
real grid[0:n+1,0:n+1];
int HEIGHT = n/PR; # assume PR evenly divides n
real maxdiff[1:PR] = ([PR] 0.0);

procedure barrier(int id) {
efficient barrier algorithm from Section 3.4

}

process worker[w = 1 to PR] {
int firstRow = (w-1)*HEIGHT + 1;
int lastRow = firstRow + HEIGHT - 1;
int jStart;
real mydiff = 0.0;
initialize my strip ofgrid, including boundaries;
barrier(w);
for [iters = 1 to MAXITERS] {
compute new values for red points in my strip
for [i = firstRow to lastRow] {
if (i%2 == 1) jStart = 1; # odd row
else jStart = 2; # even row
for [j = jStart to n by 2]
grid[i,j] = (grid[i-1,j] + grid[i,j-1] +

grid[i+1,j] + grid[i,j+1]) * 0.25;
}
barrier(w);
compute new values for black points in my strip
for [i = firstRow to lastRow] {
if (i%2 == 1) jStart = 2; # odd row
else jStart = 1; # even row
for [j = jStart to n by 2]
grid[i,j] = (grid[i-1,j] + grid[i,j-1] +

grid[i+1,j] + grid[i,j+1]) * 0.25;
}
barrier(w);

}
compute maximum difference for my strip
perform one more set of updates, keeping track of the maximum

difference between old and new values ofgrid[i,j];
maxdiff[w] = mydiff;
barrier(w);
maximum difference is the max of the maxdiff[*]

}

Figure 11.6 Red/black Gauss-Seidel using shared var iables.

Copyright © 2000 by Addison Wesley Longman, Inc.

