
CSc 422/522 — Homework 4

due Tuesday, April 20

The first two problems are worth 10 points each. The last two problems are worth 20 points each.
Graduate students are to solve all problems (60 points). Undergraduates are to solve any
combination that adds to 40 points.

As usual, the work you turn in must be your own. Please explain your answers and programs.

1. The last assignment introduced the Roller Coaster and Savings Account problems. Solve the
following problems. You may write programs, but paper solutions are fine.

(a) Develop a solution to the roller coaster problem using asynchronous message passing. Show
the code for both the passengers and the car.

(b) Develop a solution to the roller coaster problem using the rendezvous primitives in SR (see
Section 8.3 of the text). Show the code for both the passengers and the car.

(c) Develop a solution to the savings account problem using asynchronous message passing.
Represent the bank as a process. Give the code for the bank and the code a customer would
execute to do a deposit or a withdrawal.

(c) Develop a solution to the savings account problem using the rendezvous primitives in SR.
Again represent the bank as a process. Give the code for the bank and the code a customer would
execute to do a deposit or a withdrawal.

2. Consider the file server program in Figure 7.10. In the program, all the file servers receive
from channel open. In addition, each open file is handled by a different file server. Answer the
following as independent questions. You may need to introduce additional processes.

(a) Suppose each channel can have only one receiver. Modify the file server program to provide
the same functionality with this restriction.

(b) Suppose that there is only one file server, period. It can handle up to n open files. Modify
the code so that all clients share the same server. Identify all additional information you would
need to have.

(c) Suppose that each different open file is handled by a different file server, but that if the same
file is opened by two clients, they both interact with the same server. Modify the code to
implement this design. Identify all additional information you would need to have.

3. Section 7.4 of the text describes three different ways to have n processes exchange values. In
this problem you will implement and determine the performance of similar programs. You may
write your programs either in SR or in C plus the MPI message-passing library. If you use MPI,
you may use the group communication routines if you wish. The processes in your program may
not share any variables.

The problem you are to solve is computing the sum of the local values in each process (this is
called a plus reduction). Let the processes be numbered from 1 to n. Assume the initial value in
process i is set to i. After every round described below, a process increments its local value.
The first sum will thus be n*(n+1)/2, the second sum will be n more than that, and so on.



(a) Implement three programs for solving this problem. Use the centralized, symmetric, and
circular ring algorithms given in Figure 7.11, 7.12, and 7.13. Each process should execute R
rounds of exchanges, where the value of R is a command-line argument. The output of your
program should be the final sum and the execution time of your program, from just before you
fork the processes until just after they complete R rounds.

(b) A much more realistic situation would be a program in which there is significant computation
before exchanging information. Modify your programs to include this. In particular, add a
command-line argument T and add a loop before each exchange that simply increments a dummy
variable T times. Again output the final sum and the elapsed execution time.

(c) Run your programs on Par for n equals 4 and n equals 8. (The latter program will have
context switching, but so be it.) For the programs in part (a), use a value of R that is big enough
that you can see if there is any difference between the programs. For the programs in part (b) use
a value of T that is large enough so at least half of the execution time is spent looping rather than
exchanging values, and use a value of R that is big enough that you can see if there is any
difference between the programs.

(d) Submit you programs for part (b), the output of your tests for part (c), a table that summarizes
the output, and a brief description of what your results show and why. You do not need to write a
report.

4. Section 9.1 of the text describes the manager/workers technique for implementing a
distributed bag of tasks. In this problem you are to write a manager/workers program to solve
either of the problems below. Parameterize your program by the number of workers and test your
program on Lec or Par or both at the same time. It is up to you to define what constitutes a task.

You may write your program in SR, in C plus the MPI message-passing library, or in Java plus
the network or remote method invocation packages. The processes in your program may not
share any variables except as specified below.

Problem 1. Determine the number of words in /usr/dict/words that have unique letters,
namely the number of words in which no letter appears more than once. Print the number of such
words. Also print all those that are the longest. You may read the dictionary file into variables
that are shared by the workers. (It contains 25143 words.)

Problem 2. Consider the following game, which is played on a square grid of points. There are
two players, red and blue. A move is drawing a horizontal or vertical line between a pair of
points that are not already connected. Red draws red lines, and blue draws blue lines. Red plays
first and makes two moves. Blue then makes one move. Red then makes two moves. Blue
makes one more move. And so on.

The object of the game is for red to enclose a region of the grid with red lines. If blue is a perfect
player, what is the largest area that red can enclose? Parameterize your program by the size of
the grid. Solve the problem for the largest grid that you can handle in a reasonable amount of
time? (The number of moves grows exponentially with the size of the grid.)


