
Accepted Manuscript

Title: Massively Parallel Simulations of Hemodynamics in the
Primary Large Arteries of the Human Vasculature

Author: Amanda Randles Erik W. Draeger Peter E. Bailey

PII: S1877-7503(15)00041-1
DOI: http://dx.doi.org/doi:10.1016/j.jocs.2015.04.003
Reference: JOCS 346

To appear in:

Please cite this article as: Amanda Randles, Erik W. Draeger, Peter E.
Bailey, Massively Parallel Simulations of Hemodynamics in the Primary Large
Arteries of the Human Vasculature, Journal of Computational Science (2015),
http://dx.doi.org/10.1016/j.jocs.2015.04.003

This is a PDF file of an unedited manuscript that has been accepted for publication.
As a service to our customers we are providing this early version of the manuscript.
The manuscript will undergo copyediting, typesetting, and review of the resulting proof
before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that
apply to the journal pertain.

http://dx.doi.org/doi:10.1016/j.jocs.2015.04.003
http://dx.doi.org/10.1016/j.jocs.2015.04.003


Page 1 of 11

Acc
ep

te
d 

M
an

us
cr

ip
t

This space is reserved for the Procedia header, do not use it

Massively Parallel Simulations of Hemodynamics in the

Primary Large Arteries of the Human Vasculature

Amanda Randles1, Erik W. Draeger1, and Peter E. Bailey2

1 Lawrence Livermore National Laboratory, Livermore, CA, U.S.A.
randles2@llnl.gov, draeger1@llnl.gov

2 University of Arizona, Tucson, Arizona, U.S.A.
pbailey@cs.arizona.edu

Abstract
We present a computational model of three-dimensional and unsteady hemodynamics within
the primary large arteries in the human on 1,572,864 cores of the IBM Blue Gene/Q. Models of
large regions of the circulatory system are needed to study the impact of local factors on global
hemodynamics and to inform next generation drug delivery mechanisms. The HARVEY code
successfully addresses key challenges that can hinder effective solution of image-based hemo-
dynamics on contemporary supercomputers, such as limited memory capacity and bandwidth,
flexible load balancing, and scalability. This work is the first demonstration of large fluid dy-
namics simulations of the aortofemoral region of the circulatory system at resolutions as small
as 10 µm.

Keywords: lattice Boltzmann, computational fluid dynamics, high performance computing, patient-

specific hemodynamics, strong scaling

1 Introduction

A longstanding goal within the field of computational biomechanics has been to understand the
principles that govern vascular disease localization and progression[20, 5, 28]. Such image-based
simulations can yield insight into the impact of local factors on global hemodynamics, direct the
design of next-generation drug delivery mechanisms, and inform surgical planning. Although
important progress towards this goal has been made using various algorithmic methods [11, 29,
12, 21, 13, 32], the computational demands of these simulations have historically restricted the
resolution and size of the circulatory system that can be modeled.

In recent years, there has been a great deal of work in the area of computational hemody-
namics. These studies are typically limited to small regions of the body or use a one-dimensional
setting to describe the human arterial network [26, 1, 30]. Xiao et al. presented the first model
of full unsteady and three-dimensional hemodynamics in the primary large arteries from head
to foot. While this was a significant advance in computational fluid dynamics, the goal was

1



Page 2 of 11

Acc
ep

te
d 

M
an

us
cr

ip
t

HARVEY Randles, Draeger, Bailey

to demonstrate the feasibility of the 3D framework. However, the resolution presented was
insufficient to reach grid independence [32]. In that work, the finite element mesh consisted
of 14,438,720 linear tetrahedra and 2,674,545 nodes. High resolution studies based on 3-D re-
constructions of patient-specific data are typically focused on either the cerebral vasculature
[9, 13, 7] or the cardiovascular region [3, 10, 19]. The current state of the art in the numerical
investigation of hemodynamics in patient-specific geometries are those by Bernaschi et al. which
studies the coronary arteries in a bounding box of 300 billion grid points containing one billion
fluid nodes [3, 4]. Work presented here goes beyond these scales, simulating a vertical section
of the aortofemoral section of the circulatory system spanning 614 cm at 10 µm resolution,
consisting of more than 128 billion fluid nodes. To the best of our knowledge, our work is the
first large-scale study of blood flow in a region of this size and level of detail.

Building realistic models of transport phenomena in the human circulatory system presents
a formidable computational challenge due to the geometric complexity of the system, memory
requirements associated with high-resolution grids, and load balancing issues associated with
the processor core counts required. Our proposed solution extends the design and parallel
efficiency of HARVEY [22], a computational fluid dynamics code based on the lattice Boltzmann
method (LBM). One fundamental hurdle for high-resolution fluid simulations is the size of the
underlying data grid and associated memory requirements. In order to study key macroscopic
risk factors in patient-specific data, a resolution of at least 20 microns is required [18]. For full
body simulations, this resolution corresponds to 18.4 billion fluid nodes in a bounding box of
8.8 trillion total grid points. These data sizes create an additional challenge to load balance, as
work must be assigned to over one million tasks without computing or storing global data. We
present a multi-step iterative load balance algorithm that allows for the distribution of large,
complex arterial geometries on a 3D process grid. Efficiently modeling the hemodynamics in
the large primary arteries also required data-reordering techniques to increase spatial locality,
both optimized data structures and access patterns to reduce the overall memory footprint and
efficient communication layout to overcome bandwidth limitations.

In this work we make the following contributions: increasing the number of fluid nodes that
can be simulated by an order of magnitude (thereby increasing potential system size and/or
resolution), incorporating preprocessing to reduce storage and I/O burdens, and enabling an
unprecedented scale of hemodynamic simulation demonstrated by the 10 micron resolution
simulation of the aortofemoral region of the circulatory system.

2 Methodology

This work relies on the lattice Boltzmann method (LBM), an alternative to the conventional
Navier-Stokes equation, introduced by both teams of McNamera and Zanetti [17] and Higuera
and Jimenez [15]. LBM comes from kinetic theory and is a minimal form of the Boltzmann
equation based on the collective dynamics of fictitious particles that represent a local ensemble
of molecules moving between the points of a regular Cartesian lattice. The time advancement
is explicit and the computational stencil is formed by local neighbors of each computational
node, making it particularly well-suited for massively parallel simulations (c.f. [6, 31, 23]).

The governing equation describes the evolution of the distribution function denoted by
fi(~x, t), describing the probability of finding a particle at grid point ~x, at time t, with discrete
velocity ~ci. In this work, we use the 19-speed cubic stencil, with the Bhatnager-Gross-Krook
(BGK) collision formulation with a single relaxation time. The grid spacing is defined by
∆x, where discrete velocities connect grid points to first and second neighbors on the 19-point
stencil. The fluid populations are advanced in a timestep ∆t through:

2



Page 3 of 11

Acc
ep

te
d 

M
an

us
cr

ip
t

HARVEY Randles, Draeger, Bailey

fi(~x+ ~ci∆t, t+ ∆t) = fi(~x, t)− ω∆t[fi(~x, t)− feqi (~x, t)] (1)

The local equilibrium, feqi (~x, t), is the result of a second-order expansion in the fluid velocity
of a local Maxwellian with speed ~u and is defined by:

feqi = wiρ

[
1 +

~ci · ~u
c2s

+
1

2

(
(~ci · ~u)2

(c2s)2
− u2

c2s

)]
(2)

where ρ denotes the density, ~u the average fluid speed, cs = 1/
√

3 the speed of sound in the
lattice, and wi the weights attributed to each discretized velocity as determined by the lattice
structure. Due to the use of explicit time-stepping, LBM requires small time-steps that scale
with ∆x2. In the case of the 10 µm simulations discussed in this work, approximately 3 million
time-steps would be required to simulate one cardiac cycle.

We implement the Zou-He boundary conditions [33], in which a pulsating velocity is imposed
at the inlet through a plug profile at the entrance to the vessel and a constant pressure is
imposed at the outlets. While the inlet condition does not assert the known parabolic profile
that drops to zero close to the wall, it allows a total flow to be imposed at a set value. In a
short distance past the inlet, the parabolic profile is recovered. This method uses information
streamed from the bulk fluid nodes alongside a completion scheme for the unknown particle
populations whose neighbors are outside the fluid domain. This method can be executed with
second-order accuracy [16]. In this paper, the modification introduced by Hecht and Harting
[14] is used in which the velocity conditions are specified on-site, thus removing the constraint
that all nodes of a given inlet or outlet must be aligned on a plane that is perpendicular to
one of the three main axes. Furthermore, this addition allows the boundary conditions to be
applied locally. A no-slip boundary condition is imposed at the walls via the full bounce-back
method. For more details regarding the lattice Boltzmann method, see Ref. [27].

3 HARVEY implementation details

All simulations presented here were carried out using the HARVEY code. Despite the excellent
scalability reported previously[24], significant restructuring of the code had to be done to enable
the resolution and scale of the systems studied in this work. Details of the original implemen-
tation can be found in Ref. [22]. All simulations were run on the Sequoia machine at Lawrence
Livermore National Laboratory, a 98,304 node IBM Blue Gene/Q machine (1,572,864 cores).

Figure 1: Bounding boxes of aorta geometry computed by multi-step load balance algorithm.

3



Page 4 of 11

Acc
ep

te
d 

M
an

us
cr

ip
t

HARVEY Randles, Draeger, Bailey

In order to simulate the hemodynamics in the aortofemoral geometry at a high-resolution,
we had to overcome the following challenges:

• Memory footprint. Large numbers of grid points are required to reach convergence of
macroscopic quantities of interest. These requirements impose a high demand in terms of
on-node memory requirements.

• I/O bandwidth. Setting up the large, high-resolution grids through the existing prepro-
cessing and initialization stages involves I/O operations on petabytes of data, causing
the simulation setup to actually overwhelm the overall simulation time even for the large
number of time steps, ∼ 106, needed to model a full cardiac cycle.

• Scalability. As each Blue Gene/Q core has only 1 GB of available total memory, the
scope of this problem requires use of the entire LLNL Sequoia system of 1,572,864 cores.
Effective utilization of such a large core count means that traditional parallelization tools
like global communication tables are not feasible options.

• Load imbalance. The geometry of the human vasculature is incredibly complex. The
bounding box holds grid points representing fluid, inlets, outlets, walls, and exterior
points. Distributing the workload across hundreds of thousands to millions of cores re-
quires careful attention to load balance.

We address these challenges by extending the capability of HARVEY through (i) embedding
of preprocessing and use of buffered meshing to avoid global bottlenecks and reduce I/O stress,
(ii) the introduction of indirect addressing to reduce the memory footprint, (iii) development of
a multi-step load balancing scheme that prioritizes locality and memory reduction, (iv) removal
of global communication tables to improve scalability.

3.1 Parallel Preprocessing

The original implementation of HARVEY used multiple preprocessing steps to construct the
3D spatial grid from the surface mesh and set up neighbor lists and communication tables. This
strategy becomes infeasible at the target scales of this work, as the full 3D mesh must be read
from disk and distributed across tasks, creating both an I/O and memory bottleneck. Instead,
we have integrated these routines into HARVEY so that only the surface mesh is used in the
initial load balance and the volume grid can be generated in place on local MPI tasks.

Communication tables can be generated during setup using only local information due to
the use of a structured process grid, i.e. tasks need only talk to their process grid neighbors to
discover who owns fluid nodes in their stencil.

3.2 Minimizing Memory Footprint

One fundamental challenge to high-resolution lattice Boltzmann simulations of large arterial
geometries is the size of the underlying data grid and the associated storage requirements,
particularly during the setup and load balance phases of the calculation. For smaller scale
calculations, it is possible to store global information to simplify the construction of the grid
from the surface mesh, build communication tables, and load-balance the workload across tasks.
At larger length scales, however, such storage is no longer feasible. For example, the bounding
simulation box of the aortofemoral geometry shown in Fig. 2a has physical dimensions 168 x 115
x 614 mm, which corresponds to a data grid of 33,530 x 22,992 x 122,808 grid points at 5 µm
resolution. An integer array of the node types for a single xy-plane would consume 3.1 GB,
over three times the total memory available to a single Blue Gene/Q core.

4



Page 5 of 11

Acc
ep

te
d 

M
an

us
cr

ip
t

HARVEY Randles, Draeger, Bailey

In the full simulation box, however, only a small subset of grid points actually represent
fluid points. As shown in Table 4, the cerebral vasculature exhibits a 0.412% fluid density, the
aorta 2.36%, and the aortofemoral 1.08%. In such cases where the volume of the flow domain
makes up a small percentage of the bounding box, maintaining the entire domain in memory
leads to a large waste of storage and can lead to a high degree of load imbalance. To avoid
such issues we use an efficient data structure based on indirect addressing which allows nearly
arbitrary geometries to be handled at a minimal additional cost. Similar to the topologically
unstructured grid introduced by Schulz et al. [25], we only store the locations of grid points
that represent boundaries or fluid. During the preprocessing routine, we calculate and store
the location and node type of each neighbor by relying on the underlying stencil organization.
This procedure results in an 18-degree stencil that contains the necessary information about
each neighbor being stored for each non-exterior point. This can be used to establish the
communication tables discussed in the following sections. The use of indirect addressing means
that the distribution function size is minimized and equal to the product of the number of local
fluid nodes (Nloc) and number of stencil points (Nstencil).

3.3 Improving Load Balance

In HARVEY, we apply a three-dimensional Cartesian grid across the simulation box. Grid
points are then classified as fluid, inlet, outlet, wall, or dead, i.e. those falling outside the mesh.
This grid of fluid and wall nodes is constructed at runtime from a triangular surface mesh
supplied as input. Overlapping slices of the triangular mesh are distributed across z planes of a
3D process grid. Within these slices, the grid points just inside the mesh are determined from
the angle-weighted pseudo-normals[2] of the closest triangle. This defines a shell of grid points
that border each side of the mesh. The rest of the interior nodes are filled in by sweeping across
a single grid dimension and assigning all unidentified nodes between known interior points as
fluid nodes. Any interior point that borders a point outside of the mesh is labeled as a wall
node. Because only a single full grid dimension is needed to identify which nodes are inside the
mesh, we can buffer this calculation and distribute the results to avoid memory bottlenecks.

Load balance is handled iteratively and work is computed as a function of each Cartesian
direction. The algorithm prioritizes locality and limited memory usage by avoiding global data
as much as possible, using a multi-step approach:

1. Estimate work of each xy-plane using mesh boundaries.

2. Assign ownership of xy-planes to process planes.

3. Read triangular mesh and compute local grid points.

4. Compute total work of each xy-plane.

5. Reassign ownership of xy-planes, recompute local grid points.

6. For each local xy-plane, compute work as a function of y.

7. Assign y-strips of local grid points to y-strips of tasks.

8. Distribute local strips across tasks in x-direction.

The load balancer currently uses a simple work model that is proportional to the number of
fluid nodes on a task, but any performance model could be used, provided the estimated work
can be computed from local data. The final two steps (distributions in the y- and x- directions)
assign tasks in groups when multiple spatially-disconnected sections of work are detected. This
prevents the creation of large local bounding boxes that span different arterial branches and
which could cause a memory bottleneck.

5



Page 6 of 11

Acc
ep

te
d 

M
an

us
cr

ip
t

HARVEY Randles, Draeger, Bailey

3.4 Reduced Memory Stencil Operations

Once load balance is complete, each task “owns” the fluid nodes within its rectangular bound-
ing box and computes the particle distribution function for these nodes at every time step.
Determining the neighbors of a given fluid node could be done once and stored, but would
require storage equal to the distribution function itself. To save memory, rather than storing
an explicit neighbor list for all stencil points of each fluid node, we store the array index of each
fluid point on a regular grid throughout the bounding box, with non-fluid nodes indicated by
negative values. Stencil operations can then be applied to this bounding box array to determine
the indices of the corresponding fluid nodes and which ones border wall, inlet or outlet nodes.
This reduces the local memory requirement of neighbor calculations by a factor of fbbNstencil,
where fbb is the fraction of the bounding box occupied by fluid nodes.

Communication tables are computed during initialization and stencil points owned by neigh-
boring tasks updated every iteration using non-blocking MPI Isend and Irecv calls. To maximize
cache performance and data reuse, local data is sorted to group sent points and received points
to contiguous array locations.

4 Simulations

To demonstrate the scalability of the code in a range of regimes, we chose three different simula-
tion geometries: aortofemoral (Fig. 2a), aorta (Fig. 2b), and cerebral (Fig. 2c). Patient-specific
volumetric image data was obtained via CT imaging. The aortofemoral is the vasculature of
a 21 year-old female. The cerebral vasculature was that of a 31 year-old female and the aorta
was from an 8 year-old female. Data was obtained from the Open Source Medical Software
Corporation. The geometry was created by identifying the centerline paths through the ves-
sels and connecting series of 2D segmentations along these lines. Each vessel was constructed
individually and a Boolean addition used to combine the vessels into one model.

Figure 2: Mesh geometries used as HARVEY input: (a) Aortofemoral, (b) Aorta, and (c)
Cerebral.

The three different geometries represent systems of varying size, surface-fluid-ratio, and
complexity (in terms of the number of inlets and outlets). Table 4 demonstrates the data size as-
sociated with each geometry. This emphasizes the overall data demands of such high-resolution
simulations. For the aortofemoral system, the overall bounding box has the dimensions of 16765

6



Page 7 of 11

Acc
ep

te
d 

M
an

us
cr

ip
t

HARVEY Randles, Draeger, Bailey

Cerebral Aorta Aortofemoral
20 micron resolution

fluid nodes 607,924,802 3,175,878,044 16,033,887,284
data grid 4288 x 4951 x 6955 5375 x 2719 x 9212 8383 x 5748 x 30702

fluid fraction 0.412% 2.36% 1.08%
10 micron resolution

fluid nodes 4,922,115,786 25,502,717,509 128,666,443,295
data grid 8575 x 9902 x 13909 10750 x 5437 x 18424 16765 x 11496 x 61404

fluid fraction 0.412% 2.36% 1.08%

Table 1: Computational details of the cerebral, aorta and aortofemoral geometries.

× 11496 × 61404 at 10 micron resolution. For a lattice Boltzmann model requiring two 8-byte
doubles for each stencil direction, this would require 3.6 Petabytes of storage capacity. It is
also important to note that increasing the grid resolution from 20 micron to 10 micron results
in an 8-fold increase in the number of grid points required.

Experiments have shown that the shear rate observed in vessels of the sizes studied here is
in the range in which the elastic behavior of blood becomes insignificant. As such, in this work,
blood is considered to be a Newtonian, isotropic, and homogenous fluid [8]. The viscosity is
assumed to have a value of 0.04 g/(cm s) and the density of blood is taken as 1.06 g/cm3. A
rigid-wall approximation is used.

5 Performance and Scalability

In this section, we present strong scaling measurements on the full 1.5 million core LLNL Sequoia
Blue Gene/Q machine. All simulations were run with 16 MPI tasks per 16-core Blue Gene/Q
compute node and one thread per task. Results for all three geometries are shown in Fig. 3.
The average iteration time was computed from the maximum time spent by any task in the
main lattice Boltzmann iteration loop. For consistency, all I/O beyond simple standard output
was disabled. In cases where multiple MPI process grids were used with the same number of
nodes, only the result with the fastest overall time-to-solution is shown.All systems showed excellent strong scalability, with parallel efficiencies ranging from 34%
(519-fold speedup over a 1536x increase in task count) for the 20 µm cerebral geometry to 96%
(11.5-fold speedup over a 12x increase in task count) for the 10 µm aortofemoral geometry.
Communication time was a relatively small fraction of the total iteration time, ranging from
0.4% to 19% depending on the system size and resolution (see Fig. 4). The significant increase
in relative communication time cannot simply be explained by the inevitable increase in the
surface-to-volume ratio of processor domains as the total number of tasks increases, which to
first order will only scale as the cube root of the total number of tasks. This model would
predict a maximum communication fraction of 5% for the 20 µm cerebral geometry rather than
the 19% we observe, indicating that other factors such as load imbalance are responsible for
the significant increase in communication time at scale.

For systems of a few hundred thousand MPI tasks and below, the load imbalance was below
20%, but became substantial at full scale, e.g. as large as 96% in the 20 µm cerebral geometry.
We define load imbalance as the difference between the average time and the maximum time

7



Page 8 of 11

Acc
ep

te
d 

M
an

us
cr

ip
t

HARVEY Randles, Draeger, Bailey

Figure 3: Strong scaling of cerebral, aorta and aorta-femoral geometries at 10 and 20 µm
resolutions. Dashed lines indicate perfect scaling from the smallest task count.

Figure 4: Maximum communication time as a fraction of total iteration time of cerebral, aorta
and aorta-femoral geometries at 10 and 20 µm resolutions.

spent in the iteration loop, normalized by the average iteration time:

λ =

(
tmax

tavg
− 1

)
(3)

Therefore, although one might initially conclude from Figures 3 and 4 that the code is
becoming communication-bound at full scale, Figure 5 shows that load imbalance accounts for
the majority of the deviation from ideal strong scaling. Moreover, the similar shapes of
Figures 4 and 5 indicate that the tasks with the highest overall workload correspond to those
with the highest communication volume. This is likely exacerbated by the fact that the load
balance algorithm currently does not take into account the differences in total communication

8



Page 9 of 11

Acc
ep

te
d 

M
an

us
cr

ip
t

HARVEY Randles, Draeger, Bailey

Figure 5: Load imbalance of cerebral, aorta and aorta-femoral geometries at 10 and 20 µm
resolutions.

volume between tasks with many neighbors (e.g. in the middle of arteries) and tasks with
relatively few (e.g. at edges or on smaller branches). Although the overall performance is quite
good for a lightweight load balancer on these geometries at this scale, we anticipate that further
performance gains can be realized by integrating a more robust performance model into the
load balancer.

In addition to improving load balance, we plan to further decrease the overall time-to-
solution by implementing newly developed data access patterns to reduce the cost of data
movement in bandwidth-bound regions of the code. We have also begun developing optimized
kernels to exploit specialty hardware such as SIMD vector units and will explore whether similar
kernels can be used to make efficient use of heterogeneous architectures, e.g. GPU machines.

6 Conclusion

We presented computational advancements to the HARVEY code designed to enable scalable
simulations of large, high-resolution arterial geometries. Our results show strong scalability for
three different systems on 1.5 million Blue Gene/Q cores, where parallel efficiencies of 35% to
96% were observed. As this work is the first direct simulation of a significant fraction of the
full circulatory system carried out at resolutions as high as 10 µm, we believe that it will set
the stage for the next generation of high-fidelity hemodynamics simulations.

7 Acknowledgments

The authors would like to thank Liam Krauss at LLNL for visualization and analysis work,
and the staff at Livermore Computing for system support. This work was performed under the
auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under
Contract DE-AC52-07NA27344.

9



Page 10 of 11

Acc
ep

te
d 

M
an

us
cr

ip
t

HARVEY Randles, Draeger, Bailey

References

[1] Jordi Alastruey, Ashraf W Khir, Koen S Matthys, Patrick Segers, Spencer J Sherwin, Pascal R
Verdonck, Kim H Parker, and Joaquim Peiró. Pulse wave propagation in a model human arterial
network: Assessment of 1-d visco-elastic simulations against¡ i¿ in vitro¡/i¿ measurements. Journal
of biomechanics, 44(12):2250–2258, 2011.

[2] J.A. Baerentzen and H. Aanaes. Signed distance computation using the angle weighted pseudonor-
mal. IEEE Transactions on Visualization and Computer Graphics, 11(3):243–253, 2005.

[3] M. Bernaschi, M. Bisson, T. Endo, S. Matsuoka, M. Fatica, and S. Melchionna. Petaflop biofluidics
simulations on a two million-core system. In Proceedings of the 2011 International Conference for
High Performance Computing, Networking, Storage and Analysis, page 4. ACM, 2011.

[4] M. Bernaschi, M. Bisson, M. Fatica, S. Melchionna, and S. Succi. Petaflop hydrokinetic simulations
of complex flow on massive GPU clusters. Computer Physics Communications, 184(2):329–341,
2013.

[5] CG Caro, TJ Pedley, RC Schroter, WA Seed, and KH Parker. The mechanics of the circulation,
volume 192633236. Oxford University Press Oxford, 1978.

[6] J. Carter, M. Soe, L. Oliker, Y. Tsuda, G. Vahala, L. Vahala, and A. Macnab. Magnetohydro-
dynamic turbulence simulations on the earth simulator using the lattice Boltzmann method. In
Proceedings of the 2005 ACM/IEEE International Conference for High Performance Computing,
Networking, Storage and Analysis, SC ’05. IEEE Computer Society, 2005.

[7] J.R. Cebral, M.A. Castro, J.E. Burgess, R.S. Pergolizzi, M.J. Sheridan, and C.M. Putman. Char-
acterization of cerebral aneurysms for assessing risk of rupture by using patient-specific computa-
tional hemodynamics models. American Journal of Neuroradiology, 26(10):2550–2559, 2005.

[8] S. Chien, S. Usami, H.M. Taylor, J.L. Lundberg, and M.I. Gregersen. Effects of hematocrit and
plasma proteins on human blood rheology at low shear rates. J Appl Physiol, 21(1):81–87, 1966.

[9] Paolo Di Achille and Jay D Humphrey. Toward large-scale computational fluid-solid-growth models
of intracranial aneurysms. The Yale journal of biology and medicine, 85(2):217, 2012.

[10] David JW Evans, Patricia V Lawford, Julian Gunn, D Walker, DR Hose, RH Smallwood,
B Chopard, M Krafczyk, J Bernsdorf, and A Hoekstra. The application of multiscale modelling
to the process of development and prevention of stenosis in a stented coronary artery. Philo-
sophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences,
366(1879):3343–3360, 2008.

[11] D.J.W. Evans, P.V. Lawford, J. Gunn, D. Walker, D.R. Hose, RH Smallwood, B Chopard,
M Krafczyk, J Bernsdorf, and A Hoekstra. The application of multiscale modeling to the process
of development and prevention of stenosis in a stented coronary artery. Philosophical Transactions
of the Royal Society A: Mathematical, Physical and Engineering Sciences, 366(1879):3343–3360,
2008.

[12] C Alberto Figueroa, Irene E Vignon-Clementel, Kenneth E Jansen, Thomas JR Hughes, and
Charles A Taylor. A coupled momentum method for modeling blood flow in three-dimensional
deformable arteries. Computer methods in applied mechanics and engineering, 195(41):5685–5706,
2006.

[13] L. Grinberg, V. Morozov, D. Fedosov, J.A. Insley, M.E. Papka, K. Kumaran, and G.E. Karniadakis.
A new computational paradigm in multiscale simulations: Application to brain blood flow. In
Proceedings of the 2011 International Conference for High Performance Computing, Networking,
Storage and Analysis, pages 1–12. IEEE, 2011.

[14] M. Hecht and J. Harting. Implementation of on-site velocity boundary conditions for D3Q19
lattice Boltzmann simulations. Journal of Statistical Mechanics: Theory and Experiment,
2010(01):P01018, 2010.

[15] FJ Higuera, S. Succi, and R. Benzi. Lattice gas dynamics with enhanced collisions. EPL (Euro-
physics Letters), 9(4):345–349, 1989.

10



Page 11 of 11

Acc
ep

te
d 

M
an

us
cr

ip
t

HARVEY Randles, Draeger, Bailey

[16] O. Malaspinas, B. Chopard, and J. Latt. General regularized boundary condition for multi-speed
lattice Boltzmann models. Computers & Fluids, 49(1):29–35, 2011.

[17] G.R. McNamara and G. Zanetti. Use of the Boltzmann equation to simulate lattice-gas automata.
Physical Review Letters, 61(20):2332–2335, 1988.

[18] S. Melchionna, J. Lätt, E. Kaxiras, A. Peters, M. Bernaschi, and S. Succi. Endothelial shear
stress from large-scale blood flow simulations. In Proceedings of Fifth European Conference on
Computational Fluid Dynamics, ECCOMAS CFD’10, 2010.

[19] K. Pekkan, B. Whited, K. Kanter, S. Sharma, D. De Zelicourt, K. Sundareswaran, D. Frakes,
J. Rossignac, and A.P. Yoganathan. Patient-specific surgical planning and hemodynamic com-
putational fluid dynamics optimization through free-form haptic anatomy editing tool (surgem).
Medical & Biological Engineering & Computing, 46(11):1139–1152, 2008.

[20] Charles S Peskin. Numerical analysis of blood flow in the heart. Journal of Computational Physics,
25(3):220–252, 1977.

[21] A. Peters, S. Melchionna, E. Kaxiras, J. Lätt, J. Sircar, M. Bernaschi, M. Bison, and S. Succi.
Multiscale simulation of cardiovascular flows on the IBM Blue Gene/P: Full heart-circulation sys-
tem at red-blood cell resolution. In Proceedings of the 2010 ACM/IEEE International Conference
for High Performance Computing, Networking, Storage and Analysis, SC ’10, 2010.

[22] A. Peters Randles, V. Kale, J.R. Hammond, W. Gropp, and E. Kaxiras. Performance analysis of
the lattice Boltzmann model beyond Navier-Stokes. In Proceedings of the 27th IEEE International
Parallel and Distributed Processing Symposium, IPDPS ’13, 2013.

[23] T. Pohl, F. Deserno, N. Thurey, U. Rude, P. Lammers, G. Wellein, and T. Zeiser. Performance
evaluation of parallel large-scale lattice Boltzmann applications on three supercomputing archi-
tectures. In Proceedings of the 2004 ACM/IEEE International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’04. IEEE Computer Society, 2004.

[24] A. Randles and E. Kaxiras. A spatio-temporal coupling method to reduce the time-to-solution of
cardiovascular simulations. In Proceedings of the 28th IEEE International Parallel and Distributed
Processing Symposium, IPDPS ’14, 2014.

[25] M Schulz, M Krafczyk, J Tölke, and E Rank. Parallelization strategies and efficiency of cfd compu-
tations in complex geometries using lattice boltzmann methods on high-performance computers.
In High performance scientific and engineering computing, pages 115–122. Springer, 2002.

[26] N Stergiopulos, DF Young, and TR Rogge. Computer simulation of arterial flow with applications
to arterial and aortic stenoses. Journal of biomechanics, 25(12):1477–1488, 1992.

[27] S. Succi. The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Oxford University
Press, 2001.

[28] C.A. Taylor, T. Hughes, and C.K. Zarins. Finite element modeling of blood flow in arteries.
Computer Methods in Applied Mechanics and Engineering, 158(1):155–196, 1998.

[29] D.A. Vorp, D.A. Steinman, and C.R. Ethier. Computational modeling of arterial biomechanics.
Computing in Science & Engineering, 3(5):51–64, 2001.

[30] Nicolaas Westerhof, Frederik Bosman, Cornelis J De Vries, and Abraham Noordergraaf. Analog
studies of the human systemic arterial tree. Journal of biomechanics, 2(2):121–143, 1969.

[31] S. Williams, L. Oliker, J. Carter, and J. Shalf. Extracting ultra-scale lattice Boltzmann per-
formance via hierarchical and distributed auto-tuning. In Proceedings of the 2011 ACM/IEEE
International Conference for High Performance Computing, Networking, Storage and Analysis,
SC ’11, pages 1–10. IEEE Computer Society, 2011.

[32] N. Xiao, J.D. Humphrey, and C.A. Figueroa. Multi-scale computational model of three-
dimensional hemodynamics within a deformable full-body arterial network. Journal of Com-
putational Physics, 244:22–40, 2013.

[33] Q. Zou and X. He. On pressure and velocity boundary conditions for the lattice Boltzmann BGK
model. Physics of Fluids, 9:1591, 1997.

11


	Introduction
	Methodology 
	HARVEY implementation details
	Parallel Preprocessing
	Minimizing Memory Footprint
	Improving Load Balance
	Reduced Memory Stencil Operations

	Simulations
	Performance and Scalability
	Conclusion
	Acknowledgments

