
Name:

CSc 422, Spring 2002 — Examination 2

You may use up totwo pages of notes for this exam, but otherwise it is closed book.Please put
your name on the top of your notes and turn them in with your examination. Doyour work on
these sheets, using additional sheets if necessary.

This exam is worth 60 points.The first three problems are worth 8 points each; the last three
problems are worth 12 points each.You must show your work and/or explain your answers. This
is required for full credit and is helpful for partial credit.

1. [8 points] With asynchronous message passing,send is nonblocking andreceive is
blocking. With synchronous message passing, both statements are blocking.

Develop an implementation of synchronous message passing that uses a single shared variable for
the buffer and three semaphores for synchronization.These variables are declared as shown
below. For simplicity, there is just one channel, so it does not need to be named.

int buffer;
sem empty = 1, full = 0, done = 0;

send(value int msg): # synchronous send of value msg

receive(result int msg): # receive msg as a result parameter

2. [8 points] Remote operations can be implemented using RPC (RMI) or rendezvous. They are
commonly used to program client/server interactions in distributed systems.

(a) Definethe syntax and semantics of the primitives that are used with RPC.

(b) Definethe syntax and semantics of the primitives that are used with rendezvous.

(c) Assumethat you are using only RPC to program interactions between modules in a
distributed system.How can deadlock occur?How do you avoid it?

(d) Assumethat you are using only rendezvous to program interactions between modules in a
distributed program How can deadlock occur?How can you avoid it?

3. [8 points] Consider the following monitor, which is proposed as a solution to the shortest-job-
next (SJN) allocation problem.Client processes callrequest and thenrelease. The resource
can be used by at most one client at a time.When there are two or more competing requests, the
one with the minimum value for argumenttime is to be serviced next.

monitor SJN {
bool free = true;
cond turn;

procedure request(int time) {
if (not free)
wait(turn, time);

free = false;
}

procedure release() {
free = true;
signal(turn);

}
}

(a) Definethe Signal-and-Continue (SC) signaling discipline.

(b) Definethe Signal-and-Wait (SW) signaling discipline.

(c) Doesthe above monitor work correctly for the SC discipline?Clearly but briefly explain why
or why not.

(d) Doesthe above monitor work correctly for the SW discipline?Clearly but briefly explain
why or why not.

4. [12 points] Consider the following problem, which I will call theHungry Birds Problem.
Given aren baby birds and two parent birds.The birds shared a common dish, which can contain
at mostB bugs. Thedish is initially empty.

Each parent bird flies off, finds one bug, flies back to the nest, waits until there is room in the
dish, and puts the bug in the dish—then repeats these actions.Each baby bird chirps for a while,
wakes up, waits for the dish to contain a bug, takes one, and eats it—then repeats these actions.

Develop amonitor to synchronize the actions of the birds.Assume that each bird is represented
by a process.The dish is a critical variable that can be accessed by at most one bird at a time.
The monitor should have two operations:depositBug(), which is called by the parent birds,
andfetchBug(), which is called by the baby birds.

5. [12 points] Recall that in the roller coaster problem there aren passenger processes and one
car process.The car has a capacity ofC passengers, whereC < n. In Homework 3 you
developed a monitor to synchronize the actions of the passengers and the cars.

This problem is easier to solve if you use message passing, because the passengers can interact
directly with the car. You are given the following channel declarations:

chan takeRide(int passengerID), rideOver[1:n]();

Every time passengeri wants to take a ride, it executes:

send takeRide(i);
receive rideOver[i]();

(a) Develop an implementation of the car process.You may use high-level pseudo code for
sequential parts, but show exactly how the above channels are used.

(b) Supposewe add a second coaster car, which also has a capacity ofC passengers. Car1 loads
first, then Car 2, then Car 1, and so on.Describe how you would change your answer to (a) to
add a second car. Assume that thetakeRide channel is shared, so both cars can receive from it.
You may use one or more additional channels, but you maynot change the passenger interface.

6. [12 points] Consider a distributed program withn processes, numbered 1 ton. Each process
has a local valuev. Process 1 wishes to compute the sum of alln values. However, process 1 has
only a few neighbors; namely, process 1 is able to communicate with only a subset of the other
processes. Similarly, each process has only a few neighbors with which it can communicate.In
short, the interconnection network forms an undirected graph, but it is not a complete graph.

Assume that each processi has a vector, neighbors[1:n] that is initialized so that
neighbors[j] == 1 if j is a neighbor ofi and neighbors[j] == 0 otherwise. The
processes communicate using the array of channels declared below. I have declared these as full
arrays to simplify your programming, but processi can send only to its neighbors.

The code for process 1 is given below. Dev elop code for the other processes.You may use high-
level pseudo code for sequential parts, but show exactly how the channels are used.Each process
should execute the same program, but of course the values ofv andneighbors are different in
each process.[Hint: Consider how you could solve this problem for a tree, and then generalize
your approach to handle a graph with cycles.]

chan Chan[1:n](int kind, int value);
kind is one of ASK or ANSWER and value is an additional field
depending on the kind of message

process Node1 {
int v, neighbors[1:n]; initialize v and neighbors;
int sum = v, numNeighbors = 0, kind, newSum;
for [j = 2 to n st neighbors[j] == 1] {
send Chan[j](ASK, 1); # ask neighbor j for what it knows
numNeighbors++;

}
for [j = 1 to numNeighbors] { # collect answers in any order
receive Chan[1](kind, newSum); # kind should be ANSWER
sum += newSum; # newSum is a partial sum

}
}

process Node[i = 2 to n] {

