chan bodies[1:PR](int owner; point p[*], v[*], f[*]);

process Worker[w = 1 to PR] {
 int owner, setSize = n/PR, next = w%PR + 1;
 point p[1:setSize], v[1:setSize], f[1:setSize];
 point tp[1:setSize], tv[1:setSize], tf[1:setSize];
 double m[1:n];
 // declarations of other local variables;
 initialize my block of bodies and other variables;
 for [time = start to finish by DT] {
 send bodies[next](w, p[*], v[*], f[*]);
 compute the forces among my block of bodies;
 for [i = 1 to PR-1] {
 receive bodies[w](owner, tp[*], tv[*], tf[*]);
 calculate the forces between my bodies and the new ones;
 send bodies[next](owner, tp[*], tv[*], tf[*]);
 }
 // get back my bodies (owner will equal w)
 receive bodies[w](owner, tp[*], tv[*], tf[*]);
 add forces in tf to those in f;
 update p and v for my set of bodies;
 re-initialize forces on my bodies to zeros;
 }
}

Figure 11.14 Pipeline program for the n-body problem.

Copyright © 2000 by Addison Wesley Longman, Inc.