
type task = (double left, right, fleft, fright, lrarea);
queue bag(task); # the bag of tasks
int size; # number of tasks in bag
int idle = 0; # number of idle workers
double total = 0.0; # the total area

compute approximate area froma to b;
insert task(a, b, f(a), f(b), area) in the bag;
count = 1;

process Worker[w = 1 to PR] {
double left, right, fleft, fright, lrarea;
double mid, fmid, larea, rarea;
while (true) {
check for termination
〈 idle++;
if (idle == n && size == 0) break; 〉

get a task from the bag
〈 await (size > 0)

remove a task from the bag;
size--; idle--; 〉

mid = (left+right) / 2;
fmid = f(mid);
larea = (fleft+fmid) * (mid-left) / 2;
rarea = (fmid+fright) * (right-mid) / 2;
if (abs((larea+rarea) - lrarea) > EPSILON) {

〈 put (left, mid, fleft, fmid, larea) in the bag;
put (mid, right, fmid, fright, rarea) in the bag;
size = size + 2; 〉

} else
〈 total = total + lrarea; 〉

}
if (w == 1) # worker 1 prints the result
printf("the total is %f\n", total);

}

Figure 3.21 Adaptive quadrature using a bag of tasks.

Copyright © 2000 by Addison Wesley Longman, Inc.

