process Manager {
 declare and initialize local variables;
 for [time = start to finish by DT] {
 initialize the bag of tasks;
 for [i = 1 to numTasks+PR] {
 receive getTask(worker);
 select next task; use (0, 0) to signal bag is empty;
 send task[worker](block1, block2);
 }
 }
}

process Worker[w = 1 to PR] {
 point p[1:n], v[1:n], f[1:n]; # position, velocity
 double m[1:n]; # force and mass for each body
 declare other local variables; initialize all local variables;
 for [time = start to finish by DT] {
 while (true) {
 send getTask(w); receive task[w](block1, block2);
 if (block1 == 0) break; # bag is empty
 calculate forces between bodies in block1 and block2;
 }
 for [i = 1 to PR st i != w] # exchange forces
 send forces[i](f[*]);
 for [i = 1 to PR st i != w] {
 receive forces[w](tf[*]);
 add values in tf to those in f;
 }
 update p and v for my block of bodies;
 for [i = 1 to PR st i != w] # exchanges bodies
 send bodies[i](w, p[*], v[*]);
 for [i = 1 to PR st i != w] {
 receive bodies[w](worker, tp[*], tv[*]);
 move bodies of worker from tp and tv to p and v;
 }
 reinitialize f to zeros;
 }
}

Figure 11.12 Manager/workers program for the n-body problem.