
CSc 422 — Homework 4, Spring 2005

Due Tuesday, April 26

This assignment is again worth 40 points. The first problem is worth 8 points; the programs are
worth 16 points each. For the programs, use MPD, Java with sockets and/or RMI, or C with the
MPI library.

Please hand in your answer to problem 1, paper copies of your programs for problems 2 and 3,
and output from your programs. Also submit your programs electronically as described at the end
of the assignment.

1. Stable Marriage Problem, Exercise 7.15, part (a). Use the asynchronous message passing
notation employed in class and defined in Chapter 7 (channels, send, receive, and empty). I
strongly suggest that you work out a few examples to get a feel for the problem before attempting
to write a program. Every process should terminate knowing who its partner is. You may use a
coordinator process to detect termination.

2. Rock/Scissors/Paper. Write a distributed program to simulate a three-person
rock/scissors/paper game. Each player randomly chooses one of rock, scissors, or paper. Then
the players compare their choices to see who "won." Rock smashes scissors, scissors cut paper,
and paper covers rock. Aw ard a player 2 points if it beats both the others; award two players 1
point each if they both beat the third; otherwise award no points. Then the players play another
game.

Use one process for each player. The players must interact directly with each other. Do not use
an additional coordinator process. There should be one command-line argument, numGames, the
number of games to play. Print a trace of the results of each game as the program executes. At
the end print the total points won by each player. Turn in output for 10 games and for 30 games.

3. Eight Queens Problem. Develop a distributed program to find all 92 solutions to the 8-queens
problem. The goal of the problem is to place 8 queens on a chessboard in such a way that no
queen can attack any other. This means that a solution cannot have two queens in the same row
or column or along the same diagonal.

Your program should use the manager/workers paradigm (distributed bag of tasks) described
in Section 9.1 of the textbook. There should be one command-line argument: numWorkers, the
number of worker processes. The manager holds a bag of tasks. Each task specifies one possible
placement of queens on a chessboard. Each worker repeatedly requests a task from the manager,
determines whether the specified placement is a solution, and if so, tells the manager. The
manager prints solutions either as they are found or at the end of the program.

A chess board has 8 rows and 8 columns. Hence, there are 64x63x62x61x60x59x58x57
different board configurations in which queens are on different squares. However, many of these
are easy to rule out because a solution cannot have two queens in the same row or column. In
particular, suppose we represent a board configuration as an 8-tuple (v1, v2, v3, v4, v5, v6, v7, v8).
Each vi is an integer between 1 and 8. The subscript i indicates a column, and the value of vi
indicates which row in column i a queen occupies. If the values are unique—i.e., the values are a
permutation of the integers from 1 to 8—then the tuple specifies a board configuration in which
queens are in different rows and columns.



With this representation, there are 8! (40320) tuples that do not have two queens in the same
row or column. One such tuple is (1,2,3,4,5,6,7,8), which has queens in row 1 of column 1, row 2
of column 2, row 3 of column 3, and so on. Another such tuple is (3,4,8,1,2,7,6,5), which has
queens in row 3 of column 1, row 4 of column 2, row 8 of column 3, and so on.

Each task should be a tuple. You should have the manager generate them as needed—and
need to figure out how to do so! It is easiest to start with (1,2,3,4,5,6,7,8), then (1,2,3,4,5,6,8,7),
then (1,2,3,4,5,7,6,8), and so on.

To summarize, the manager generates 40,320 tasks one at a time as needed by the workers.
The workers analyze tasks and should find 92 unique solutions. Run your program with 4
workers and turn in your output. Print each solution as a tuple, with one tuple per line.

Run your program on Lectura and/or Parallel. However, it must be written so that each
component—the manager and each worker—could execute on a different machine. In particular,
each component should be supported by a different Unix process. This is automatic with MPI,
supported in MPD by virtual machines, and supported in Java by starting components
individually and having them communicate using sockets or RMI.

Electronic Turnin. Use the turnin program on Lectura to turn in your programs. The
assignment names are hw4.rock and hw4.queens. Use whatever file names you wish for your
programs. Either put a "usage" comment at the top of each program, or turn in README files
explaining how to compile and execute the programs.


