chan bodies[1:PR](int worker; point pos[*], vel[*]);
chan forces[1:PR](point force[*]);

process Worker[w = 1 to PR] {
 int blockSize = size of my block of bodies;
 int tempSize = maximum number of other bodies in messages;
 point p[1:blockSize], v[1:blockSize], f[1:blockSize];
 point tp[1:tempSize], tv[1:tempSize], tf[1:tempSize];
 double m[1:n];
 declarations of other local variables;
 initialize all local variables;
 for [time = start to finish by DT] {
 # send my bodies to lower numbered workers
 for [i = 1 to w-1]
 send bodies[i](w, p[*], v[*]);
 calculate f for my block of bodies;
 # receive bodies from and send forces back to
 # higher numbered workers
 for [i = w+1 to PR] {
 # get bodies from others
 receive bodies[w](other, tp[*], tv[*]);
 calculate forces between my block and other block;
 send forces[other](tf[*]);
 }
 # get forces from lower numbered workers
 for [i = 1 to w-1] {
 receive forces[w](tf[*]);
 add forces in tf to those in f;
 }
 update p and v for my bodies;
 re-initialize f to zeros;
 }
}

Figure 11.13 Heartbeat program for the \(n \)-body problem.