
module FileServer[myid = 1 to n]
type mode = (READ, WRITE);
op open(mode), close(), # client operations

read(result result types), write(value types);
op startwrite(), endwrite(), # server operations

remote_write(value types);
body
op startread(), endread(); # local operations
mode use; declarations for file buffers;

proc open(m) {
if (m == READ) {
call startread(); # get local read lock
use = READ;

} else { # mode assumed to be WRITE
get write locks for all copies
for [i = 1 to n]
call FileServer[i].startwrite();

use = WRITE;
}

}

proc close() {
if (use == READ) # release local read lock
send endread();

else # use == WRITE, so release all write locks
for [i = 1 to n]
send FileServer.endwrite()

}

proc read(results) {
read from local copy of fi le and return results;

}

proc write(values) {
if (use == READ)

return with error:file was not opened for writing;
write values into local copy of fi le;
concurrently update all remote copies
co [i = 1 to n st i != myid]
call FileServer[i].remote_write(values);

}

proc remote_write(values) { # called by other servers
write values into local copy of fi le;

}

process Lock {
int nr = 0, nw = 0;
while (true) {
RW: (nr == 0 ∨ nw == 0) ∧ nw <= 1
in startread() and nw == 0 -> nr = nr+1;
[] endread() -> nr = nr-1;
[] startwrite() and nr == 0 and nw == 0 ->

nw = nw+1;
[] endwrite() -> nw = nw-1;
ni

}
}

end FileServer

Figure 8.15 Replicated files using one lock per copy.

Copyright © 2000 by Addison Wesley Longman, Inc.

