
CSc 422/522 — Parallel Programming Project

Programs due Tuesday, April 3 (by midnight)

Final programs and reports due April 10 (in class)

In this project you will learn about grid computations, develop efficient parallel programs,
conduct timing experiments to analyze the behavior of your programs, and write a report
presenting your results.The project is worth 60 points for undergraduates and 75 points for
honors and graduate students.You may work on your own or with one other classmate.*

There are four parts to this project as described below: writing programs, conducting timing
experiments, conducting other experiments, and writing a report.Graduate and honors students
are to do all parts.Undergraduates caneither (1) write just the first two programs and do the
other three parts for those two programs, or (2) omit the other experiments—namely, write four
programs, do timing experiments, and write a report.

Programs

The starting point for this project is the following four programs.You may write the programs in
MPD or in C with the Pthreads library. Dev elop your programs on Lectura or at home, but run
experiments on Parallel.

1. asequential red/black Gauss-Seidel program
2. aparallel red/black Gauss-Seidel program
3. asequential multigrid program
4. aparallel multigrid program

Gauss-Seidel and red/black programs are described in Section 11.1.5 of the text and a parallel
program is shown in Figure 11.6.Multigrid methods are described in Section 11.1.6, but I do not
give actual code. It is up to you to figure out the details for the sequential program and to
parallelize that program.

Your first task is to writeefficient programs. Seethe discussion on pages 539-40 of the text for
some of the kinds of programming "tricks" you might want to employ to make your programs as
fast as you can.

Initialize the boundaries of all grids to 1.0 and the interiors to 0.0.This will make it easy for you
to check the correctness of your programs and the quality of the results for different algorithms.

For the parallel programs, divide the grid into strips so as to balance the computational load in a
reasonable way. This includes all the grids in the multigrid programs.Use one worker process
per strip. Implement an efficient disseminationbarrier and use it when you need barrier
synchronization.Make sure your barrier is correct! (You might first want to implement a simple
barrier using semaphores or monitors.)

For the multigrid programs, use a four-level V cycle as illustrated in Figure 11.8.Preallocate
separate matrices for each level. Use the restriction and interpolation operators described on

*If a two-person team consists of an undergraduate and honors student or an undergraduate and a graduate, then
you must do the larger project.However, the undergraduate will get a maximum of 60 points.

- 1 -



pages 550-51 of the text. Usered/black Gauss-Seidel for the iterations on each level. Useexactly
four iterations on each of the coarser grids, but use the command-line argumentnumIters (see
below) for the number of iterations on the finest grid.

Input and Output

Your programs should have three command-line arguments in the following order:

gridSize — the grid size,not including boundaries
numIters — the number of iterations to use
numWorkers — the number of worker processes (for the parallel programs)

Assume that all grids are square.For the multigrid programs, the value ofgridSize is the size
of thecoarsest(smallest) grid.The size of the next larger grid should then be2*gridSize + 1,
the next larger 2*(2*gridSize + 1) + 1, and so on. As illustrated in Figure 11.7, the
physical boundaries of all grids should be the same, but the mesh size and distance between
points varies.

The output from your programs should be:

the command-line arguments
the execution time for the computational part
the maximum error in final values
the final grid values

Write the first three items to standard out.Write the data values to a filedata.out.

To calculate the execution time, read the clock after you have initialized all variables and just
before you create the processes (in the parallel programs).Read the clock again as soon as the
computation is complete and the worker processes have terminated (in the parallel programs).

The maximum error in final values should be the maximum difference between the final values of
points and 1.0.(One does not normally know what the final values should be, of course, but the
maximum error is more interesting than the value ofepsilon described in Section 11.1.)

Timing Experiments

Your second task is to run a series of timing experiments. Inparticular, you are to execute your
programs for the following combinations of command-line arguments:

program 1 for grid sizes of 100 and 200
program 2 for grid sizes of 100 and 200 and for 1-4 worker processes
program 3 for grid sizes of 12 and 24 (smallest grid)
program 4 for grid sizes of 12 and 24 and for 1-4 worker processes

There are a total of 20 different timing tests.

For each sequential program and grid size, first figure out what the value ofnumIters should be
so that the execution time of the program is about 30 seconds for that grid size.Then use the
same value ofnumIters for the parallel versions of that sequential program.You will be using
four different values for thenumIters argument.

If you write your programs in MPD, use theage() function to calculate execution times.If you
write your programs in C and Pthreads, use thetimes function, as illustrated in theclock.c

- 2 -



Pthreads program I handed out in class.(You can view the man page by executing "man -s 2
times".) Thevalue ofCLK_TCK is 100.

Additional Experiments

The experimental method consists of making and then testing hypotheses—or asking questions
and then determining answers.There are lots of different questions one might want to ask about
the above programs. Following are some examples; you can probably think of others.

Accuracy. How much time does it take for each algorithm to get the same level of
accuracy? How much more accurate is the faster program for the same amount of time?

Scalability. How well do the algorithms scale as you increase the grid size?Does speedup
increase, decrease, or stay about the same?What if you use more workers (5 or 6)?

Overheads. How much overhead is there in your parallel programs?For example, how
much time does it take to create processes?How long does it take to perform a barrier for 4
workers? How much load imbalance is there (if any)?

Time/Space Tradeoffs. Is false sharing happening for the barrier synchronization variables?
Can you get rid of it by padding the declarations?Is there a performance difference
between implementing barrier synchronization using a procedure versus inlining the code
directly in each worker process?

Compiler Optimizations.What is the effect of turning on compile-time optimizations?
(This is done by using "-O" options to thempd or gcc compilers.) How much faster are the
programs? Whathappens to the speedups for the parallel programs?Important Point: If
you use C and Pthreads and turn on compiler optimizations, be sure to declare shared
synchronization variables asvolatile; if you do not, the compiler might put these
variables in registers, which will make your program incorrect.

Pick at least three nontrivial questionsand set up experiments to determine the answer. The
choice of what to do is up to you, but do not choose just the simplest things.You might look at
three different kinds of topics, or go into depth on one topic, or do a combination.

Reports

Once you have done the timing and other experiments, write a report to explain what you have
done and what you have learned. Your report should be a few pages of text plus tables and
figures. Itshould have four or five sections, as follows:

• Introduction. Briefly describe the problem and what your report will show.

• Programs. Describe your programs, stating what each does and how. Explain the program-
level optimizations you have implemented.

• Timing Experiments.Present the results from the timing experiments. Usetables to present
the raw data and graphs to show speedups and comparisons.Also explain your results. Do
not just present the output data!What do the results show? Why?

• Other Experiments.Describe the questions that you set out to answer, the experiments you
conducted, the results you got, and your analysis of the results.Present the results in
whatever form seems most compelling to you.Your analysis should explain why you think
you got the results you did.

• Conclusion. Briefly summarize what your report has shown, and describe what you have
learned from this project.

- 3 -



Electronic Turnin

By midnight on April 3 useturnin to submit your programs.The assignment name is
parallel. The programs should be namedprog1, prog2, etc. Also submit a makefile that we
can use to compile your programs. In particular, if we execute

make prog1

your makefile should compile the program and produce an executable file that resides ina.out.
We should then be able to execute the program with command-line arguments as specified above.

If you modify your programs while conducting timing experiments—or if you write additional
programs—turn them in on April 10 when you submit your report.Please append commented
listings of the final versions of your programs for the timing experiments to your report.You do
not need to turn in the actual output from any of your tests, but you should have it available or
readily be able to reproduce it.In short, your report should contain all the information someone
else would need to reproduce your results.

- 4 -


