
CSc 422 — Parallel Programming Project

Programs due Thursday, March 10 (by midnight)

Reports due Thursday, March 31 (in class)

In this project you will develop efficient parallel programs for a grid computation, conduct timing
experiments to analyze the performance of your programs, and write a report describing your
results and what you have learned. The project is worth 60 points. I will award up to 6 bonus
points (10%) for outstanding projects and reports.

You may work with a classmate on this project, and I encourage you to do so. However, you
may do this project on your own if you prefer. Be sure to read and understand the entire
assignment before you begin programming. There are lots of details, and they all matter!

Your programs must be turned in electronically by midnight on March 10. You will be doing
timing experiments the week after Spring break. I will set up a schedule for the use of Parallel;
each group will get several hours of stand-alone testing time. Your reports are due the second
Thursday after Spring break.

Programs

The starting point for the project is the following four programs. You may write the programs in
MPD or in C with the Pthreads library. Dev elop your programs on Lectura or at home, but run
experiments on Parallel.

1. Sequential Jacobi iteration program
2. Parallel Jacobi iteration program
3. Sequential multigrid program
4. Parallel multigrid program

Jacobi iteration is described in Sections 11.1.2 and 11.1.3 of the text. An outline of a sequential
program is given in Figure 11.2; an outline of a parallel program is given in Figure 11.3. You will
need to convert these to MPD or C plus Pthreads and to fill in all the details.

Multigrid methods are described in Section 11.1.6, but I do not give actual code. I will cover
the algorithm in class; see the accompanying handout for information that should help you
develop the multigrid programs.

Your task is to write efficient programs. See the discussion on pages 539-40 of the text for the
kinds of programming "tricks" that help make programs fast.

Initialize the boundary points of the grids to 1.0 and the interior points to 0.0. This will make
it easy for you to check the correctness of your programs and the quality of the results for
different algorithms, because the final values for all interior points should be 1.0.

For the parallel programs, divide the grid into horizontal strips of rows of points. This
includes all the grids in the multigrid programs. Use one worker process per strip. Each strip
should contain about the same number of rows so as to balance the computational load.

In the parallel programs, implement an efficient dissemination barrier and use it when you
need barrier synchronization. Use counter variables and busy waiting, as described at the end of
Section 3.4. Make sure your barrier is correct!

- 1 -



For the multigrid programs, use a four-level V cycle as illustrated in Figure 11.8. Use the
restriction and interpolation operators described on pages 550-51 of the text. Use Jacobi iteration
for the iterations on each level. Use exactly four iterations on each of the finer grids, and use the
command-line argument numIters (see below) for the number of iterations on the coarsest
(smallest) grid.

Input and Output

Your programs should have three command-line arguments in the following order:

meshSize — the mesh size of the finest (largest) grid
numIters — the number of iterations to use on the finest grid
numWorkers — the number of worker processes for the parallel programs

Assume that all grids are square. You may assume that meshSize is a multiple of 16 times the
number of workers. (This simplifies restriction and interpolation in the multigrid programs.) You
should check this in your main function and exit with an error message if this is not the case.

For the parallel Jacobi iteration program, the number of interior rows in the grid is
meshSize-1, and the total number of rows counting the top and bottom boundaries is
meshSize+1. This means that each worker is responsible for meshSize/numWorkers rows,
except for the last worker which has one less row.

For the multigrid programs, meshSize-1 is the number of interior rows in the finest (largest)
grid. The mesh sizes of the coarser (smaller) grids should thus be meshSize/2, meshSize/4,
and meshSize/8. As illustrated in Figure 11.7, the physical boundaries of all grids are the same,
but the mesh size varies, and hence the distance between points also varies.

The output from your programs should be:

the command-line arguments
the execution time, in seconds, for the computational part
the maximum error in final values on the finest (largest) grid
the final values on the finest (largest) grid

Write the first three items to standard output. Write the data values to file data.out. The final
data values are mainly for your purposes when debugging the program. (You may wish to output
additional values while developing your programs, such as subsets of the rows in various grids.)

To calculate the execution time of the computational part, read the clock after you have
initialized all variables. You should initialize grids in parallel in the parallel programs. Hence,
you should have a barrier at the end of initialization (see Figure 11.3), and you should read the
clock right after this barrier. It is fine to have each worker read the clock; because of the barrier,
they will all read about the same value.

Read the clock again after you have finished the iterations and the calculation of the maximum
error, but before you write the output. Again, make sure there is a barrier before you read the
clock the second time.

The maximum error in final values should be the maximum difference between the final
values of points on the finest (largest) grid and 1.0. One does not normally know what the final
values should be, of course, but the maximum error is more interesting than the value of epsilon
described in Section 11.1.

- 2 -



Timing Experiments

Your second task (during or after Spring break) is to run a series of timing experiments. In
particular, you are to execute your programs for the following combinations of command-line
arguments:

program 1 for mesh sizes of 192 and 384
program 2 for mesh sizes of 192 and 384 and for 1-4 worker processes
program 3 for mesh sizes of 192 and 384 (largest grid)
program 4 for mesh sizes of 192 and 384 and for 1-4 worker processes

There are a total of 20 different timing tests. Run each timing test at least twice to make sure you
are getting results that are close to each other. If the two times are not close, then repeat the
timing test until you are confident about the average execution time for that combination of
command-line arguments.

For each sequential program and grid size, first figure out what the value of numIters should
be so that the execution time of the program is about 30 seconds for that grid size. Then use the
same value of numIters for the parallel versions of that sequential program. You will thus be
using four different values for the numIters argument.

If you write your programs in MPD, use the age() function to calculate execution times. The
return value from each call of age() is the time in milliseconds since the program began
execution. Hence, you will need to divide the elapsed time by 1000 to convert it to seconds. Be
sure to set the MPD_PARALLEL environment variable to the appropriate number of processors for
each test. Do not set MPD_PARALLEL just once; change its value every time you change the
number of processors you are using in a test.

If you write your programs in C and Pthreads, use the times function, as illustrated in the
clock.c and matrix.mult.c programs I handed out in class. (You can view the man page by
executing "man -s 2 times".) The return value from times is the number of "clock ticks"
since some time in the past (when the OS was last booted). The value of CLK_TCK is 100, hence
you will need to divide the elapsed time by 100 to convert it to seconds.

Compiler Optimization Experiments

Compilers such as gcc and mpd by default produce code that is correct but not terribly efficient.
These compilers will produce much better code if you turn on optimizations. With mpd, this is
done using the -O flag. With gcc, you have three choices: -O, -O2, and -O3, where -O3 is the
highest level of optimization.

In addition to doing the basic timing tests described above, you are also to determine how
much faster your programs are if you turn on compiler optimizations. In particular, compile your
programs with -O for mpd or with -O3 for gcc. Then repeat some or all of the timing tests. You
do not need to repeat all 20 timing tests, but you do need to repeat enough of them to be able to
reach conclusions about how much improvement one can get by using compiler optimizations.

Important Point: If you use C and Pthreads, be sure to declare shared synchronization
variables such as barrier flags as volatile variables. With the -O3 level of optimization, gcc
tries to put frequently used variables in registers. This is fine for sequential programs, but it
usually breaks parallel programs. In particular, if a barrier flag is put in a register, then a change
to the flag made by one process will not be seen by any other process!

- 3 -



Reports

Once you have done all the timing tests, write a report to explain what you have done and what
you have learned. Your report should be a few pages of text plus tables and figures. It should
have five sections, as follows:

• Introduction. Give a brief introduction to your report and a brief overview of your results.

• Programs. Summarize how each program works, and describe in reasonable detail all the
program-level optimizations you have implemented to make your programs fast. Describe
all changes you made to the programs that you turned in on March 10 and why you made
those changes.

• Timing Experiments. Present the results from the timing experiments. Use tables to present
the raw data and graphs to show speedups and comparisons. You do not have to use a
graph-drawing program; it is fine to draw graphs by hand if you wish. Also explain your
results. What do the results show? Why?

• Compiler Optimization Experiments. Explain the experiments you conducted to measure
the effect of turning on compiler optimizations and the results you observed.

• Conclusion. Briefly summarize what your report has shown, and describe what you have
learned from this project.

Electronic Turnin and Reports

By midnight on March 10 use turnin to submit your programs. The assignment name is
parallel. The programs should be named jacobi.seq, jacobi.par, multigrid.seq, and
multigrid.par. Also submit a Makefile that we can use to compile your programs. In
particular, if we execute

make jacobi.seq

your makefile should compile the sequential Jacobi iteration program and produce an executable
file that resides in a.out. We should then be able to execute the program with the command-line
arguments specified above. You might also wish to turn in a README file.

We expect you to have completed efficient, working versions of your four programs by March
10. However, when you run the timing experiments, you may find that you made mistakes and
hence need to modify your programs. Before you turn in your report on March 26, turn in final
versions of your four programs and Makefile. Use the same assignment and program names.
(We will make a backup copy of the turnin area on March 11, and we will look at the differences
between the original and final versions of your programs.)

Your reports are due in class on March 30. Please append commented listings of the final
versions of your four programs to your report. If you changed your programs, your report should
also explain what you changed and why. You do not need to turn in the actual output from any of
your tests, but you should have it available or readily be able to reproduce it. In short, your report
should contain all the information someone else would need to reproduce your results.

- 4 -


