chan up[1:PR](real edge[0:n+1]);
chan down[1:PR](real edge[0:n+1]);
chan diff(real);

process worker[w = 1 to PR] {
 int HEIGHT = n/PR; // assume PR evenly divides n
 real grid[0:HEIGHT+1,0:n+1], new[0:HEIGHT+1,0:n+1];
 real mydiff = 0.0, otherdiff = 0.0;
 initialize grid and new, including boundaries;
 for [iters = 1 to MAXITERS by 2] {
 # compute new values for my strip
 for [i = 1 to HEIGHT, j = 1 to n]
 new[i,j] = (grid[i-1,j] + grid[i+1,j] +
 grid[i,j-1] + grid[i,j+1]) * 0.25;
 exchange edges of new -- see text;
 # compute new values again for my strip
 for [i = 1 to HEIGHT, j = 1 to n]
 grid[i,j] = (new[i-1,j] + new[i+1,j] +
 new[i,j-1] + new[i,j+1]) * 0.25;
 exchange edges of grid -- see text;
 }
 # compute maximum difference for my strip
 for [i = 1 to HEIGHT, j = 1 to n]
 mydiff = max(mydiff, abs(grid[i,j]-new[i,j]));
 if (w > 1)
 send diff(mydiff);
 else // worker 1 collects differences
 for [i = 1 to w-1] {
 receive diff(otherdiff);
 mydiff = max(mydiff, otherdiff);
 }
 # maximum difference is value of mydiff in worker 1
}

Figure 11.4 Jacobi iteration using message passing.

Copyright © 2000 by Addison Wesley Longman, Inc.