
Name:

CSc 422/522 — Examination 2

You may use up to four pages of notes for this exam, but otherwise it is closed book.There are
five questions; each is worth 15 points.Graduate and honors students are to answer all questions.
Undergraduates are to answer any four—or answer all five and I will count only your four best
scores.For full credit, you must explain your answer or show how you arrived at it.

1. Supposewe want to program rendezvous synchronization between pairs of processes.In
particular, the first process to arrive at its rendezvous point waits for the second process, the third
waits for the fourth, and so on.Consider the following code, which is executed by each process.
It uses semaphores for synchronization:

sem e = 1, go = 0; # shared variables
int count = 0;

P(e); # code executed by each process
count++;
if (count == 1)
{ V(e); P(go); }

else
{ count = 0; V(go); V(e); }

(a) Whatis wrong with the above "solution." Explain.

(b) Fix the code so that it is correct.Write your new code below, or modify the above code.



2. Supposethere arem producer processes andn consumer processes.The producer processes
periodically callbroadcast(m) to send a copy of messagem to all consumers. Eachconsumer
receives a copy of the message by callingfetch(m), wherem is a result argument.

Write a monitor that implementsbroadcast and fetch. Use the Signal and Continue
discipline. Themonitor should store only one message at a time, which means that after one
producer callsbroadcast, any future call ofbroadcast has to delay untilevery consumer has
received a copy of the first message.Assume that messages are single integers.



3. Supposea message passing library provides abroadcast primitive in addition to send,
receive, andempty. In particular, if C[1:n] is an array of channels, then execution of

broadcast C(m)

puts a copy of m on every channelC[i]. Assume that execution ofbroadcast is atomic: It puts
a copy of the message on all channels as a single atomic action.This means that every process
will see broadcast messages in the same order.

Usingbroadcast and the other message passing primitives, develop a solution to thedistributed
mutual exclusion problem. This is the familiar mutual exclusion problem, but in a distributed
system—hence, we are protecting access to something external that is shared, such as a file, rather
than protecting access to shared variables.

Assume there aren processes. Your task is to develop critical section entry and exit protocols that
the processes execute. They can only communicate with each other using message passing.Be
sure to declare the channels that you employ.

Channels:

Entry protocol:

Exit protocol:



4. A computer center has two printers,A andB. Clients that want to use a printer execute

which = request(kind)

The value ofkind is A, B, or EITHER. Whenrequest returns, the value ofwhich is the identity
of the printer that was allocated.If a client requests printerA (or B) then it must be allocated that
printer, and which will be the same askind. If a client requestsEITHER printer, then it can be
allocatedA or B, andwhich will indicate which printer was allocated.

A client releases a printer by executing

release(which)

Write a server process that implementsrequest andrelease. Use thein statement of Chapter
8 (rendezvous) to implement the server. (If you cannot solve the problem using thein statement,
you may use message passing for partial credit.)



5. Supposewe have a shared channel that is declared as:

chan bag(int) # same as "op bag(int)" in SR

Assume that some process has initialized thebag by sendingn values to it.

The problem is to useM workers to compute and print the sum of all the elements inbag. Each
can compute only one sum at a time.(This is not a realistic problem, but what the heck, this is an
exam!) Someonesuggests the following program:

process Worker[i = 1 to M] {
declarations of local variables;
while (true) {
receive two elements from the bag;
compute their sum;
if (empty(bag))
{ print the sum; break; }

else
send bag(sum);

}
}

(a) Thisprogram will work some of the time but not always. Explainwhen it will work and
when not.

(b) Explainhow to fix the program so that it always computes the sum and prints the result once.
It is OK if some workers are blocked when the program terminates.You can add fields to the
messages stored inbag, add additional channels, and/or add a manager process.You do not need
to develop detailed code.It is sufficient to give a good explanation and/or high-level pseudo-
code.


