
type direction = enum(OUT, IN);
type template =

rec(direction d; int source; int dest; int port);
type Templates = set of template;

chan match(Templates t);
chan reply[1:n](direction d; int who);
chan data[1:n](byte msg[*]);

output statement not in a guard:

Templates t = template(OUT, myid, destination, port);
send match(t);
receive reply[myid](direction, who);
direction will be OUT and who will be destination
gather expressions into a message buffer;
send data[who](buffer);

input statement not in a guard:

Templates t = template(IN, source, myid, port);
send match(t);
receive reply[myid](direction, who);
direction will be IN and who will be myid
receive data[myid](buffer);
unpack the buffer into local variables;

guarded input or output statement:

Templates t = ∅; # set of possible communications
for [boolean expressions in guards that are true]

insert a template for the input or output statement into sett;
send match(t); # send matches to clearing house
receive reply[myid](direction, who);
use direction and who to determine which guarded

communication statement was the one that matched;
if (direction == IN)
{ receive data[myid](buffer);

unpack the buffer into local variables; }
else # direction == OUT
{ gather expressions into a message buffer;
send data[who](buffer); }

execute appropriate guarded statementS;

Figure 10.7 Protocols for regular processes.

Copyright © 2000 by Addison Wesley Longman, Inc.

