
Experimental Comparison of Semantic Word Clouds

Lukas Barth, Stephen G. Kobourov, Sergey Pupyrev

Department of Computer Science, University of Arizona, USA

Abstract. We study the problem of computing semantics-preserving word clouds
in which semantically related words are close to each other. We implement three
earlier algorithms for creating word clouds and three new ones. We define several
metrics for quantitative evaluation of the resulting layouts. Then the algorithms
are compared according to these metrics, using two data sets of documents from
Wikipedia and research papers. We show that two of our new algorithms out-
perform all the others by placing many more pairs of related words so that their
bounding boxes are adjacent. Moreover, this improvement is not achieved at the
expense of significantly worsened measurements for the other metrics.

1 Introduction
In the last few years, word clouds have become a standard tool for abstracting, visu-
alizing, and comparing text documents. For example, word clouds were used in 2008
to contrast the speeches of the US presidential candidates Obama and McCain. More
recently, the German media used them to visualize the 2013 coalition agreement and
compare it to a similar agreement from 2009. Word clouds, or their close relatives tag
clouds, are often used to represent importance among items (e.g., bands popularity on
Last.fm) or serve as a navigation tool (e.g., Google search results).

A practical tool, Wordle [18], with its high quality design, graphics, style and func-
tionality popularized word cloud visualizations as an appealing way to summarize the
text. While tools like this are popular and widely used [19], most of them, including
Wordle itself, have a potential shortcoming: they do not capture the relationships be-
tween the words in any way, as word placement is independent of context. But humans,
as natural pattern-seekers, cannot help but perceive two words that are placed next to
each other in a word cloud as being related in some way. In linguistics and in natural
language processing if a pair of words often appears together in a sentence, then this
is seen as evidence that this pair of words is linked semantically [12]. Thus, when us-
ing a word cloud, it makes sense to place such related words close to each other; see
Fig. 1. In fact, recent empirical studies show that semantically clustered word clouds
provide improvements over random layouts in specific tasks such as searching, brows-
ing, and recognition [6, 17]. Finally, semantic word clouds had higher user satisfaction
compared to other layouts [20].

Nearly all recent word cloud visualization tools aim to incorporate semantics in
the layout [5, 10, 15, 21]. However, none provide any guarantees about the quality of
the layout in terms of semantics. The existing algorithms are usually based on force-
directed graph layout heuristicsto add such functionality. In contrast, we propose sev-
eral new algorithms with such performance guarantees. Consider the following natu-
ral formal model of semantics-preserving word cloud visualization, based on a vertex-
weighted and edge-weighted graph [1, 2]. The vertices in the graph are the words in
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Fig. 1. Word clouds for the Wikipedia page “Copenhagen” (top 50 words).

the document, with weights corresponding to some measure of importance (e.g., word
frequency). The edges capture the semantic relatedness between pairs of words (e.g.,
co-occurrence), with weights corresponding to the strength of the relation. Each vertex
must be drawn as an axis-aligned rectangle (box) with fixed dimensions determined by
its weight. A contact between two boxes is a common boundary, and if two boxes are
in contact, these boxes are called touching. The realized adjacencies is the sum of the
edge weights for all pairs of touching boxes. The goal is a representation of the given
boxes, maximizing the realized adjacencies.

This model is related to rectangle representations of graphs, vertices are axis-aligned
rectangles with non-intersecting interiors and edges correspond rectangles with non-
zero length common boundary. Every graph that can be represented this way is planar
and every triangle in such a graph is a facial triangle. These two conditions are also
sufficient to guarantee a rectangle representation [3, 9].

In this paper we first define metrics that quantitatively measure the more abstract
goal of “semantic preservation”: realized adjacencies, distortion, compactness, and uni-
form area utilization. Then we implement and extensively test six algorithms for gen-
erating word clouds: three earlier methods and three new ones. Two of the new al-
gorithms outperform the rest in terms of realized adjacencies, while not negatively
impacting any of the remaining metrics. The online system implementing all the al-
gorithms, and which also provides all source code and all data sets is available at
http://wordcloud.cs.arizona.edu.

2 Experimental Setup

All the algorithms for producing word clouds take as input an edge-weighted graph and
rectangles of fixed dimensions associated with every vertex. There are several param-
eters to consider in a preprocessing step, needed to extract this information from input
texts. Our preprocessing pipeline is illustrated in Fig. 2.

Term Extraction: We first split the input text into sentences, which are then to-
kenized into a collection of words using the open-source toolkit Apache OpenNLP.
Common stop-words such as “a”, “the”, “is” are removed from the collection. The re-
maining words are grouped by their stems using the Porter Stemming Algorithm [16],
so that related words such as “dance”, “dancer”, and “dancing” are reduced to their root,
“danc”. The most common variation of the word is used in the final word cloud.

Ranking: In the next step we rank the words in order of relative importance. We
have three different ranking functions, depending on word usage in the input text.
Each ranking function orders words by their assigned weight (rank), and the top n
of them are selected, where n is the number of words shown in the word cloud. Term
Frequency (TF), is the most basic ranking function and one used in most traditional
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Fig. 2. Overview of creating a semantic word cloud visualization.

word cloud visualizations. Even after removing common stop-words, however, TF tends
to rank highly many semantically meaningless words. Term Frequency-Inverse Doc-
ument Frequency (TF-IDF) addresses this problem by normalizing the frequency of
a word by its frequency in a larger text collection. In our case TF-IDF(w, d,D) =
TF(w, d) × IDF(w,D), where w is the word, d is the current input text and D is the
collection of all our text documents. Our third ranking function uses the LexRank al-
gorithm [8], a graph-based method for computing relative importance of words, and
already used for semantic-preserving word clouds [21]. In the graph G = (V,E), ver-
tices represent words and edges represent co-occurrence of the words in the same sen-
tences. A weight wij of an edge (i, j) is the number of times word i appears in the same
sentence as word j. The rank values are computed using eigenvector centrality in G.

Similarity Computation: Given the ranked list of words, we calculate an n × n
matrix of pairwise similarities so that related words receive high similarity values. We
use two similarity functions depending on the input text. The Cosine Similarity between
words i and j can be computed as simij =

wi·wj

||wi||·||wj || , where wi = {wi1, . . . , win}
and wj = {wj1, . . . , wjn} are the vectors representing co-occurrence of the words
with other words in the input text. The Jaccard Similarity coefficient is the number of
sentences two words appeared together in divided by the number of sentences either
word appeared in: simij =

|Si∩Sj |
|Si∪Sj | , where Si is the set of sentences containing word i.

In both cases the similarity function produces a value between 0, indicating that a pair
of words is not related, and 1, indicating that words are very similar.

3 Word Cloud Layout Algorithms
Here we briefly describe three early and three new word cloud layout algorithms, all of
which we implemented and tested extensively. The input for all algorithms is a collec-
tion of n rectangles, each with a fixed width and height proportional to the rank of the
word, together with n × n matrix with entries 0 ≤ simij ≤ 1. The output is a set of
non-overlapping positions for the rectangles,

3.1 Wordle (Random)
The Wordle algorithm places one word at a time in a greedy fashion, aiming to use

space as efficiently as possible [18]. First the words are sorted by weight (proportional
to the height of the corresponding rectangle) in decreasing order. Then for each word
in the order, a position is picked at random. If the word intersects one of the previously
placed words then it is moved along a spiral of increasing radius radiating from its
starting position. Although the original Wordle has many variants (e.g., words can be
horizontal, vertical, mixed), we always place words horizontally.

3.2 Context-Preserving Word Cloud Visualization (CPWCV)
The algorithm of Cui et al. [5] aims to capture semantics in two steps. First a dissim-

ilarity matrix∆ is computed, where∆ij = 1−simij represents ideal distances between
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words i and j in n-dimensional space. Multidimensional scaling (MDS) is performed
to obtain two-dimensional positions for the words so that the given distances are (ap-
proximately) preserved. Since the step usually creates a very sparse layout, the second
step compacts the layout via a force-directed algorithm. Attractive forces between pairs
of words reduce empty space, while repulsive forces ensure that words do not overlap.
An additional force attempts to preserve semantic relations between words. To this end,
a triangular mesh (Delaunay triangulation in the implementation) is computed from the
initial word positions, and the additional force attempts to keep the mesh planar.

3.3 Seam Carving

The algorithm of Wu et al. [21] uses seam carving, a content-aware image resizing
technique, to capture semantics. Here a preliminary overlap-free word layout is com-
puted, using a force-directed algorithm adapted from CPWCV [5]. Then the screen
space is divided into regions, and for each region an energy function is computed. A
connected left-to-right or top-to-bottom path of low energy regions is called a seam.
The major step of the algorithm is to iteratively carve out seams of low energy to re-
move empty spaces between words. Since the order of seam removal greatly affects the
final result, a dynamic programming approach is used to find an optimal order. The final
result is a word cloud in which no further seam can be removed.

3.4 Inflate-and-Push (INFLATE)

We designed and implemented an alternative simple heuristic method for word lay-
out, which aims to preserve semantic relations between pairs of words. The heuristic
starts by scaling down all word rectangles by some constant S > 0 (in our implementa-
tion S = 100) and computing MDS on dissimilarity matrix∆ in which∆ij =

1−simij

S .
At this point, the positions of the words respect their semantic relations; that is, seman-
tically similar words are located close to each other. We then iteratively increase the
dimensions of all rectangles by 5% (“inflate” words). After each iteration some words
may overlap. We resolve the overlaps using the repulsive forces from the force-directed
model of the CPWCV algorithm (“push” words). Since the dimensions of each rectan-
gle grows by only 5%, the forces generally preserve relative positions of the words. In
practice, 50 iterations of the “inflate-push” procedure is suffice.

3.5 Star Forest

A star is a tree of depth at most 1, and a star forest is a forest whose connected com-
ponents are all stars. Our algorithm has three steps. First we partition the given graph,
obtained from the dissimilarity matrix ∆, into disjoint stars (extracting a star forest).
Then we build a word cloud for every star (realizing a star). Finally, the individual
solutions are packed together to produce the result. The steps are described next.

We extract stars from the given graph greedily. We find a vertex v with the maximum
adjacent weight, that is, the one for which

∑
u∈V sim(v, u) is maximized. We then treat

the vertex as a star center and the vertices V \ {v} as leaves. A set of words that will
be adjacent to star center v is computed, and these words are removed from the graph.
This processes is repeated with the smaller graph, until the graph is empty.

Selecting the best set of words to be adjacent to a star center v is related to the
Knapsack problem, where given a set of items, each with a size and a value, we want
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Fig. 3. Star Forest algorithm.

to pack a maximum-valued subset of items into a knapsack of given capacity. Let B0

denote the box corresponding to the center of the star; see Fig. 3(a). In any optimal so-
lution there are four boxes B1, B2, B3, B4 whose sides contain one corner of the center
box B0 each. Given B1, B2, B3, B4, the problem reduces to assigning each remaining
box Bi to at most one of the four sides of B0, which completely contains the contact
between Bi and B0. The task of assigning boxes to a side of B0 is naturally converted
to an instance of Knapsack: The size of a box Bi is its width for the horizontal sides
and its height for the vertical sides of B0, the value is the edge weight between Bi and
B0. Now we run the algorithm for the Knapsack problem for the top side ofB0, remove
the realized boxes, and proceed with the bottom, left, and then right sides of the cen-
tral box. To solve the Knapsack instances, we use the polynomial-time approximation
scheme described in [11].

Finally, the computed solutions for individual stars are packed together is a compact
drawing, which preserves the semantic relations between words in different stars. We
begin by placing the stars on the plane so that no pair of words overlap; see Fig. 3(b).
For every pair of stars s1, s2, we compute its similarity as the average similarity be-

tween the words comprising s1 and s2, that is, sim(s1, s2) =
∑

v∈s1

∑
u∈s2

sim(u,v)

|s1||s2| .
MDS is utilized to find the initial layout with k(1 − sim(s1, s2)) being the ideal dis-
tance between the pair of stars. In our implementation, we set the scaling factor k = 10
to ensure an overlap-free result. Then a force-directed algorithm is employed to obtain a
compact layout. Note that the algorithm adjusts the positions of whole stars rather than
individual words; thus, the already realized adjacencies between words are preserved.
The algorithm utilizes attractive forces aiming at removing empty space and placing
semantically similar words close to each other. The force between the stars is defined as
fa(s1, s2) = ka(1 − sim(s1, s2))∆l, where ∆l represents the minimum distance be-
tween two central rectangles of the stars. The repulsive force is used to prevent overlaps
between words. The force only exists if two words occlude each other. It is defined as
fr(s1, s2) = krmin(∆x,∆y), where ∆x (∆y) is the width (height) of the overlapping
region. We found that the priorities of the forces ka = 15, kr = 500 work well. As in
a classical force-directed scheme, the algorithm iteratively adjust positions of the stars.
We impose a limit of 500 iterations, although the process converges very quickly.

3.6 Cycle Cover

This algorithm is also based on extracting a heavy planar subgraph from the graph
G = (V,E) defined by the similarity matrix. In particular, finding a cycle cover (vertex-
disjoint set of cycles) with maximum weight, and realizing all cycles in the cover by
touching boxes is a 2

dmax+1 approximation algorithm for total realized adjacencies, for
G with maximum degree dmax.
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Fig. 4. CYCLE COVER algorithm.

Although the heaviest cycle cover can be found in polynomial time in the size of
the graph (see Chapter 10 in [13]), the algorithm is too slow in practice as it requires
computation of a maximum weighted matching in a not necessarily bipartite graph. We
use the following simpler algorithm instead, which transforms G into a related bipartite
graph H . We create V (H) by first copying all vertices of G. Then for each vertex
v ∈ V (G), we add a new vertex v′ ∈ V (H), and for each edge (u, v) ∈ E(G),
we create two edges (u′, v) ∈ E(H) and (u, v′) ∈ E(H) with weights sim(u, v).
The resulting graph H is bipartite by construction, thus making it easy to compute a
maximum weight matching. The matching induces a set of vertex-disjoint paths and
cycles in G as every u is matched with one v′ and every u′ is matched with one v.

Once cycles and paths are extracted, we place the corresponding boxes so that all
edges are realized as follows. For a given cycle (v1, v2, . . . , vn), let t be maximum
index such that

∑
i≤t wi <

∑
i≤n wi/2, wherewi is the width of the i-th word. Vertices

v1, v2, . . . , vt are placed side by side in order from left to right with their bottom sides
aligned on a shared horizontal line, while vertices vn, vn−1, . . . , vt+2 are placed from
left to right with their top sides aligned on the same line; see Fig. 4(a). It remains to
place vt+1 in contact with vt and vt+2, which can be done by adding vt+1 to the side
of minimum width, or straddling the line in case of a tie. It is possible that the resulting
layout has poor aspect ratio (as cycles can be long), so we convert cycles with more than
10 vertices into paths by removing the lightest edge. When realizing the edges of a path,
we start with words v1 and v2 placed next to each other. The i-th word is added to the
layout so that it touches vi−1 using its first available side in clockwise order radiating
from the side of the contact between vi−2 and vi−1. This strategy tends to create more
compact, spiral-like layouts; see Fig. 4(b).

In the final step, the computed solutions for individual cycles and paths are packed
together, aiming for a compact drawing which preserves the semantic relations between
words in different groups. We use the same force-directed algorithm (described in the
previous section for STAR FOREST) for that task.

4 Metrics for Evaluating Word Cloud Layouts

While a great deal of the world cloud appeal is qualitative and depends on good graphic
design, visual appeal, etc., we concentrate of quantitative metrics that capture several
desirable properties. We use these metrics to evaluate the quality of the six algorithms
under consideration. The metrics are defined so that the measurement is a real number
in the range [0, 1] with 1 indicating the best value and 0 indicating the worst one.

Realized Adjacencies: Our primary quality criterion for semantics-preserving algo-
rithms is the total realized adjacency weight. In practice, proper contacts are not strictly
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necessary; even if two words do not share a non-trivial boundary, they can be considered
as “adjacent” if they are located very close to each other. We assume that two rectangles
touch each other if the distance between their boundaries is less than 1% of the width
of the smaller rectangle. For each pair of touching rectangles, the weight of the edge is
added to the sum. We normalize the sum by dividing it by the sum of all edge weights,
thus measuring the fraction of the adjacency weight realized. Hence, the metric is de-

fined by α =
∑

(u,v)∈Erealized
sim(u,v)∑

(u,v)∈E sim(u,v) . Note that this value is always less than 1 as the
input graph (as described in Section 2) is a complete graph and thus highly non-planar.
On the other hand, the contact graph of rectangles is always planar, which means that
in most cases it is impossible to realize contacts between all pairs of words.

Distortion: This metric is used to measure another aspect of how well the desired
similarities are realized, by comparing the distances between all pairs of rectangles
to the desired dissimilarities of the words. In order to compute the metric for a given
layout, we construct a matrix of ideal distances between the words with entry ∆uv =
1 − sim(u, v) for words u and v, and a matrix of actual distances between words in
which an entry duv denotes the distance between the words u and v. We modify the
definition of distance to reflect the use of non-zero area boxes for vertices (instead of
points), by measuring the distance between two words as the minimal distance between
any pair of points on the corresponding two rectangles. We then consider the matrices
as two random variables and compute the correlation coefficient between them:

r = 1−
∑

(u,v)∈E(∆uv −∆)(duv − d)√∑
(u,v)∈E(∆uv −∆)2

∑
(u,v)∈E(duv − d)2

,

where ∆ and d are the average values of the corresponding distances. Since the correla-
tion coefficient takes values between−1 and 1, Distortion is defined by β = (r+1)/2.
The value β = 1 indicates a perfect correspondence between dissimilarities and dis-
tances, while β = 0.5 means that the values are independent.

Compactness: Efficient use of drawing area is a natural goal, captured by this simple
metric. We first compute the used area as the area covered by words, by adding up the
areas of all rectangles. Clearly, any layout needs at least that much space as overlaps
are not allowed in our setting. We then compute the total area of the layout using the
bounding box containing all rectangles, or the area of the convex hull of all rectangles.
The Compactness metric is therefore γ = 1 − used area

total area , with value 1 corresponding to
the best possible packing.

Uniform Area Utilization: Arguably, a desired property of a word cloud is the random-
ness of the distribution of the words in the layout. In highly non-random distributions
some parts of the cloud are densely populated while others are sparse. The metric cap-
tures the uniformity of the word distribution. In order to compute the metric for a word
cloud with n words, we divide the drawing into

√
n ×
√
n cells. Then for each rectan-

gle, find indices (x, y) of the cell containing the center of the rectangle. We may now
consider the words as a discrete random variable, and measure its information entropy,
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Fig. 5. Realized adjacencies for word clouds of various size.

or the amount of uncertainty. To this end, we compute the relative entropy of the vari-
able (induced by a given layout of words) with respect to the uniform distribution [4]:
H =

∑
i,j p(i, j) log

p(i,j)
q(i,j) , where the sum is taken over the created cells, p(i, j) is the

actual number of words in the cell (i, j), and q(i, j) = 1 is the number of words in the
cell in the uniformly distributed word cloud. Since the entropy is maximized as log n,
Uniform Area Utilization is defined by δ = 1− H

logn , where the value of 1 corresponds
to an “ideal” word cloud.

Aspect Ratio and Running Time: While not formal evaluation metric for word cloud
visualization, we also measure the aspect ratio of the final layouts and the running
times of the algorithms. We use a standard measurement for the Aspect Ratio of the
word clouds:W/H , whereW andH are the width and height of the bounding box. The
running time of word cloud algorithms is an important parameter as many such tools are
expected to work in real-time and delays of more than a few seconds would negatively
impact their utility. We measure Running Time for the execution of the layout phase of
the evaluated algorithms, excluding the time needed to parse text, compute similarities
between words, and draw the result on the display.

5 Results and Discussion

We evaluate all algorithms on two datasets: (1) WIKI, a set of 112 plain-text articles
extracted from the English Wikipedia, each consisting of at least 200 distinct words,
and (2) PAPERS, a set of 56 research papers published in conferences on experimental
algorithms (SEA and ALENEX) in 2011-2012. The texts are preprocessed using the
pipeline described in Section 2; that is, for every trial, the words are first ranked and
then pairwise similarities between the top 10 ≤ n ≤ 150 of them are computed. Every
algorithm is executed 5 times on each text; hence, the results present average values of
metrics over the runs. Our implementation is written in Java, and the experiments were
performed on a machine with an Intel i5 3.2GHz processor with 8GB RAM.

Realized Adjacencies: The CYCLE COVER algorithm outperforms all other algorithms
on all tested instances; see Fig. 5 (and Fig. 11 and Fig. 12 in the Appendix B). De-
pending on the method for extracting pairwise word similarities, the algorithm realizes
30-50% of the total edge weights for small graphs (up to 50 words) and 15 − 30% for
larger graphs. It is worth noting here that CYCLE COVER improves upon the best ex-
isting heuristic by a factor of nearly 2. Furthermore, CYCLE COVER performs better
than all the existing heuristics for almost all inputs; see Fig. 13(a) in the Appendix B.
STAR FOREST also realizes more adjacencies than the existing semantics-aware meth-
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Fig. 6. (a) Mean and standard deviation of Compactness for texts with 100 words. (b) Mean and
standard deviation of Uniform Area Utilization for word clouds of various size.

ods. However, for large word clouds (with over 100 words) the difference between
STAR FOREST and the existing algorithms drops to 2− 5%.

It is noticeable that the CPWCV algorithm and our INFLATE algorithm perform
similarly in all settings. This is the expected behavior, as both methods are based on
similar force-directed models. For instances with up to 80 − 100 words, these tech-
niques are better than the SEAM CARVING algorithm. On the other hand, the more
sophisticated SEAM CARVING algorithm is preferable for larger word clouds, which
confirms earlier results [21]. Not surprisingly, the RANDOM algorithm realizes only a
small fraction of the total weight as it is not designed for preserving semantics.

Compactness: We measure compactness using the bounding box and convex hull of the
layout; see Fig. 6(a). We first observe that the results in general do not depend on the
used dataset, the ranking algorithm, and the way similarities are computed. The word
clouds constructed by the INFLATE algorithm are the most compact, while the remain-
ing algorithms have similar performance. In practice, such “overcompacted” drawings
are not very desirable since adjacent words are difficult to read; see Fig. 14(a). In order
to alleviate this, we increase the dimensions of each rectangle by 10− 20% and run the
layout algorithm for the new instance. In the new drawings, the words are easy to read,
and the area is still used efficiently; see Fig. 14(b).

Uniform Area Utilization: As expected, the RANDOM algorithm generates word clouds
with the most uniform word placement; see Fig. 6(b). SEAM CARVING also utilizes area
uniformly. The remaining methods are all mostly comparable, with CYCLE COVER
being the worst. The standard deviation for these 4 algorithms is relatively high, which
means that some of the created word clouds may be rather non-uniform. Similar to the
Compactness metric, we do not observe any significant difference of area utilization for
different setting (dataset, ranking and similarity algorithms).

Distortion: The SEAM CARVING algorithm steadily produces the most undistorted lay-
outs (note as usual, although a bit counterintuitive here, high values are good); Fig. 7(a).
Not surprisingly, the correlation coefficient between the dissimilarity matrix and the
actual distance matrix produced by RANDOM is very close to 0 (hence, the value of
Distortion is 0.5). For the remaining algorithms the results are slightly worse, but com-
parable. Note that all considered algorithms (except RANDOM) have a common feature:
they start with an initial layout for the words (or for clusters of words) constructed by
multidimensional scaling. At that point, the Distortion measurements are generally very
good, but the layout is sparse. Next the algorithms try to compact the drawing, and the
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compaction step worsens Distortion significantly; see Fig. 15. Hence, there is an inher-
ent tradeoff between compactness and distortion.

Aspect Ratio and Running Time: RANDOM and SEAM CARVING produce word clouds
with aspect ratio close to the golden ratio ( 1+

√
5

2 ), which is commonly believed to be
aesthetically pleasing; see Fig. 7(b). INFLATE, STAR FOREST, and CYCLE COVER gen-
erate drawings with the aspect ratio from 7 : 2 to 9 : 2, and the measurements are mostly
independent of the number of words in a word cloud. We emphasize here that none of
the considered algorithms is designed to preserve a specific aspect ratio. If this turns out
to be a major aesthetic parameter, optimizing the layout algorithms, while maintaining
the desired aspect ratio might be a meaningful direction for future work.

The running times of all but one algorithm are reasonable, dealing with 100 − 150
words within 2 seconds; see Fig. 8. The exception is SEAM CARVING, which requires
15− 25 seconds per graph on the PAPERS dataset and 30− 50 on the WIKI dataset.

Discussion: The CYCLE COVER and the STAR FOREST algorithms are better at realiz-
ing adjacencies, and they are comparable to the other algorithms in compactness, area
utilization, and distortion. A likely explanation is that the distribution of edge weights is
highly non-uniform for real-world texts and articles; see Fig. 9(a). The weights follow a
Zipf distribution with many light edges and few heavy ones. Further, a small fraction of
the edges (about 8% for WIKI and about 5% for PAPERS datasets) carry half of the total
edge weight. It is known that words in text documents follow this distribution (Chap-
ter 5 in [14]) and that might explain why pairs of co-related words behave similarly.
Both CYCLE COVER and STAR FOREST are based on the same principle: first extract
“heavy” subgraphs and then realize contacts within each subgraph independently. On
the other hand, the existing semantics-preserving approaches try to optimize all contacts
simultaneously by considering the complete graph. Our new strategy is more effective

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

ru
nn

in
g 

tim
e,

 s
ec

160140120100806040200
number of words

 Random
 CPWCV
 Seam Carving
 Inflate
 Star Forest
 Cycle Cover

(a) WIKI, TF Ranking, Cosine Similarity

4

3

2

1

0

ru
nn

in
g 

tim
e,

 s
ec

14012010080604020

number of words

 Random
 CPWCV
 Seam Carving
 Inflate
 Star Forest
 Cycle Cover

(b) PAPERS, TF-IDF, Jaccard Similarity

Fig. 8. Running time of the algorithms for word clouds of various size.
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Fig. 9. Distribution of weights (similarities between pairs of words) among edges (red line), and
the fraction of realized edges with a given weight (closed regions) for a new and an existing
algorithms. (a) A graph constructed for a real-world text (PAPERS dataset). (b) A complete graph
in which edge weights are randomly chosen between 0 and 1.
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Fig. 10. Comparing the realized weight to the upper bound for maximum realized edge weights.
Dots represent single instances, solid lines represent average values over 5 runs. (a) Similarities
constructed for a real-world text. (b) A graph with random weights between words.

as it realizes most of the heavy edges; see Fig. 9(a). It is possible that in a different
scenario (where edge weights are not similarities between words) the distribution may
be close to uniform; even in such a scenario CYCLE COVER and STAR FOREST outper-
form existing methods, but the fraction of the realized edge weights is much smaller;
see Fig. 9(b) and Fig. 13(b).

None of the presented semantics-preserving algorithms make any guarantees about
the optimality of realized edge weights when the input graph is complete (as in real-
world examples). However, it is still interesting to analyze how well these two algo-
rithms realize adjacencies. Note that the sum of all edge weights in a graph is not a
good upper bound for an optimal solution since the realized subgraph is necessarily
planar and thus contains at most 3n−6 edges. Instead, we compute a maximum weight
spanning tree of the graph. Since the weight w of the tree is a 1/3-approximation for
the maximum planar subgraph of G [7], the value of 3w is also an upper bound for the
maximum realized edge weights. On average CYCLE COVER produces results which
are at most 3 times less than the optimum for graphs with 150 vertices; see Fig. 10. See
also Appendix A for more details on approximation guarantees.

6 Conclusions and Future Work

We quantitatively evaluated six semantic word cloud methods. The RANDOM algorithm
uses available area in the most uniform way and creates the most compact drawings, but
does not place semantically related words close to each other. The SEAM CARVING al-
gorithm produces layouts with low distortion and good aspect ratio, but they are not
compact and the algorithm is very time-consuming. CPWCV and the new INFLATE
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algorithms perform very similarly in our experiments, even though INFLATE is much
simpler. The two new algorithms STAR FOREST and CYCLE COVER, based on extract-
ing heavy subgraphs, outperform all other methods in terms of realized adjacencies and
running time, and they are competitive in the other metrics. We hope to find an algo-
rithm with guaranteed approximation factor for extracting heavy planar subgraphs from
general graphs, which would lead to a guaranteed fraction of realized adjacencies.
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Appendix A
Here we provide more details on the formal model on computing semantics-preserving
word clouds introduced in [1]. The problem is related to contact representations of
graphs and was also considered recently in [2].

The model is based on a weighted graph as described in Section 1. The vertices
in the graph (called the supporting graph) are the words, and the weights of edges
correspond to the strength of the relation between the words. The goal is to represent the
supporting graphs by contact of axis-aligned boxes. Not every graph can be represented
by touching boxes with fixed dimensions. Moreover, it is NP-hard to decide if there
exists a representation of the input graph with the given boxes [1]. The problem remains
strongly NP-hard even if restricted to trees and is weakly NP-hard if restricted to stars.
This leads to an optimization version of the problem.

For the optimization version, several algorithms for certain classes of graphs ex-
ist [1]. If the supporting graph is a matching or a path, then it can always be realized by
contacts of boxes, which are simply arranged along a horizontal line. A similar idea can
be applied for a cycle, which can always be realized. If the supporting graph is a star,
then there is a constant-factor approximation algorithm based on the GENERALIZED
ASSIGNMENT PROBLEM (GAP, a generalization of MULTIPLE KNAPSACK). Using an
α = 1 − 1/e ≈ 0.632-approximation algorithm for GAP, we get an α-approximation
for the word cloud problem on a star.

Using the exact algorithm for cycles and the approximation algorithm for stars as
building blocks, we devise approximation algorithms for several classes of graphs uti-
lizing the following idea. We partition the edges of the supporting graph G into k sub-
graphs, apply an α-approximation algorithm for each of the subgraphs, and take the
best of the k solutions. The method yields an α/k-approximation algorithm for G. In-
deed, consider an optimum solution. By the pigeon-hole principle, one of the subgraphs
contains at least 1/k of the edges realized by contacts in the optimum solution. Hence,
our algorithm produces a solution with weight at least α/k of the optimum. We apply
the idea for trees and planar graphs. A tree can be partitioned into 2 star forests (dis-
joint union of stars) and a planar graph can be partitioned into 5 star forests. Applying
the method for stars for each of the forests and combining solutions together, yields the
algorithm with approximation factors α/2 and α/5. Further, any graph of maximum de-
gree 2∆ can be partitioned into ∆ sets of edge-disjoint cycles and paths. Therefore, the
partitioning results in an (1/∆)-approximation algorithm for the word cloud problem
on graphs of bounded maximum degree.

Very recently, we combined the approaches for cycles and stars to produce an al-
gorithm for general supporting graphs with arbitrary edge weights [2]. The algorithm
guarantees approximation ratio 40α/3 ≈ 21.1 for Realized Adjacencies. We stress that
the algorithm involves approximating a number of GAP instances as a subroutine, which
relies on solving linear programs. Firstly, the approach is relatively slow for real-world
documents. Secondly, the resulting solutions might worsen measurements for the other
metrics (for example, Aspect Ratio). The heuristics STAR FOREST and CYCLE COVER
are designed so as to address the issues. Our experiments indicate that both new algo-
rithms produce results which are only 3− 5 times less than the optimum; see Fig. 10.
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Appendix B
Here we include more examples of word clouds generated by the six algorithms dis-
cussed in the paper. We also include several additional plots, showing the effect of
different term ranking and similarity matrix computations on the realized adjacencies
metric.
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Fig. 11. Realized adjacencies for the WIKI dataset.
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Fig. 12. Realized adjacencies for the PAPERS dataset.
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Fig. 13. (a) Standard deviation of realized adjacencies. (b) Realized adjacencies for a complete
graph in which edge weights are randomly chosen between 0 and 1.

(a) (b)

Fig. 14. Wikipedia article “Albert Einstein”. (a) Overcompacted word cloud constructed with the
INFLATE algorithm. (b) Result after increasing rectangles by 20%.

(a) (b)

Fig. 15. ALENEX paper “Experiments on Density-Constrained Graph Clustering” by Görke et
al. (a) Initial layout found by MDS with Distortion β = 0.68. (b) Final result constructed by
CPWCV with worsened value of β = 0.57.
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(a) RANDOM: α = 0.01, β = 0.5, γ = 0.58, δ = 0.82

(b) SEAM CARVING: α = 0.12, β = 0.59, γ = 0.47, δ = 0.79

(c) CPWCV: α = 0.15, β = 0.55, γ = 0.63, δ = 0.76

(d) INFLATE: α = 0.15, β = 0.54, γ = 0.75, δ = 0.72

Fig. 16. “Computing Machinery and Intelligence” by A. M. Turing (top 75 words).
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(a) STAR FOREST: α = 0.23, β = 0.53, γ = 0.56, δ = 0.7

(b) CYCLE COVER: α = 0.35, β = 0.56, γ = 0.61, δ = 0.61

Fig. 17. “Computing Machinery and Intelligence” by A. M. Turing (top 75 words).

Fig. 18. Der Koalitionsvertrag im Schnellcheck (Quick overview of the coalition agreement), Der
Spiegel, 27/11/2013.
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