 \{IC ∧ c < n ∧ p > c\}
 b[c] = buf;
 \{IC ∧ c < n ∧ p > c ∧ b[c] == A[c]\}
 c = c+1;
 \{IC\}
 }
 \{IC ∧ c == n\}
}

Figure 2.4 Proof outline for the array copy program.