Sparse Computation Data Dependence Simplification
for Efficient Compiler-Generated Inspectors

Mahdi Soltan Mohammadi Tomofumi Yuki Kazem Cheshmi
University of Arizona Inria, Univ Rennes, CNRS, IRISA University of Toronto
Tucson, USA Rennes, France Toronto, Canada
kingmahdi@cs.arizona.edu tomofumi.yuki@inria.fr kazem@cs.toronto.edu
Eddie C. Davis Mary Hall Maryam Mehri Dehnavi
Boise State University University of Utah University of Toronto

Boise, USA
eddiedavis@u.boisestate.edu

Payal Nandy
University of Utah
Salt Lake City, USA
payalgn@cs.utah.edu

Salt Lake City, USA
mhall@cs.utah.edu

Catherine Olschanowsky
Boise State University
Boise, USA
catherineolschan@boisestate.edu

Toronto, Canada
mmehride@cs.toronto.edu

Anand Venkat

Intel Corporation

Santa Clara, USA
anand.venkat@intel.com

Michelle Mills Strout
University of Arizona
Tucson, USA
mstrout@cs.arizona.edu

Abstract

This paper presents a combined compile-time and runtime
loop-carried dependence analysis of sparse matrix codes and
evaluates its performance in the context of wavefront paral-
lellism. Sparse computations incorporate indirect memory
accesses such as x[col[j]] whose memory locations cannot
be determined until runtime. The key contributions of this
paper are two compile-time techniques for significantly re-
ducing the overhead of runtime dependence testing: (1) iden-
tifying new equality constraints that result in more efficient
runtime inspectors, and (2) identifying subset relations be-
tween dependence constraints such that one dependence
test subsumes another one that is therefore eliminated. New
equality constraints discovery is enabled by taking advantage
of domain-specific knowledge about index arrays, such as
col[j]. These simplifications lead to automatically-generated
inspectors that make it practical to parallelize such computa-
tions. We analyze our simplification methods for a collection

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

PLDI °19, June 22-26, 2019, Phoenix, AZ, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6712-7/19/06...$15.00
https://doi.org/10.1145/3314221.3314646

594

of seven sparse computations. The evaluation shows our
methods reduce the complexity of the runtime inspectors
significantly. Experimental results for a collection of five
large matrices show parallel speedups ranging from 2x to
more than 8x running on a 8-core CPU.

CCS Concepts + Theory of computation — Program
analysis; - Software and its engineering — Source code
generation.

Keywords data dependence simplification, dependence anal-
ysis, sparse matrices, inspector-executor strategies, Pres-
burger arithmetic with uninterpreted functions, SMT solvers

ACM Reference Format:

Mahdi Soltan Mohammadi, Tomofumi Yuki, Kazem Cheshmi, Eddie
C. Davis, Mary Hall, Maryam Mehri Dehnavi, Payal Nandy, Cather-
ine Olschanowsky, Anand Venkat, and Michelle Mills Strout. 2019.
Sparse Computation Data Dependence Simplification for Efficient
Compiler-Generated Inspectors. In Proceedings of the 40th ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI ’19), June 22-26, 2019, Phoenix, AZ, USA. ACM, New
York, NY, USA, 16 pages. https://doi.org/10.1145/3314221.3314646

1 Introduction

Sparse matrix computations occur in many codes such as
graph analysis, partial differential equations solvers, and
molecular dynamics simulations. Sparse matrix representa-
tions save on storage and computation by only storing the
nonzero values of the matrix. Figure 1 illustrates an example
of how a forward solve computation is implemented using a
common sparse matrix format, compressed sparse row (CSR).


https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3314221.3314646
https://doi.org/10.1145/3314221.3314646

PLDI ’19, June 22-26, 2019, Phoenix, AZ, USA

// Forward Solve CSR
for(i=0; i<N; i++) {
tmp fli];
for (k=rowptr[i]; k<rowptr[i+1]-1; k++){

// loop over rows

S1: tmp -= vall[k]*ulcoll[k]];
S2:uli] = tmp / vall[rowptr[i+1]-11;
1

Dense Sparse Matrix in CSR

Matrix e+ 2 3

rowptr‘0‘1‘2‘4‘7‘

RN A

Figure 1. Compressed Sparse Row (CSR) sparse matrix for-
mat. The val array stores the nonzeros by packing each row
in contiguous locations. The rowptr array points to the start
of each row in the val array. The col array is parallel to val
and maps each nonzero to the corresponding column.

val

CSR organizes nonzeros by row, and for each nonzero the
corresponding column is stored. Sparse representations are
crucial for many computations to fit into memory and exe-
cute in a reasonable time, given that fewer than 1% of values
may be nonzero.

Unfortunately, the advantage sparse formats have on sav-
ing storage comes with the cost of complicating program
analysis aimed at finding parallelism opportunities. Static
compile-time approaches resort to conservative approxima-
tion [6, 37]. Some approaches use runtime analysis to com-
plement compile-time analysis and discover more loops that
are fully parallel [36, 45, 54]. Runtime dependence analysis is
needed because of indirect accesses such as the u[col[k]]@S1
in Figure 1. The elements of the u array accessed by this state-
ment are not known until runtime when the values of the
index array, col, are available.

One advantage of sparse computations is they often ex-
hibit partial (doacross) parallelism in loops that are fully se-
quential in dense codes. A fully sequential loop is one where
each iteration depends on the previous. A fully parallel loop
does not have any loop-carried dependences. A partially par-
allel loop occurs when any particular iteration only depends
on a subset of earlier iterations. A number of previous sparse
kernel implementations incorporate an inspector code that
derives a graph representation of these sparse dependences,
and use this graph to discover and exploit wavefront par-
allelism [8, 12, 39, 40, 47, 50, 53, 56, 59, 63, 66, 68]. As an
example, consider that we use the data matrix in Figure 1 as
an input to the forward solve code in the same figure. The

IThroughout the paper, we refer to an array access A at statement S as A@S
for brevity.

1

595

Mahdi Soltan Mohammadi et al.

Wavefronts 1

a Wavefronts 2

Wavefronts 3

Dependence Graph Wavefronts

Figure 2. Dependence graph for forward solve for sparse
matrix in Figure 1.

dependence graph that the runtime inspector would gener-
ate is shown in Figure 2 on the left, with waves (often called
level sets) created based on that graph shown on the right.

Developers of numerical libraries typically write such in-
spectors by hand. Given that inspectors introduce runtime
overhead, it is crucial that the inspectors have a low com-
putational complexity (as efficient as possible, and at least
no slower than the original computation). Therefore, the
developers often exploit domain-specific information about
properties of the index arrays to derive efficient inspectors,
and in some cases over-approximate dependences to tradeoff
accuracy for reduced inspection time.

Venkat et al. [63] described an automated approach to
generating efficient wavefront inspectors by incorporating
domain-specific information about index arrays (specifically,
monotonicity), and using polyhedra scanning to generate the
inspector code; this approach used overapproximation of de-
pendences, and was applied to two benchmarks. Mohammadi
et al. [34] explored how additional domain-specific proper-
ties of index arrays could eliminate more dependences, and
in many cases all loop-carried dependences could be proven
unsatisfiable so that some loops can be fully parallelized.

In this paper, we present algorithms for simplifying sparse
dependences in partially parallel loops, thus enabling the
automatic generation of efficient inspectors for creating the
dependence graph?. We simplify data dependences by using
domain-specific properties of index arrays to discover new
equalities, simplifying runtime inspectors, and detecting de-
pendence subsets that would be subsumed by inspectors
for their supersets. We show the general applicability of
the presented techniques by evaluating their impact on the
wavefront parallelization for seven popular sparse kernels.

This paper makes the following contributions:

e An approach to dependence constraint simplification
that reduces the complexity of runtime dependence
testing in an inspector. The key contributions in this
paper are (1) identifying equality constraints; and, (2)

2 See Section 9.1 for details about the relationship of this work to the work
in Venkat et al. [63] and Mohammadi et al. [34].



Sparse Computation Data Dependence Simplification for ...

PLDI ’19, June 22-26, 2019, Phoenix, AZ, USA

Dependence Extraction

‘ ‘Simplify: Find Equalities ‘ ‘Simplify: Find Subsets‘ ‘Code Generation ‘ ‘Output and Runtime ‘

Library  User writes a JSON file
code
excerpt Index array b

property (input) Detect UnSat or

Add new Equalities

4

Adding instantiated
assertions to
dependences

Extracting Dependences

Omega+ Code
generator

LBC wavefront
finder [14]

| | (Section 3.1)
: {

Find relations
that subsume all
dependences

T ¢ Library call

Driver running

code in parallel

Figure 3. The overview of our approach to eliminate or simplify dependences from sparse computations utilizing domain-
specific information. The blue boxes show inputs or hand written drivers that include input computation inside a C file,
user-defined, domain-specific knowledge about index arrays inside a JSON file, driver for calling inspector and executor to run
the input code in parallel. The green color indicates generated data, including all the dependences getting passed around, and
inspector code. And, the orange color shows codes that we have implemented for our methods. A driver carries out the steps
from reading input library code and user defined assertions to generating inspectors that build the dependence graph. As we
simplify the dependences, their number and complexity potentially decrease, hence k > j > i. LBC stands for load-balanced

level coarsening.

identifying subset relations between dependence con-
straints such that one dependence test subsumes an-
other that can be therefore eliminated.

An implementation of these techniques that leverages
the strengths of state-of-the-art polyhedral compiler
technology, but extends it for analysis and code gener-
ation of sparse computations.

A demonstration that these simplifications lead to
automatically-generated inspectors that make it prac-
tical to parallelize representative sparse computations.
For a collection of seven sparse matrix computations
and five large matrices consisting of millions of nonze-
ros, we show parallel speedups ranging from 2X to
more than 8X running on 8 cores.

2 Compile-Time Dependence Analysis

Figure 3 shows an overview of our approach for automat-
ing wavefront parallelization through the simplification of
sparse data dependences. First, we extract the data depen-
dence relations for the outermost loop of an input kernel. At
compile time, we use index array properties to determine
which data dependences are unsatisfiable. Additionally, we
simplify any remaining loop-carried dependences and gen-
erate inspector code. At runtime, the generated inspector
creates a dependence graph and then sends that dependence
graph to a library routine that finds parallel wavefronts. The
executor code loops over wavefronts sequentially and then
executes all of the iterations in a wavefront in parallel.

This section reviews the compile-time component of the
data dependence analysis.

596

2.1 Constraint-Based Data Dependence Analysis

Data dependence analysis of a loop nest is a common analysis
that is used in different applications, such as automatic paral-
lelization [11] and data race detection [4]. A loop-carried de-
pendence can be represented by constraints. The constraints
encode when two iterations of a loop access the same mem-
ory location, where at least one of them is a write access, the
loop has a loop-carried dependence [45, 46].

Dep : (Elf,f’)(f < f’/\F(f) = G(f’)/\Bounds(f)/\Bounds(f’)),

where T and I” are iterations of the same loop, with < denot-
ing lexicographical ordering, F and G are index expressions
to the same array, and Bounds(I) expands to the loop nest
bounds for the I iteration vector. We use the term dependence
relation interchangeably with dependence constraints, the
dependence being viewed as a relation between Tand I'.

As an example, consider the sparse forward solve kernel in
Figure 1. Looking for wavefront parallelism in the outermost
loop, there are two pairs of accesses on array u in S1 and S2
that can potentially cause loop-carried dependences. The first
pair includes two identical write accesses u[1]@S2. Those
accesses are guaranteed to be disjoint for different iterations
of the i loop, therefore, there are no dependences based
on them. Dependences can also come from u[col[k]]@S1
(read), and u[i1@S2 (write). The flow dependence relation
for this read-write pair is:

{li1 > [I'] : 3k =i # &' Ai = col(k’)
A0 < i, i’ <N Arowptr(i’) <k’ < rowptr(i’ + 1)}.



PLDI ’19, June 22-26, 2019, Phoenix, AZ, USA

Table 1. Index array properties, and their universally quan-
tified assertion form, discussed by Mohammadi et al. [34].
The symbol =< can be <, <, >, and > in the Monotonicity
row and < or > in the Strict Monotonicity row.

Array property | Definition
Domain & Vx1:D; <x1 <D, ©
Range R; < f(x1) < Ry).
Injectivity (Vx1,x2 1 f(x1) # f(x2) © x1 # x2).
Monotonicity (Vxq, x5t x1 > Xy =

Fx1) »< f(x)).
Strict (Vx1,%0 1 x1 >0 X3 &
Monotonicity f(x1) > f(x2)).
Periodic (Vx1, %9, x3 : (x2 < x3 A g(x1) <
Monotonicity X2, x3 < glxg + 1) = f(x1) = f(x2)).
CoMonotonicity | (Vx; = x2 = f(x1) < g(x2)).
Triangularity (Vx1,x2 ¢ f(x1) < x2 = x1 < g(x2)).

We cannot determine the pairs of i and i’ that satisfy the
constraints above at compile-time, since the values of the
indirection arrays, col and rowptr, are not available. This
is why we need runtime inspectors to find parallelism.

2.2 Disproving Dependences at Compile Time

Any dependence that can be shown to be unsatisfiable at
compile time, does not need runtime analysis. There is a
body of work that uses information about the index arrays,
such as monotonicity, to find parallel loops by disproving
data dependences that are satisfiable without domain knowl-
edge [31, 33, 34, 36, 54, 63].

Recently, in Mohammadi et al. [34], we presented addi-
tional properties beyond commonly-used ones that can be
found in sparse matrices for numerical computations. We
showed that the properties can be expressed as universally
quantified assertions and passed to SMT solvers along with
the original dependence constraints to test for satisfiability.

Those index array properties are depicted in Table 1. Mono-
tonicity of index arrays that compress indices of a matrix
dimension is common. Triangularity happens when a nu-
merical kernel operates only on sparse matrices that are
triangular. Periodic monotonicity happens in some index
arrays that are not monotonic overall, but segments of the
index arrays are sorted. Correlated monotonicity happens
when two index arrays index into separate but consecutive
parts of same data array.

SMT solvers typically handle universal quantifiers by per-
forming quantifier instantiation, where the main idea is that
the formula can be proven unsatisfiable if some instances of
the universally quantified assertions lead to contradiction. If
all dependence relations are proven unsatisfiable when com-
bined with the assertions, then the compiler can conclude
that there are no loop-carried dependence at compile time.

597

Mahdi Soltan Mohammadi et al.

As an example of how domain information can be used to
show dependences are unsatisfiable consider the following
constraints from a dependence relation:

{i] = [I']: A(m, k") :i<i"Am=k'A 0<i,i"<n
A rowptr(i — 1) < m < rowptr(i)
A rowptr(i’) < k' < rowptr(i’ + 1)}

This relation is satisfiable depending on the content of the
rowptr array, and hence a runtime check is necessary. The
main condition is that iterations of m and k’ must overlap,
which can be expressed as a combination of their bounds:
rowptr(i’) < rowptr(i) A rowptr(i’ — 1) < rowptr(i + 1).

If we know the rowptr is strictly monotonic:

(Vx1, x2)(x1 < x5 = rowptr(x;) < rowptr(xz)),

then the dependence relation can be proven unsatisfiable.
An instance of the assertion when x; = i,x i’ gives
rowptr(i) < rowptr(i’) directly contradicting one of the con-
ditions for a dependence to exist.

See Section 7 for details about how much each index array
property alone and in combination with other properties
results in finding unsatisfiable data dependences.

3 Runtime Data Dependence Inspector

After compile-time analysis proves as many unsatisfiable de-
pendences as possible, the next step is to generate inspector
code to perform runtime analysis on the remaining depen-
dences (see Figure 3). Given a compile-time description of the
dependence with uninterpreted functions representing index
arrays, code can be generated to inspect the dependences at
runtime and create a directed acyclic graph (DAG) structure
where wavefronts of parallelization can be discovered.

3.1 Inspector Code Generation

The Omega+ [13] polyhedral code generation tool and IEGen-
Lib [62], a component of the Sparse Polyhedral framework [61],
are used in concert to generate the inspector code. IEGenLib
supports general transformations on sets that include unin-
terpreted functions, and Omega+ supports code generation
for those sets. Once all of the transformations have been
applied and their form simplified using IEGenLib, the sets
are translated to a normalized form usable by Omega+.
The Omega+ code generator has a number of syntactic
limitations for handling uninterpreted function calls (UFCs).
For one, the UFCs can only have loop iterators as parame-
ters. To handle this limitation, we use macro functions that
abstract away any complex expression parameters. For in-
stance, an index array access idx[i+1] is represented by a
macro IDX_1(1i). Additionally, Omega+ requires that param-
eters to a UFC be a prefix of input or output tuple iterators
of the set that code is being generated for. Once again we
use macro definition to solve this limitation. For instance,



Sparse Computation Data Dependence Simplification for ...

PLDI ’19, June 22-26, 2019, Phoenix, AZ, USA

for(i = @; i < n; i++) {
S1: vallcolPtr[il] = sqrt(vallcolPtr[i]]);

for (m = colPtr[i] + 1; m < colPtr[i+1]; m++)
S2: vall[m] = vallm] / vallcolPtr[i]];
for (m = colPtr[i] + 1; m < colPtr[i+1]; m++)
for (k=colPtr[rowIdx[m]]; k<colPtr[rowIdx[m]+1]; k++)
for (1 =m; 1 < colPtr[i+1] ; 1++)
if(rowIdx[1]==rowIdx[k] && rowIdx[1+1]<=rowIdx[k])
S3: val[k] -= val[m]xval[l];

}

Figure 4. Incomplete Cholesky code from SparseLib++ [43].
Some variable names have been changed.

for the following dependence: {[i, j, k, ] : idx(k) <n A ...},
the idx(k) UF call becomes IDX__(i, j,k).

3.2 Problem: Expensive Inspectors

As described in Section 2.2, the use of domain information
can disprove many potential dependences at compile time.
However, most of the benchmarks (all except SpMV) have re-
maining dependence relations necessitating runtime checks.

It is possible to employ wavefront parallelization by gen-
erating inspector code that tests all remaining dependences.
However, the overhead may be prohibitively high without
further optimization. In particular, three of our benchmarks
would have inspectors with higher algorithmic complex-
ity than the original computation. This makes it difficult to
amortize the cost of inspection by gains from parallelization.

As an example, consider the Incomplete Cholesky kernel
in Figure 4. Since m, k, and 1 loops are traversing over
nonzeros when the i-loop traverses over all columns, the
algorithmic complexity of the kernel is of O(n X (nnz/n) X
(nnz/n) x (nnz/n)) = O(nnz X (nnz/n)?), where n is number
of columns, and nnz is number of nonzeros. However, the
remaining dependences for this code would require runtime
inspectors with higher complexity: O(nnz? X (nnz/n)?). Such
a high complexity inspector cannot be amortized. This prob-
lem motivated the development of two dependence simplifi-
cation methods that can result in more efficient inspectors.
We describe these methods in the next two sections.

4 Simplify Dependences: Find Equalities

In this section, we discuss a dependence simplification method
based on discovering additional equalities after utilizing do-
main information. These equalities may reduce the complex-
ity of runtime inspectors by revealing that a dependence

relation is a lower dimensional shape embedded in a higher

dimensional space (e.g., {[i,j] : i = j} is a line in a 2D space).

4.1 Usefulness of New Equality Constraints

The new equalities may be exposed by considering instances
of the universally quantified assertions that represent index

598

for(i = 0; i <n ; i++) for(i = @; i <n ; i++)

for(i'= i+1; i'<n; i'++) i = g(i);
1F(F(i')<=F(i)88g(i)<=i") IR <= F(i))
/7 Add i -> i’ /7 Add i -> i

(a) Inspector with the original
dependence constraints.

(b) Inspector with an addi-
tional equality: i’ = g(i’).

Figure 5. Inspector pseudo-code for example dependence
constraints in Section 4.1, before and after utilizing index
array properties to add new equalities.

array properties. For instance, consider the following depen-
dence relation, which is a simplified version of those found
in some of our benchmarks:

i <i)AF(E) < Flgi) Agli) <i’ A0 <i,i’ <n).

This is a satisfiable dependence that needs a runtime inspec-
tor with a complexity of O(n?) to traverse the space of values
for i and i’; the inspector is shown in Figure 5a. Assume that
we also know the following universally quantified assertion
about the uninterpreted function f (strict monotonicity):

(Vx1,x2), (x1 < x2) = (f(x1) < f(x2))-

We may also use its contrapositive:

(Vx1,x2), (f(x1) 2 f(x2)) = (x1 2 x2)

where its instance with x; = g(i), x, = i’ gives
h t t th !

f@) < flg(i)) = i" < ().

Since the antecedent of the instance is always true in the
example relation, the consequent may be directly added. This
gives i’ < g(i) A g(i) < i’ =i’ = g(i), a new equality.

Using this equality, the inspector may iterate over i and
obtain values of i’ from g(i) without explicitly iterating over
i’. The inspector after this optimization is depicted in Fig-
ure 5b. Now, utilizing the discovered equality, the runtime
inspection would have complexity of only O(n).

4.2 Algorithm for Discovering Equalities

If the goal is to detect unsatisfiable dependences, specifying
the domain information as universally quantified assertions
and using an SMT solver as presented in Mohammadi et
al. [34] are sufficient. SMT solvers are specialized for solving
satisfiability problems expressed as a combination of back-
ground theories. They instantiate the assertions utilizing
heuristics to quickly determine unsatisfiability of a set of
constraints. However, SMT solvers do not provide a way to
output equality relationships that may have been inferred
while answering the satisfiability question.

In contrast, libraries for manipulating integer sets, such
as ISL [64], are specialized for analyzing and manipulating
integer sets, providing additional intermediate constraints.



PLDI ’19, June 22-26, 2019, Phoenix, AZ, USA

Hence, we implement a procedure to add instantiated as-
sertions to a dependence relation and then use libraries to
compute all the equalities.

Our procedure takes general assertions of the form:

VX, p1(X) = ov(X)

Where X denotes vector of quantified variables, ¢;(X) de-
notes antecedent of the assertion, and ¢y (¥) denotes the
consequent of the assertion. Our procedure to instantiate
quantified assertions is defined in the following.

Definition 1 (E) We define E to be the set of expressions
used as arguments to all uninterpreted function calls in the
original set of constraints. We use this set to instantiate
quantified assertions.

Definition 2 (UNSATy)

e - I e

10

12

1. Turn the universally quantified predicates into quantifier-

free predicates using inference rule:
YIVE, 01(¥) = ¢v(X)]

Y[ Nzepn(01(x) = ov(¥))]
where E" is the set of vectors of size n = |X| produced
as a Cartesian product of E.

FORALL

2. Solve the quantifier-free formula { output of the pre-
vious step with an SMT solver that decide union of
quantifier-free theories of uninterpreted functions with
equality and Presburger Arithmetic.

Completeness: The instantiation procedure is similar to
the one for a decidable fragment of theory with arrays [10].
For the decidable fragment, a finite number of instantiations
give an equisatisfiable formula without universal quanti-
fiers. Unfortunately, some of the assertions we use do not
fit any known decidable fragment, and thus we do not have
completeness. Please see Section 9.2 for discussions about
techniques for quantifier elimination.

Correctness: Although the above procedure is incom-
plete, we do have soundness. This means if a dependence is
determined unsatisfiable, it in fact is not a dependence. How-
ever, if a dependence is determined satisfiable at compile
time, it could be that at runtime the actual values of index
arrays lead to the dependence not being satisfiable. Since
our procedure is conservatively correct, it is sound.

To show that the decidability procedure UNSATy, is sound,
we need to show that if the original formula i is satisfiable,
then so is the unquantified formula /',

V€ SAT = ¢’ € SAT.
This is equivalent to
Y’ ¢ SAT = ¢ SAT.

Since universal quantification is being replaced with spe-
cific expression instantiations to create i/, i/’ is a potentially

599

Mahdi Soltan Mohammadi et al.

for(i = @; i < n; i++) {
S1: vallcolPtr[il] = sqrt(vallcolPtr[i]]);

for (m = colPtr[i] + 1; m < colPtr[i+1]; m++)
S2:  vall[m] = val[m] / vallcolPtr[il];
for (m = colPtr[i] + 1; m < colPtr[i+1]; m++)
for (k=colPtrlrowIdx[m]]; k<colPtr[rowIdx[m]+1]; k++)
for (1 =m; 1 < colPtr[i+1] ; 1++)
if(rowIdx[1]==rowIdx[k] && rowIdx[1+1]<=rowIdx[k])
S3: val[k] -= val[m]*val[l];

}

Figure 6. Incomplete Cholesky code from SparseLib++ [43].
Same as Figure 4, repeated for reader’s convenience.

weaker set of constraints than . This means that ¢’ is a con-
servative approximation of . As such, if ¢’ is not satisfiable,
then ¢ is not satisfiable.

5 Simplify Dependences: Find Subsets

In addition to discovering new equalities, another way to
simplify runtime dependence relations is to remove tests for
dependence relations that can be identified as a subset of
another. This can result in faster runtime inspection when
a dependence relation can be shown to be a subset of a less
complex relation. Such analysis is sometimes performed by
expert programmers to optimize manually written inspectors.
In this section, we propose an approach to automate this
process. The key challenge is to determine subset relations
between two dependence relations defined with inequality
constraints involving uninterpreted functions.

5.1 Intuition of the Simplification

As an intuitive example, consider the Incomplete Cholesky
code shown in Figure 6. One of the dependence relations is
between the write val[k]@S3 and the read val[m]@S3. This
test is redundant with the test between the write val[k]@S3
and the read val[m]@S2, because, an iteration of the i loop
that reads from val[m] in S3 is guaranteed to access the
same memory locations while executing the loop surround-
ing S2 as the loop bounds in lines 4 and 7 are the same. Thus,
the more expensive check between accesses in S3 can be
removed. The check between two accesses in S3 is more ex-
pensive because the dependence relation has two additional
dimensions, corresponding to the k and 1 loops of the second
instance of S3.

5.2 Subset Relations in the Context of Sparse Codes

It is important to clarify what it means for a dependence
relation to be a subset of another in the context of sparse
matrix codes, when dependence relations involve uninter-
preted functions. If the compiler assumes that uninterpreted
function calls (UFCs) can evaluate to any value, most of the
dependence relations involving UFCs would be considered
satisfiable. At runtime, the actual values of UFCs are known,



Sparse Computation Data Dependence Simplification for ...

making it possible to perform exact dependence analysis. For
each dependence relation, there exist a set of constraints on
the values of the indirection arrays, or the concrete inter-
pretations of UFs, that characterize when the dependence
manifests. These constraints on the concrete interpretations
of UFs are central to the subset relationships between depen-
dence relations. If the set of concrete interpretations for a
dependence to manifest is subsumed by those for another,
then it is safe to remove the test.

Subset Detection Algorithm: Recall that a dependence
test for loop-carried dependence of the outermost loop takes
the following form:

{lil= '] : 3u,0:i+i" A...}

where # and 0 represent the indices for inner loops of two
statements involved in the test. Given two dependence rela-
tions R; and R,, we test for subset relation as follows:

1. Apply Ackerman’s reduction to R; and R; to obtain
equisatisfiable relations R] and R} without UFCs [58].
Application of Ackerman’s reduction to a relation R
proceeds as follows. For each pair of UFCs sharing the
same UF, f(x) and f(y), a constraint encoding func-
tional consistency, A; = (x = y = f(x) = f(y)), is cre-
ated. The conjunction of all such constraints becomes
the antecedent of an implication where the original
relation is its consequent: M = [(A; A Ay...) = R].
Then, all UFCs in M are replaced with fresh variables.
to obtain a relation R’ that is UFC free.

. Project out all the existentially quantified iterators (u
and o in the above) from R and R}, to obtain R} and
R}. These relations characterize when the dependence
manifests, including constraints on the concrete inter-
pretation of UFCs (now represented as fresh variables,
or parameters when viewed as integer relations).

. The subset relation between R} and R is tested with a
library for polyhedral relations.

Correctness: The latter two steps of the above are stan-
dard operations over polyhedral relations, and do not con-
cern correctness. Ackerman’s reduction gives relations with-
out UFCs that are effectively equivalent to the original rela-
tion. This is a property of Ackerman’s reduction that com-
pletely replaces UFCs with fresh variables. This means that
the polyhedral subset relationship holds for the constraints
involving uninterpreted functions, because the introduced
F, parameters take on any value that the corresponding UFC
can hold. Let us consider a relation, f(x) > 0, and its corre-
sponding relation after reduction, F, > 0. These relations are
technically equisatisfiable, but not logically equivalent, since
models such as f(x) = 0; F, = =1 and f(x) = —1; F, = 0 are
valid for one of the relations, but not for the other. Observe
that adding f(x) = Fyx does not change satisfiability of the

600

PLDI ’19, June 22-26, 2019, Phoenix, AZ, USA

two relations in isolation, since the UFC and the replace-
ment are never used simultaneously in a relation. Thus, the
set of values that a UFC can take is exactly the same as its
replacement, making them effectively equivalent.

5.3 Example

We illustrate the subset detection algorithm with an example,
using Incomplete Cholesky in Figure 6. We take two depen-
dence relations, R; between val[k]@S3 and val[m]@S2, and
R, between val[k]@S3 and val[1]@S3:

Ri={liim k1] = [i’,m]:k=m"A0<i<i <n
Acol(iy)+1<m<I<col(i+1)Arow(l+1) < row(k)
A col(row(m)) < k < col(row(m) + 1) A row(l) = row(k)
Acol(i’)+1 <m' <col(i’ +1)}

R, ={[iim k1] > [i’,m K, '] :k=I'"A0<i<i<n
Acol(iy+1<m <1 <col(i+1)Arow(l +1) < row(k)

A col(row(m)) < k < col(row(m) + 1) A row(l) = row(k)
Acol(i’)+1<m' <1l <col(i’ +1) Arow(l" +1) < row(k’)
A col(row(m’)) < k’ < col(row(m’) + 1)

A row(l") = row(k’)}
where colPtr and rowIdx are represented as UFs col and
row, respectively. Computing the constraints on UFCs gives:
Ri={0<i<i’<NA col(i)+1 < col(i + 1)
Acol(i’) +1 < col(i” + 1) A col(row(m)) < col(row(m + 1))
A row(k) = row(l) A row(l + 1) < row(l)

A col(i’) + 1 < col(row(m + 1)) A col(row(m)) < col(i’ + 1)}

for R; and the following:

Ry={0<i<i’"<NA col(i) + 1 < col(i + 1)
Acol(i’) +1 < col(i” + 1) A col(row(m)) < col(row(m + 1))
A col(row(m’)) < col(row(m’ + 1))

A row(k) = row(l) A row(l + 1) < row(l)

A row(k’) = row(l’) A row(l’ + 1) < row(l’)

A col(i’) + 1 < col(row(m + 1)) A col(row(m)) < col(i’ + 1)}

for R, where the differences are highlighted in bold. These
sets are computed with UFCs replaced by parameters, but
we show the original UFCs for presentation reasons.

Most of these constraints (all but the last two in both R}
and R}) represent the conditions for an iteration to be valid,
coming directly from loop bounds or guards. The last two
in each relation show the constraints on the interpretation
of UFCs across read and write iterations participating in a
dependence. These constraints can be seen as a condition for
the read accesses in two dependence relations; iterations of m
for val[m]@S2, and iterations of 1 for val[1]@S3; to overlap
with the iterations of k for the write access: val[k]@S3.



PLDI ’19, June 22-26, 2019, Phoenix, AZ, USA

One can see that R is a subset of R} since all constraints
in R} are present in R}. The subset relation can be tested with
libraries for integer sets, since the relations are polyhedral
after the reduction to remove uninterpreted function calls.

6 Implementation

We have automated the data dependence analysis simplifica-
tion, and wavefront parallelization inspector code generation
(see Figure 3 for an overview), available at: https://github.
com/CompOpt4Apps/Artifact-DataDepSimplify. This sec-
tion summarizes the software packages the implementation
relies on, and some important optimizations to make our
implementation scalable.

6.1 Software Description and Overall Flow

In our implementations, the serial computation must be pro-
vided to our driver as a C file. Additionally, user-defined
domain-specific information about index arrays should ac-
company the code in a separate JSON file. The accompanying
JSON file would also indicate the target loop to parallelize.

We use four packages to implement our approach: IEGen-
Lib library [62], ISL library [64], CHiLL compiler frame-
work [1], and Omega+ codegen included in the CHiLL.

CHILL is a source-to-source compiler framework for com-
posing and applying high-level loop transformations to im-
prove the performance of nested loops written in C. We use
CHILL to extract the dependence relations from the bench-
marks. The CHILL compiler also includes the Omega+ library,
a modified version of Omega [28], which is an integer set ma-
nipulation library with limited support for constraints that
involve uninterpreted function calls. We have used Omega+’s
codegen capability to generate the DAG construction portion
of the wavefront inspector code.

ISL is a library for manipulating integer sets and relations
that only contain affine constraints. It can act as a constraint
solver by testing the emptiness of integer sets. It is also
equipped with other operations on integer sets for detect-
ing equalities and testing subset relationships. ISL does not
support uninterpreted functions, and thus cannot directly
represent the dependence constraints in sparse matrix code.

IEGenLib is a set manipulation library that can manipulate
integer sets/relations that contain uninterpreted function
symbols. It uses ISL for some of its functionalities. We im-
plemented the detection of unsatisfiable dependences and
finding the equalities utilizing the IEGenLib and ISL libraries.

The following briefly describes how our driver, illustrated
in Figure 3, generates wavefront parallelization inspectors.
First, the driver extracts the dependences using CHiLL, and
stores them in IEGenLib data structures. The driver also reads
the JSON file with user-defined, domain-specific knowledge
about index arrays, and stores them in IEGenLib environ-
ment variables. Then, it makes a call to an IEGenLib function
to simplify the dependences. IEGenLib instantiates univer-
sally quantified assertions using the procedure described

601

Mahdi Soltan Mohammadi et al.

in Section 4.2 to prove unsatisfiability and to detect equali-
ties. The uninterpreted functions are removed by replacing
each call with a fresh variable, and functional consistency is
encoded with additional constraints [30, Chapter 4], before
calling ISL to test for satisfiability and to expose equalities.
Once the satisfiable, simplified, dependences are obtained,
the driver tests each pair of the remaining dependences using
IEGenLib for subsets and discards any dependence subsumed
by another. The IEGenLib subset detection function imple-
ments the procedure described in Section 5.

Finally, the inspectors for the remaining dependences are
generated by Omega+. Since, the outermost loop in the in-
spectors that we generate are embarrassingly parallel, the
driver turns Omega+ generated code into a parallel inspector
by simply adding an omp parallel for pragma before the
outermost loop. The reason why the inspectors are obviously
parallel is that each iteration of their outermost loop just
connects dependence edges for the row (column) of the same
iteration in the dependence graph structure.

6.2 Optimization

A straightforward approach to implementing the instantia-
tion procedure in Section 4.2 would be to take the quantifier-
free formula resulting from instantiation, replace the un-
interpreted functions, and directly pass it to ISL. However,
this approach does not scale to large numbers of instantia-
tions. An instantiated assertion is encoded as a union of two
constraints (—p V q). Given n instantiations, this approach
introduces 2" disjunctions to the original relation, although
many of the clauses may be empty. In some of our depen-
dence relations, the value of n may exceed 1000, resulting
in a prohibitively high number of disjunctions. We have ob-
served that having more than 100 instantiations causes ISL
to start having scalability problems.

We apply an optimization to avoid introducing disjunc-
tions when possible. Given a set of instantiations, the opti-
mization adds the instantiations to the dependence relation
in two phases. The first phase only instantiates those that
do not introduce disjunctions to the dependence relation.
During this phase, we check if the antecedent is already part
of the dependence constraint, and thus is always true. If
this is the case, then g can be directly added to the depen-
dence relation. We also perform the same for -q = -p
and add —p to the dependence relation if —q is always true.
The second phase adds the remaining instantiations that
introduce disjunctions. This optimization helps reduce the
cost of dependence testing in two ways: (1) if the relation
is unsatisfiable after the first phase, disjunctions are com-
pletely avoided; and (2) the second phase only instantiates
the remainder, reducing the number of disjunctions.

If the dependence relation remains non-empty after the
second phase, then the relation is checked at runtime. All
equalities in a relation are made explicit before inspector
code generation.


https://github.com/CompOpt4Apps/Artifact-DataDepSimplify
https://github.com/CompOpt4Apps/Artifact-DataDepSimplify

Sparse Computation Data Dependence Simplification for ...

Table 2. The benchmark suite used in this paper. The suite includes the fundamental blocks in several applications.

PLDI ’19, June 22-26, 2019, Phoenix, AZ, USA

Kernel Format | Source Index array properties

Gauss-Seidel CSR | Intel MKL [66] | Strict Monotonicity + Periodic Monotonicity

Incomplete LU CSR | Intel MKL [66] | Strict Monotonicity + Periodic Monotonicity + CoMonotonicity

Incomplete Chol. | CSC | SparseLib [43] | Strict Monotonicity + Periodic Monotonicity + Triangularity

Forward Solve CSC | Sympiler [15] | Strict Monotonicity + Periodic Monotonicity + Triangularity

Forward Solve CSR | [65] Strict Monotonicity + Periodic Monotonicity + Triangularity

Sparse MV Mul. CSR | Common Strict Monotonicity + Periodic Monotonicity + Triangularity

Static Left Chol. CSC | Sympiler [15] | Strict Monotonicity + Periodic Monotonicity + Triangularity

15 B Original
B Affine Consistency
@ Monotonicity
(%]
] PUT) . .
% 10 B Periodic Monotonicity
g B Correlated Monotonicity
§- . I Triangular Matrix
5 5 B Combination
g 5 4 4
£ 3
3
z
0 0
0
n nnz n*n n*nnz nnz*2 nnz*"3/n  nnz*5/n"3

Figure 7. The number of dependences left after disproving dependences using index array properties. This is a direct application
of the approach by Mohammadi et al. [34]. The complexities are calculated after applying optimizations used in previous
work [63]: projecting out iterators whenever possible, and utilizing equalities already present in the dependence. Note that nnz
is the number of non-zeros, and n is the number of columns/rows in a matrix. Affine Consistency means removing dependences
that can be detected as unsatisfiable without utilizing any domain information, which leaves 67 out of 75 dependences. The
array properties discussed in Table 1 detect 45 relations as unsatisfiable out of the remaining 67. Combination is when all
properties are used together that leads to finding 12 unsatisfiable dependences that are not detectable otherwise.

7 Evaluating Simplification

In this section, we evaluate the impact of our simplification
methods in terms of algorithmic complexity and number of
required checks. The next section evaluates the performance
impact of using our data dependence analysis approach for
automatic wavefront parallelization. The benchmark suite
we use to evaluate the presented data dependence simplifi-
cation in this paper can be seen in Table 2.

7.1 Discarding Unsatisfiable Dependences

There are a total of 75 unique dependence relations in this
suite. Of those 75, eight can be found unsatisfiable just by
looking at their affine constraints, leaving us with 67 de-
pendences to analyze. Applying the approach proposed by
Mohammadi et al. [34] detects 45 out of the 67 dependences
as unsatisfiable using domain knowledge, leaving us with

602

22 compile-time-satisfiable dependences that need runtime
inspection.

Figure 7 shows how using different index array properties
from Table 1 help reduce the number of dependences in differ-
ent complexity classes. When applied alone, monotonocity
has the highest impact helping us detect 27 dependences un-
satisfiable. Co-monotonocity and triangularity each help us
detect 3 dependences as unsatisfiable. Using all properties in
concert detects 45 out of 67 dependences as unsatisfiable. We
need the combined information of more than one property
to detect 12 dependences as unsatisfiable. Consequently, the
effect of using all properties is bigger than the summation
of using individual properties.

The starting point of our simplification techniques is after
unsatisfiable dependences are discarded using the approach
we proposed in Mohammadi et al. [34]. Figure 8 summarizes
the impact of simplification including statically disproving



PLDI ’19, June 22-26, 2019, Phoenix, AZ, USA

Mahdi Soltan Mohammadi et al.

g Dependence Simplification Impact on Runtime Inspector Number and Complexity

T

@ a2 Less than or equal to Kerne| |

o 30 More than Kernel = -

(&)

@ 25 -

c 20 15 T

;% 15 12 ]

% or I H 4 4 H 4 4 4 . |

= 5[ H 2 2 2 2 3 3 z22 3 7

E ; oms lOBE U AR 000

E &4;? ,ﬁ?@j’/& Q,}c;%,/;%jf@ Q«*ﬁg’?@j”% Q%‘%é%f@, Q&‘%ﬁ?@ﬁ% Q%%L?J@ %@%;f 7,
Oy S O T 4 T 4 L Cla 4 Cle iy
By, o, R e s, iRl el

4'55.- R 4,} (2H 4&__ (M lﬁ.- (S 4@_ L 4‘_‘5.- e 4‘_‘5.- e
In. Chal. L. Chol. . LUQ FS CSC FS CSR GS CSR SpMY

Figure 8. Impact of dependence simplification on inspector complexity. Each bar shows the required number of runtime
checks and a breakdown into expensive (complexity higher than the kernel) and relatively inexpensive ones. The groups of
four bars for each benchmark illustrate the impact of simplifications as they are successively applied. Satisfiable is after using
domain-specific information to statically disprove a subset of dependences. After Equality is when equality detection is used
on the remaining dependences, which replaces some of the expensive dependences with inexpensive ones. After Subset is
when all the simplifications are combined, further reducing the number of checks using subset relationships.

dependences using that work. The x-axis shows how simplifi-
cation impacts the number and complexity of the remaining
compile-time dependence relations for each kernel. The first
bar for each kernel is the number of remaining compile-time
satisfiable dependences after disregarding all unsatisfiable
ones that the approach proposed in Mohammadi et al. [34]
can detect. In terms of algorithmic complexity, dependences
in each bar in this figure are divided into two parts; a part
that represents the number of dependences that have com-
plexity greater than the kernel the dependences are extracted
from, and a part that represents the number of dependences
with complexity less than or equal to their respective kernel.

For the simpler kernels (FS CSR, GS CSR, and SpMV),
finding unsatisfiable dependences is sufficient and additional
simplification does not further reduce the inspector overhead.
(Note that SpMV does not need domain-specific information
to disprove dependences across outermost loops.)

However, the remaining kernels have expensive runtime
checks that cannot be disproved even with domain-specific
information. Inspectors with complexities exceeding the
main computation do not finish in a reasonable amount of
time to benefit from parallelism that it exposes.

7.2 Simplifying Using Equalities

After removing all unsatisfiable dependences from each code
using domain-specific information, we are still left with 22
dependences that need inspectors across the 7 kernels. One
of our simplifications presented in Section 4 reduces the
complexity of inspectors by identifying additional equalities.

603

The impact of this simplification is the difference between
the second and third bars for each kernel in Figure 8.
An important positive effect is that a total of 11 checks:

e 5 (out of 9) expensive checks for Incomplete Cholesky,
e 2 (out of 4) expensive checks for Incomplete LU, and
e 4 (out of 4) expensive checks for Left Cholesky

are all simplified to have complexities less than or equal to
the original computation.

7.3 Simplifying with Subset Relationships

Simplification using equalities leaves 11 dependences across

the benchmarks that are further simplified using subset rela-

tionships as described in Section 5. The last bar for each code

in Figure 8 shows how subset dependences help decrease the

complexity of the overall inspectors for each code.
Interesting results are:

e The number of runtime checks for Incomplete Cholesky
is reduced from 9 to 2, and all expensive checks are
eliminated.

e The number of runtime checks for Left Cholesky is
reduced from 4 to 1.

7.4 Overall Impact of Simplification

Table 3 summarizes the impact of our proposed approach
on inspector complexity. For each code, the second column
shows algorithmic complexity of inspectors that are needed
for all the potential dependences, the third column shows the
complexity of inspectors needed after detecting unsatisfiable
dependences and applying our simplification methods, and



Sparse Computation Data Dependence Simplification for ...

PLDI ’19, June 22-26, 2019, Phoenix, AZ, USA

Table 3. The impact of simplification on inspector complexity. The baseline inspector complexity is when all possible
dependences are tested at runtime, without using any of the simplifications proposed in this paper. The simplified inspector
complexity reports the final cost of inspection generated by our approach. The overall complexity of inspectors decreases
considerably. The complexity of the kernels are included for comparison; k and K denote constant factors where k <« K.

Kernel name Inspector complexity Simplified inspector Kernel complexity

Gauss-Seidel CSR (n) + 2(nnz) 2(nnz) k(nnz)

Forward solve CSR (n) + 2(nnz) nnz k(nnz)

Forward solve CSC 3(n) + 4(nnz) nnz k(nnz)

Sparse MV Mul. CSR | 3(n) 0 k(nnz X (nnz/n))

Incomplete Cholesky | 8(n?) + 10(nnz?) + 8(nnz® X (nnz/n)) + | (nnzx(nnz/n))+(nnzx(nnz/n)?) || K(nnz x (nnz/n)?)

CSR 6(nnz? x (nnz/n)*)

Left Cholesky CSC 4(n%) + 8(n x nnz) 2(nnz) K(nnz X (nnz/n))

Incomplete LU CSR | (n?) + 2(n X nnz) + 6(nnz? X (nnz/n)) + | 2(nnz x (nnz/n)?) + 2(nnz x || K(nnz x (nnz/n)?)
6(nnz? x (nnz/n)?) (nnz/n)*)

the fourth column states the complexity of the code itself. For
all of the benchmarks except ILU, the algorithmic complex-
ity of the inspector is less than or equal to the algorithmic
complexity of the kernel. For ILU, the higher complexity can
be dealt with using approximation [63].

8 Wavefront Parallelization Performance

We evaluate the pragmatic impact of the data dependence
simplification approach presented in this paper on automatic
wavefront parallelization with an end-to-end performance
evaluation. We automatically generate inspectors based on
simplified data dependences and used them to wavefront
parallelize our benchmarks. Note that the inspectors are
also parallelized since the outermost loops do not carry any
dependence.

8.1 Methodology

We ran the parallelization experiments for 5 of the 7 bench-
marks. Two kernels were excluded because (1) wavefront
parallelization is not applicable to SpMV since it has a fully
parallel loop and (2) inspectors for Incomplete LU are too
expensive even after our simplifications as discussed in the
previous section.

We ran the experiments on a machine with an Intel® Core™
i7-6900K CPU, 32GB of 3000MHz DDR4 memory, and Ubuntu
16.04 OS. The CPU has 8 cores, and thus we record perfor-
mance with 8 OpenMP threads with hyper-threading dis-
abled. We report the median of 5 runs and did not observe
any significant variations between runs. All the codes are
compiled with GCC 5.4.0 with -03. Table 4 lists five matrices
from the SuiteSparse Matrix Collection [17] that were used
as inputs. The matrices are listed in order, by the number of
nonzeros per column (row), an important factor when run-
ning numerical benchmarks in parallel since their outermost
loop typically enumerates over columns (or rows). Table 5
shows the serial execution times for each kernel given the
specific input matrix.

M

604

Table 4. Input Matrices for parallelized codes from [17].
Sorted in order of Number of Nonzeros per Column.

Matrix Columns | Nonzeros | NNZ per Col.
af_shell3 504,855 | 17,562,051 35
msdoor 415,863 | 19,173,163 46
bmwcra_1 148,770 | 10,641,602 72
m_t1l 97,578 | 9,753,570 100
crankseg_2 63,838 | 14,148,858 222

Table 5. Serial execution time (in seconds) for one
run of each pair of kernel and input matrix.

, o 3 g = g
Matrix = g 2 g 3}
FS CSC 0.037 | 0.042 | 0.022 | 0.020 | 0.028
FS CSR 0.039 | 0.046 | 0.025 | 0.022 | 0.033
GS CSR | 0.031 | 0.035 | 0.018 | 0.016 | 0.022
In. Chol. 4.2 8.8 9.9 17.7 | 127.6
L. Chol. 160.1 50.6 | 107.8 57.5 | 138.3

We use the load-balanced level coarsening (LBC) wave-
fronts described by Cheshmi et al. [14] that create well-
balanced coarsened level sets. This mitigates two issues: (i)
the number of waves (levels) in wavefront parallelism in-
creases with the DAG critical path length, leading to higher
synchronization overheads; and (ii) non-uniform workloads

in sparse kernels, such as Cholesky, creating imbalanced
load.

8.2 Executor Speedup

Figure 9 shows the speedup of the wavefront executor for
each benchmark over the library serial code listed in Table 2.
All 6 executors benefit from wavefront parallelization, but



PLDI ’19, June 22-26, 2019, Phoenix, AZ, USA

less complex kernels have lower parallel efficiency since the
amount of work is small.

The Left Cholesky’s executor speedup is superlinear and
cannot be seen in the figure; it ranges from 5 to 625. The
reason for this anomaly is the dominance of memory access
time in the Cholesky kernel. Left cholesky accesses several
parts of the factor, during the factorization process, which
is typically stored in different places in memory. The load-
balanced level coarsening (LBC) greatly improves memory
locality over serial code leading to super linear speedup.

8.3 Inspector Overhead

We now examine the performance of inspectors relative
to their respective executors. We are unable to compare
with inspectors before simplification, as their complexity
makes them prohibitively expensive. For instance, Incom-
plete Cholesky has non-simplified dependences with algo-
rithmic complexity of O(nnz? * (nnz/n)*) that would take
hours to inspect, whereas its simplified dependences with
algorithmic complexity of O(nnz+(nnz/n)?) can be inspected
in less than 2 minutes.

It is common for the inspectors used in iterative solvers,
even if they are hand-optimized, to take longer to execute
than the computation itself. However, the cost of the in-
spection in parallel libraries is justified by the fact that the
inspector is run once while the executor is repeatedly used in
the iterations of the iterative solver. Iterative solvers typically
execute hundreds of iterations until convergence [9, 29, 38].
For each kernel, we calculate the number of times that the
parallel executor, using our inspectors, has to execute to start
gaining performance over serial code. Figure 10 summarizes
the break-even point (Y-axis is in log scale.).

For 3 codes, namely Gauss-Seidel CSR, and Forward Solve
CSC and CSR, that are iterative solvers, we need to run the
executor 40-60 times to amortize inspector overhead and
gain performance. This is largely due to the low parallel
efficiency achieved by these kernels - there is little room to
further simplify the inspectors.

For more compute-intensive kernels, the cost of inspectors
are much smaller than a single run of the executor, which
means that the inspector-executor code is faster than the
serial baseline even for one execution of the kernel.

9 Related Work

This section details our contributions over previous work.
Additionally, our data dependence simplification approaches
use quantifier elimination to produce more constraints. This
section reviews other quantifier elimination techniques, other
wavefront parallelization approaches, and algorithm-specific
data dependence analysis approaches.

605

Mahdi Soltan Mohammadi et al.

Executor Speed Up

af_shelld m—
I bmwecra 1 B
crankseg_2 =3
- m_t1 == 5
msdoor /=3

3+ 4] £ o =l =-]
T T

Wavefront Executor Speed up

L ML

FSCSC FSCS5R G-SCSR

I.Chal L. Chol
Figure 9. This figure shows wavefront parallel executor’s
speedup over serial code run that parallel inspector+executor
is based on. The numbers for L. Chol. in order are: 8.9, 107,
625,116, 5.3.

Inspector Overhead Break Point For Executor Speed Up

1000 ¢
af_shell3

5 _ - brmwera_{
= L M crankseq_ 2 /—43
§ 100 : - r'r?__l‘l P
& - madaor C—
g 10F
=
3
]
o
@
£
E 01F IH H ’_H
=

0.01

FSCSC FSCSR G-SCSR 1.Chal L. Chal
Figure 10. This figure shows how many times we need
to run the executor for a benchmark given a specific in-
put matrix in order to cover the inspector overhead and
gain speedup. The X-Axis shows cluster of bars for each
benchmark code, each bar being the number of needed run
for a specific input matrix. The numbers in the Y-axis are
(inspector, + executor;)/(serial; — executor;). Please note Y-
axis is in log scale.

9.1 Using Index Array Properties

McKinley [33] exploits user assertions about index arrays to
increase the precision of dependence testing. The assertions
certify common properties of index arrays, e.g., an index
array can be a permutation array, monotonically increas-
ing, and monotonically decreasing. [31] present a compile-
time analysis for determining index array properties, such
as monotonicity. They use the analysis results for paralleliza-
tion of sparse matrix computations.

Venkat et al. [63] also used index array properties to sim-
plify data dependence analysis in the context of wavefront



Sparse Computation Data Dependence Simplification for ...

parallelization of sparse codes. Their specification of the in-
dex array properties was specialized for two kernels, namely
Gauss-Seidel and Incomplete LUO. Monotonicity and co-
monotonicity index-array properties could be expressed, but
periodic monotonicity and triangularity could not due to the
restricted way assertions were encoded [2]. They also hard-
coded which loop-carried dependences could be ignored,
whereas this paper builds on the work by Mohammadi et
al. [34] to automate this process by using index array prop-
erties to find unsatisfiable dependences.

Mohammadi et al. [34] focused on using index array prop-
erties automatically to find DOALL loops in sparse compu-
tations. They introduce a more expressive way of encoding
index array properties than Venkat et al. [63] and use an SMT
solver to detect unsatisfiable dependences. In comparison to
Mohammadi et al. [34], this paper focuses on simplifying sat-
isfiable dependences, which is needed for effectively finding
DOACROSS loops that can benefit from wavefront paral-
lelization. Additionally, Mohammadi et al. [34] use an SMT
solver to find unsatisfiable dependences. Since current SMT
solvers do not provide interfaces to expose implicit equal-
ities in a given formula, we use a procedure to instantiate
quantified constraints and then use ISL to detect equalities.

In summary, our contributions over the work by Moham-
madi et al. [34] and Venkat et al. [63] are: (1) an instantiation
procedure to expose implicit equalities with ISL; and (2)
a procedure to detect when a dependence relation involv-
ing uninterpreted function calls is subsumed by another at
compile time. Simplifying runtime checks for satisfiable de-
pendences using the above provides significant reduction in
overhead of automatically generated inspector.

9.2 Quantifier Elimination Techniques

The area of SMT-solving is advancing at a significant pace;
the webpage for SMT-COMP? provides a list of virtually
all actively developed solvers, and how they fared in each
theory category. As these solvers are moving into a variety of
domains, quantifier instantiation and elimination has become
a topic of central interest. Some of the recent work in this area
are: E-matching [35], Model-Based [19], Conflict-Based [52],
and Counter-Example Guided [51].

These efforts make it clear that quantifier elimination
is challenging, and is an area of active development. SMT
solvers often rely on heuristic-driven instantiations to show
unsat for difficult problems. In this context, our work can
be viewed as heuristic instantiation where the heuristic is
inspired by decidable fragments of the array theory.

Dependence constraints with universally quantified asser-
tions are related to the first order theory fragments described
by Bradley et al. [10] as undecidable extensions to their ar-
ray theory fragment. However, Loding et al. [32] claim that
the proofs for undecidability of extension theories [10] are

3http://smtcomp.sourceforge.net/2017/

606

PLDI ’19, June 22-26, 2019, Phoenix, AZ, USA

incorrect, and declare their decidability status as an open
problem. Regardless of whether the theory fragment that
encompasses our dependence constraints is decidable or not
the following is true: if we soundly prove that a relation is
unsatisfiable just with compile-time information, the unsatis-
fiability applies in general, and having runtime information
would not change anything. However, if a dependence is
detected to be satisfiable just with compile-time information,
we need to have runtime tests to see if it is actually satisfiable
given runtime information, and even if it is, run time tests
would determine for what values the dependence holds.

9.3 Wavefront Parallelization

For sparse codes, even when loops carry dependences, the de-
pendences themselves may be sparse, and it may be possible
to execute some iterations of the loop in parallel (previously
denoted partially parallel). The parallelism is captured in a
task graph, and typically executed as a parallel wavefront.
Some prior work write specialized code to derive this task
graph as part of their application [8, 39, 40, 47, 56, 68] or with
kernel-specific code generators [12]. For example, Saltz and
Rothbergs worked on manual parallelization of sparse trian-
gular solver codes in the 1990s [53, 55]. There is also more
recent work on optimizing sparse triangular solver NVIDIA
GPUs and Intel’s multi-core CPUs [50, 66]. Although manual
optimizations have been successful at achieving high perfor-
mance in some cases, significant programmer effort has to be
invested for each of these codes, automating these strategies
can significantly reduce that effort.

Other approaches automate the generation of inspectors
that find task-graph, wavefront or partial parallelism. Rauch-
werger et al. [48] and Huang et al. [26] have developed effi-
cient and parallel inspectors that maintain lists of iterations
that read and write each memory location. By increasing the
number of dependences found unsatisfiable, the approach
presented in this paper reduces the number of memory ac-
cesses that would need to be tracked. For satisfiable depen-
dences, there is a tradeoff between inspecting iteration space
dependences versus maintaining data for each memory ac-
cess. That choice could be made at runtime. There are also
other approaches for automatic generation of inspectors that
have looked at simplifying the inspector by finding equal-
ities, using approximation, parallelizing the inspector, and
applying point-to-point synchronization to the executor [63].

9.4 Algorithm-Specific Data Dependence Analysis

An algorithm-specific approach to represent data depen-
dences and optimize memory usage of sparse factorization
algorithms such as Cholesky [42] uses an elimination tree, but
to the best of our knowledge, this structure is not derived au-
tomatically from source code. When factorizing a column of
a sparse matrix, in addition to nonzero elements of the input
matrix new nonzero elements, called fill-in, might be created.
Since the sparse matrices are compressed for efficiency, the


http://smtcomp.sourceforge.net/2017/

PLDI ’19, June 22-26, 2019, Phoenix, AZ, USA

additional fills during factorization make memory allocation
ahead of factorization difficult. The elimination tree is used
to predict the sparsity pattern of the L factor ahead of fac-
torization so the size of the factor can be computed [16] or
predicted [21, 22], and captures a potential parallel schedule
of the tasks. Prior work has investigated the applicability of
the elimination tree for dependence analysis for parallel im-
plementation [20, 23-25, 27, 41, 50, 57, 67]. Some techniques
use the elimination tree for static scheduling [20, 24, 41], that
is while others use it for runtime scheduling.

10 Other Applications

Besides wavefront parallelism, there are many other uses for
sparse data dependence analysis that can benefit from a re-
duction in runtime inspection overhead. Other uses include
extending static race detectors [5] to incorporate runtime
tests, dynamic iteration space slicing [44], runtime transfor-
mations such as sparse tiling [18, 60], and high-level synthe-
sis (HLS) [3].

Race detection: Dynamic race detection is an essential
prerequisite to the parallelization of existing sequential codes.
While static analysis methods employed in race detectors [5]
can often suppress race checks on provably race-free loops,
they fail to do so when presented with non-affine access pat-
terns. Consequently, race detectors would require runtime
checks, that have performance overhead as well as memory
overhead, often increasing memory usage by a factor of four.
Our simplifications can bring down both the time and mem-
ory complexity of runtime inspections in these checkers.

Dynamic program slicing: Another application can be
found in program slicing. Pugh and Rosser introduced the
concept of iteration space slicing where program slicing is
done on a loop iteration basis using Presburger representa-
tions [44]. Similar dynamic approaches for tiling across loops
in sparse codes were presented by various groups [18, 60].
All of these techniques would require runtime dependence
analysis, thus disproving dependences or reducing the com-
plexity of runtime inspection would be applicable.

High-level synthesis: Dependence simplification can
also be utilized in high-level synthesis (HLS). In HLS, it is im-
portant to pipeline the innermost loops to get efficient hard-
ware. Alle et al. have proposed using runtime dependence
checks to dynamically check if an iteration is in conflict with
those currently in the pipeline, and add delays only when
necessary [3].

Distributed memory parallelization: Another possi-
ble application of our work can be found in the work by
Ravishankar et al. [49]. The authors produce distributed par-
allel code that uses MPI for loops where there might be
indirect loop bounds, and/or array accesses. The read and
write sets/data elements of each process are computed via an
inspector where indirect accesses are involved to determine
if each process is reading/writing data that is owned by other

607

Mahdi Soltan Mohammadi et al.

processes. Basumallik and Eigenmann use run-time inspec-
tion of data dependences to determine how to reorder a loop
to perform computation and communication overlap [7].

11 Conclusion

In this paper, we present an automated approach for reducing
the overhead of inspectors for wavefront parallelization of
sparse code. The overhead reduction comes in three forms:
statically disproving dependences, reducing the complexity
by detecting equalities, and removing tests that are subsumed
by another by identifying subset relationships. All of these
optimizations are enabled by taking advantage of domain
knowledge about index arrays.

Our approach is inspired by work in satisfiability prob-
lems and in SMT solvers. The techniques for satisfiability
problems can be directly applied to disprove dependence rela-
tions involving uninterpreted function calls and universally
quantified assertions. However, in the context of inspectors
for sparse code, it is not sufficient to check for satisfiability.
The key insight in our paper is that the techniques from sat-
isfiability problems combined with manipulation of integer
sets provide a powerful framework to reason about runtime
dependence checks.

Parallelization of these sparse numerical methods is an
active research area today, but one where most current ap-
proaches require manual parallelization. It is also worth not-
ing that without inspector complexity reduction, most in-
spectors would timeout, thus underscoring the pivotal role
of the work in this paper in enabling parallelization and opti-
mization of sparse codes. Our results are established over 63
dependences extracted from 7 sparse numerical methods. A
large number of the dependences can be removed and simpli-
fied to automatically produce low overhead inspectors. Our
end-to-end evaluation demonstrates that these inspectors
may be used to improve the performance of iterative solvers
combined with executors for wavefront parallelization. An
interesting direction of future work is to apply the simplifi-
cation techniques in other contexts discussed in Section 10.

Acknowledgments

This material is based upon work supported by the National
Science Foundation under Grant No. NSF CCF-1563732. Any
opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the author and do not
necessarily reflect the views of the National Science Founda-
tion. We would also like to acknowledge Ganesh Gopalakr-
ishnan for his contributions to an earlier version of this

paper.

References

[1] 2019. Compiler Technology to Optimize Performance (CTOP) research
group webpage at Utah. http://ctop.cs.utah.edu/ctop/?page_id=21

[2] 2019. IEGenLib library, SC16 artifact github repository. https://github.
com/CompOpt4Apps/IEGenLib/tree/SC16_IEGenLib


http://ctop.cs.utah.edu/ctop/?page_id=21
https://github.com/CompOpt4Apps/IEGenLib/tree/SC16_IEGenLib
https://github.com/CompOpt4Apps/IEGenLib/tree/SC16_IEGenLib

Sparse Computation Data Dependence Simplification for ...

(3]

(10]

(11]

(12]

(13]

(14]

[16]

(17

—

(18]

Mythri Alle, Antoine Morvan, and Steven Derrien. 2013. Runtime
Dependency Analysis for Loop Pipelining in High-level Synthesis. In
Proceedings of the 50th Annual Design Automation Conference (DAC
’13). ACM, New York, NY, USA, Article 51, 10 pages. https://doi.org/
10.1145/2463209.2488796

Simone Atzeni, Ganesh Gopalakrishnan, Zvonimir Rakamaric, Dong H.
Ahn, Ignacio Laguna, Martin Schulz, Gregory L. Lee, Joachim Protze,
and Matthias S. Miiller. 2016. ARCHER: Effectively Spotting Data Races
in Large OpenMP Applications. In 2016 IEEE International Parallel and
Distributed Processing Symposium, IPDPS 2016, Chicago, IL, USA, May
23-27, 2016. 53-62. https://doi.org/10.1109/IPDPS.2016.68

S. Atzeni, G. Gopalakrishnan, Z. Rakamaric, D. H. Ahn, I. Laguna,
M. Schulz, G. L. Lee, J. Protze, and M. S. MAiner. 2016. ARCHER:
Effectively Spotting Data Races in Large OpenMP Applications. In
2016 IEEE International Parallel and Distributed Processing Symposium
(IPDPS). 53-62. https://doi.org/10.1109/IPDPS.2016.68

Denis Barthou, Jean-Frangois Collard, and Paul Feautrier. 1997. Fuzzy
Array Dataflow Analysis. J. Parallel and Distrib. Comput. 40, 2 (1997),
210-226.

Ayon Basumallik and Rudolf Eigenmann. 2006. Optimizing irregu-
lar shared-memory applications for distributed-memory systems. In
Proceedings of the Eleventh ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming. ACM Press, New York, NY, USA,
119-128.

Nathan Bell and Michael Garland. 2009. Implementing sparse matrix-
vector multiplication on throughput-oriented processors. In SC "09:
Proceedings of the Conference on High Performance Computing Network-
ing, Storage and Analysis. ACM, New York, NY, USA, 1-11.

Michele Benzi, Jane K Cullum, and Miroslav Tuma. 2000. Robust ap-
proximate inverse preconditioning for the conjugate gradient method.
SIAM Journal on Scientific Computing 22, 4 (2000), 1318-1332.

Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. 2006. What’s
Decidable About Arrays?. In Proceedings of the 7th International Con-
ference on Verification, Model Checking, and Abstract Interpretation
(VMCAI ’06), E. Allen Emerson and Kedar S. Namjoshi (Eds.). 427-442.
https://doi.org/10.1007/11609773_28

T. Brandes. 1988. The importance of direct dependences for auto-
matic parallelism. In Proceedings of the International Conference on
Supercomputing. ACM, New York, NY, USA, 407-417.

Jong-Ho Byun, Richard Lin, Katherine A. Yelick, and James Demmel.
2012. Autotuning Sparse Matrix-Vector Multiplication for Multicore.
Technical Report. UCB/EECS-2012-215.

Chun Chen. 2012. Polyhedra scanning revisited. In Proceedings of the
33rd ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI ’12). ACM, New York, NY, USA, 499-508.
Kazem Cheshmi, Maryam Mehri Dehnavi, Shoaib Kamil, and
Michelle Mills Strout. 2018. ParSy: Inspection and Transformation
of Sparse Matrix Computations for Parallelism. In Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis (SC ’18). ACM, New York, NY, USA.
Kazem Cheshmi, Shoaib Kamil, Michelle Mills Strout,
Maryam Mehri Dehnavi. 2017. Sympiler: Transforming Sparse
Matrix Codes by Decoupling Symbolic Analysis. In Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis (SC °17). ACM, New York, NY, USA, Article 13,
13 pages. https://doi.org/10.1145/3126908.3126936

Thomas F Coleman, Anders Edenbrandt, and John R Gilbert. 1986.
Predicting fill for sparse orthogonal factorization. Journal of the ACM
(JACM) 33, 3 (1986), 517-532.

Timothy A Davis and Yifan Hu. 2011. The University of Florida sparse
matrix collection. ACM Transactions on Mathematical Software (TOMS)
38,1 (2011), 1.

Craig C. Douglas, Jonathan Hu, Markus Kowarschik, Ulrich Rude,

and Christian Weif3. 2000. Cache Optimization for Structured and
Unstructured Grid Multigrid. Electronic Transaction on Numerical

and

608

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

PLDI ’19, June 22-26, 2019, Phoenix, AZ, USA

Analysis (February 2000), 21-40.

Yeting Ge and Leonardo de Moura. 2009. Complete Instantiation for
Quantified Formulas in Satisfiabiliby Modulo Theories. Springer Berlin
Heidelberg, Berlin, Heidelberg, 306-320.

Alan George, Joseph WH Liu, and Esmond Ng. 1989. Communica-
tion results for parallel sparse Cholesky factorization on a hypercube.
Parallel Comput. 10, 3 (1989), 287-298.

John R Gilbert. 1994. Predicting structure in sparse matrix computa-
tions. SIAM J. Matrix Anal. Appl. 15, 1 (1994), 62-79.

John R Gilbert and Esmond G Ng. 1993. Predicting structure in non-
symmetric sparse matrix factorizations. In Graph theory and sparse
matrix computation. Springer, 107-139.

John R Gilbert and Robert Schreiber. 1992. Highly parallel sparse
Cholesky factorization. SIAM J. Sci. Statist. Comput. 13, 5 (1992), 1151
1172.

Pascal Hénon, Pierre Ramet, and Jean Roman. 2002. PASTIX: a high-
performance parallel direct solver for sparse symmetric positive defi-
nite systems. Parallel Comput. 28, 2 (2002), 301-321.

Jonathan D Hogg, John K Reid, and Jennifer A Scott. 2010. Design of
a multicore sparse Cholesky factorization using DAGs. SIAM Journal
on Scientific Computing 32, 6 (2010), 3627-3649.

J. Huang, T. B. Jablin, S. R. Beard, N. P. Johnson, and D. I. August.
2013. Automatically exploiting cross-invocation parallelism using
runtime information. In Proceedings of the 2013 IEEE/ACM International
Symposium on Code Generation and Optimization (CGO). 1-11. https:
//doi.org/10.1109/CG0.2013.6495001

George Karypis and Vipin Kumar. 1995. A high performance sparse
Cholesky factorization algorithm for scalable parallel computers. In
Frontiers of Massively Parallel Computation, 1995. Proceedings. Frontiers’
95., Fifth Symposium on the. IEEE, 140-147.

Wayne Kelly, Vadim Maslov, William Pugh, Evan Rosser, Tatiana Sh-
peisman, and Dave Wonnacott. 1996. The Omega Calculator and
Library, version 1.1.0.

David S Kershaw. 1978. The incomplete CholeskyaATconjugate gradi-
ent method for the iterative solution of systems of linear equations.
Journal of computational physics 26, 1 (1978), 43-65.

Daniel Kroening and Ofer Strichman. 2016. Decision Procedures: An
Algorithmic Point of View (2nd ed.). Springer Berlin Heidelberg.
Yuan Lin and David Padua. 2000. Compiler analysis of irregular mem-
ory accesses. In Proceedings of the ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, Vol. 35. ACM, New
York, NY, USA, 157-168.

Christof Loding, P. Madhusudan, and Lucas Peifia. 2017. Foundations
for Natural Proofs and Quantifier Instantiation. Proc. ACM Program.
Lang. 2, POPL, Article 10 (Dec. 2017), 30 pages. https://doi.org/10.
1145/3158098

Kathryn McKinley. 1991. Dependence Analysis of Arrays Subscriptecl
by Index Arrays. Technical Report TR91187. Rice University.

Mahdi Soltan Mohammadi, Kazem Cheshmi, Maryam Mehri Dehnavi,
Anand Venkat, Tomofumi Yuki, and Michelle Mills Strout. 2018. Ex-
tending Index-Array Properties for Data Dependence Analysis. In
Proceedings of The 31st International Workshop on Languages and Com-
pilers for Parallel Computing (LCPC18).

Leonardo Moura and Nikolaj Bjerner. 2007. Efficient E-Matching
for SMT Solvers. In Proceedings of the 21st International Conference
on Automated Deduction: Automated Deduction (CADE-21). 183-198.
https://doi.org/10.1007/978-3-540-73595-3_13

Cosmin E. Oancea and Lawrence Rauchwerger. 2012. Logical inference
techniques for loop parallelization. In Proceedings of the 33rd ACM SIG-
PLAN conference on Programming Language Design and Implementation
(PLDI ’12). ACM, New York, NY, USA, 509-520.

Yunheung Paek, Jay Hoeflinger, and David Padua. 2002. Efficient and
Precise Array Access Analysis. ACM Trans. Program. Lang. Syst. 24, 1
(Jan. 2002), 65-109.


https://doi.org/10.1145/2463209.2488796
https://doi.org/10.1145/2463209.2488796
https://doi.org/10.1109/IPDPS.2016.68
https://doi.org/10.1109/IPDPS.2016.68
https://doi.org/10.1007/11609773_28
https://doi.org/10.1145/3126908.3126936
https://doi.org/10.1109/CGO.2013.6495001
https://doi.org/10.1109/CGO.2013.6495001
https://doi.org/10.1145/3158098
https://doi.org/10.1145/3158098
https://doi.org/10.1007/978-3-540-73595-3_13

PLDI ’19, June 22-26, 2019, Phoenix, AZ, USA

(38]

(39]

(40]

[41]

[42]

[43]

(45

—

[46

—

(47]

(48]

(49]

(52]

M Papadrakakis and N Bitoulas. 1993. Accuracy and effectiveness
of preconditioned conjugate gradient algorithms for large and ill-
conditioned problems. Computer methods in applied mechanics and
engineering 109, 3-4 (1993), 219-232.

Jongsoo Park, Mikhail Smelyanskiy, Narayanan Sundaram, and
Pradeep Dubey. 2014.  Sparsifying Synchronization for High-
Performance Shared-Memory Sparse Triangular Solver. In Proceedings
of the 29th International Conference on Supercomputing - Volume 8488
(ISC 2014). Springer-Verlag New York, Inc., New York, NY, USA, 124-
140.

Jongsoo Park, Mikhail Smelyanskiy, Karthikeyan Vaidyanathan,
Alexander Heinecke, Dhiraj D. Kalamkar, Xing Liu, Md. Mosotofa Ali
Patwary, Yutong Lu, and Pradeep Dubey. 2014. Efficient Shared-
memory Implementation of High-performance Conjugate Gradient
Benchmark and Its Application to Unstructured Matrices. In Proc.
Int. Conf. for High Performance Computing, Networking, Storage and
Analysis (SC °14). IEEE Press, Piscataway, NJ, USA, 945-955.

Alex Pothen and Chunguang Sun. 1993. A mapping algorithm for
parallel sparse Cholesky factorization. SIAM Journal on Scientific
Computing 14, 5 (1993), 1253-1257.

Alex Pothen and Sivan Toledo. 2004. Elimination Structures in Scien-
tific Computing.

Roldan Pozo, Karin Remington, and Andrew Lumsdaine. 1996.
SparseLib++ v. 1.5 Sparse Matrix Class Library reference guide. NIST
Interagency/Internal Report (NISTIR)-5861 (1996).

William Pugh and Evan Rosser. 1997. Iteration space slicing and its
application to communication optimization. In Proceedings of the 11th
international conference on Supercomputing. ACM Press, 221-228.
William Pugh and David Wonnacott. 1995. Nonlinear Array Depen-
dence Analysis. In Third Workshop on Languages, Compilers, and Run-
Time Systems for Scalable Computers. Troy, New York.

William Pugh and David Wonnacott. 1998. Constraint-Based Array
Dependence Analysis. ACM Transactions on Programming Languages
and Systems 20, 3 (1 May 1998), 635-678.

L. Rauchwerger, N. M. Amato, and D. A. Padua. 1995. Run-Time
Methods for Parallelizing Partially Parallel Loops. In Proceedings of
the ACM International Conference on Supercomputing (ICS). ACM, New
York, NY, USA, 137-146.

Lawrence Rauchwerger, Nancy M. Amato, and David A. Padua. 1995.
A Scalable Method for Run-Time Loop Parallelization. International
Journal of Parallel Programming 23, 6 (1995), 537-576.

Mabhesh Ravishankar, Roshan Dathathri, Venmugil Elango, Louis-Noél
Pouchet, J. Ramanujam, Atanas Rountev, and P. Sadayappan. 2015.
Distributed Memory Code Generation for Mixed Irregular/Regular
Computations. In Proceedings of the 20th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming (PPoPP 2015). ACM,
New York, NY, USA, 65-75. https://doi.org/10.1145/2688500.2688515
Steven C Rennich, Darko Stosic, and Timothy A Davis. 2016. Accel-
erating sparse Cholesky factorization on GPUs. Parallel Comput. 59
(2016), 140-150.

Andrew Reynolds, Morgan Deters, Viktor Kuncak, Clark W. Barrett,
and Cesare Tinelli. 2015. On Counterexample Guided Quantifier
Instantiation for Synthesis in CVC4. CoRR abs/1502.04464 (2015).
http://arxiv.org/abs/1502.04464

Andrew Reynolds, Cesare Tinelli, and Leonardo de Moura. 2014. Find-
ing Conflicting Instances of Quantified Formulas in SMT. In Proceedings
of the 14th Conference on Formal Methods in Computer-Aided Design
(FMCAD ’14). Article 31, 8 pages.

609

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

Mahdi Soltan Mohammadi et al.

Edward Rothberg and Anoop Gupta. 1992. Parallel ICCG on a hier-
archical memory multiprocessor - Addressing the triangular solve
bottleneck. Parallel Comput. 18,7 (1992), 719 — 741. https://doi.org/10.
1016/0167-8191(92)90041-5

Silvius Rus, Jay Hoeflinger, and Lawrence Rauchwerger. 2003. Hybrid

analysis: static & dynamic memory reference analysis. International
Journal Parallel Programming 31, 4 (2003), 251-283.

Joel H. Saltz. 1990. Aggregation Methods for Solving Sparse Triangular
Systems on Multiprocessors. SIAM J. Sci. Stat. Comput. 11, 1 (Jan. 1990),
123-144. https://doi.org/10.1137/0911008

Joel H. Saltz, Ravi Mirchandaney, and Kay Crowley. 1991. Run-Time
Parallelization and Scheduling of Loops. IEEE Trans. Comput. 40, 5
(1991), 603-612.

Olaf Schenk and Klaus Gartner. 2002. Two-level dynamic scheduling
in PARDISO: Improved scalability on shared memory multiprocessing
systems. Parallel Comput. 28, 2 (2002), 187-197.

Robert E. Shostak. 1979. A Practical Decision Procedure for Arithmetic
with Function Symbols. 7. ACM 26, 2 (April 1979), 351-360. https:
//doi.org/10.1145/322123.322137

Kevin Streit, Johannes Doerfert, Clemens Hammacher, Andreas Zeller,
and Sebastian Hack. 2015. Generalized Task Parallelism. ACM Trans.
Archit. Code Optim. 12, 1, Article 8 (April 2015), 25 pages. https:
//doi.org/10.1145/2723164

Michelle Mills Strout, Larry Carter, Jeanne Ferrante, and Barbara
Kreaseck. 2004. Sparse Tiling for Stationary Iterative Methods. In-
ternational Journal of High Performance Computing Applications 18, 1
(February 2004), 95-114.

M. M. Strout, M. Hall, and C. Olschanowsky. 2018. The Sparse Polyhe-
dral Framework: Composing Compiler-Generated Inspector-Executor
Code. Proc. IEEE 106, 11 (Nov 2018), 1921-1934.

Michelle Mills Strout, Alan LaMielle, Larry Carter, Jeanne Ferrante,
Barbara Kreaseck, and Catherine Olschanowsky. 2016. An Approach
for Code Generation in the Sparse Polyhedral Framework. Parallel
Comput. 53, C (April 2016), 32-57.

Anand Venkat, Mahdi Soltan Mohammadi, Jongsoo Park, Hongbo
Rong, Rajkishore Barik, Michelle Mills Strout, and Mary Hall. 2016.
Automating Wavefront Parallelization for Sparse Matrix Computations.
In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (SC ’16). IEEE Press,
Piscataway, NJ, USA, Article 41, 12 pages. http://dl.acm.org/citation.
cfm?id=3014904.3014959

Sven Verdoolaege. 2010. isl: An integer set library for the polyhedral
model. In Proceedings of the 3rd International Congress on Mathematical
Software (ICMS °10). 299-302.

Richard Vuduc, Shoaib Kamil, Jen Hsu, Rajesh Nishtala, James W
Demmel, and Katherine A Yelick. 2002. Automatic performance tuning
and analysis of sparse triangular solve. ICS.

Endong Wang, Qing Zhang, Bo Shen, Guangyong Zhang, Xiaowei Lu,
Qing Wu, and Yajuan Wang. 2014. Intel math kernel library. In High-
Performance Computing on the Intel® Xeon Phi. Springer, 167-188.
Ran Zheng, Wei Wang, Hai Jin, Song Wu, Yong Chen, and Han Jiang.
2015. GPU-based multifrontal optimizing method in sparse Cholesky
factorization. In Application-specific Systems, Architectures and Proces-
sors (ASAP), 2015 IEEE 26th International Conference on. IEEE, 90-97.
Xiaotong Zhuang, A E. Eichenberger, Yangchun Luo, K. O’Brien, and
K. O’Brien. 2009. Exploiting Parallelism with Dependence-Aware
Scheduling. In International Conference on Parallel Architectures and
Compilation Techniques (PACT). IEEE Computer Society, Los Alamitos,
CA, USA, 193-202.


https://doi.org/10.1145/2688500.2688515
http://arxiv.org/abs/1502.04464
https://doi.org/10.1016/0167-8191(92)90041-5
https://doi.org/10.1016/0167-8191(92)90041-5
https://doi.org/10.1137/0911008
https://doi.org/10.1145/322123.322137
https://doi.org/10.1145/322123.322137
https://doi.org/10.1145/2723164
https://doi.org/10.1145/2723164
http://dl.acm.org/citation.cfm?id=3014904.3014959
http://dl.acm.org/citation.cfm?id=3014904.3014959

	Abstract
	1 Introduction
	2 Compile-Time Dependence Analysis
	2.1 Constraint-Based Data Dependence Analysis
	2.2 Disproving Dependences at Compile Time

	3 Runtime Data Dependence Inspector
	3.1 Inspector Code Generation
	3.2 Problem: Expensive Inspectors

	4 Simplify Dependences: Find Equalities
	4.1 Usefulness of New Equality Constraints
	4.2 Algorithm for Discovering Equalities

	5 Simplify Dependences: Find Subsets
	5.1 Intuition of the Simplification
	5.2 Subset Relations in the Context of Sparse Codes
	5.3 Example

	6 Implementation
	6.1 Software Description and Overall Flow
	6.2 Optimization

	7 Evaluating Simplification
	7.1 Discarding Unsatisfiable Dependences
	7.2 Simplifying Using Equalities
	7.3 Simplifying with Subset Relationships
	7.4 Overall Impact of Simplification

	8 Wavefront Parallelization Performance
	8.1 Methodology
	8.2 Executor Speedup
	8.3 Inspector Overhead

	9 Related Work
	9.1 Using Index Array Properties
	9.2 Quantifier Elimination Techniques
	9.3 Wavefront Parallelization
	9.4 Algorithm-Specific Data Dependence Analysis

	10 Other Applications
	11 Conclusion
	Acknowledgments
	References

