
type graph = bool [n,n];
chan probe[n](int sender);
chan echo[n](graph topology) # parts of the topology
chan finalecho(graph topology) # final topology

process Node[p = 0 to n-1] {
bool links[n] = neighbors of nodep;
graph newtop, localtop = ([n*n] false);
int parent; # node from whom probe is received
localtop[p,0:n-1] = links; # initially my links

receive probe[p](parent);
send probe to other neighbors, who are p’s children
for [q = 0 to n-1 st (links[q] and q != parent)]
send probe[q](p);

receive echoes and union them into localtop
for [q = 0 to n-1 st (links[q] and q != parent)] {
receive echo[p](newtop);
localtop = localtop or newtop; # logical or

}
if (p == S)
send finalecho(localtop); # node S is root

else
send echo[parent](localtop);

}

process Initiator {
graph topology;
send probeS # start probe at local node
receive finalecho(topology);

}

Figure 9.11 Probe/echo algorithm for gathering the topology of a tree.

Copyright © 2000 by Addison Wesley Longman, Inc.

