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Abstract

A wide range of real-world database applications, including financial and medical applications, are faced
with accountability and trace-ability requirements. These requirements lead to the replacement of the
usual update-in-place policy by an append-only policy, yielding so-called transaction-time databases.
With logical deletions being implemented as insertions at the physical level, these databases retain all
previously current states and are ever-growing. A variety of physical storage structures and indexing
techniques as well as query languages have been proposed for transaction-time databases, but the sup-
port for physical deletion, termed vacuuming, has received precious little attention. Such vacuuming
is called for by, e.g., the laws of many countries. Although necessary, with vacuuming, the database’s
previously perfect and reliable recollection of the past may be manipulated via, e.g., selective removal
of records pertaining to past states. This paper provides a semantic framework for the vacuuming of
transaction-time databases. The main focus is to establish a foundation for the correct and user-friendly
processing of queries and updates against vacuumed databases. Queries that may return results affected
by vacuuming are intercepted, and the user is presented with the option of issuing similar queries that
are not affected by vacuuming.

Keywords: Vacuuming, physical deletion, transaction-time databases.

1 Introduction

Real-world database applications are frequently faced with accountability and trace-ability requirements,
which in turn lead to so-called transaction-time databases that faithfully timestamp and retain all past states,
thus offering their applications with a perfect, uncorrupted record of the past [Cop82].

However, these databases are also ever-growing, and business policies and legal laws demand the ability
to physically delete data. Such physical deletion necessarily compromises irreversibly the previously perfect
record of past states. It is thus a fundamental requirement to physical deletion capabilities that these be
“controlled,” which leads to the introduction of vacuuming.

We provide a framework that encompasses a range of new concepts essential to vacuuming. As part
of this framework, we introduce vacuuming specifications and give their semantics. To meet the need
for controlled physical deletion, vacuuming specifications include removal specification parts as well as
so-called keep specification parts that override the former specification parts and specify what cannot be
removed.

The paper explores how detection of potentially vacuuming-affected queries may be accomplished. De-
tection of queries that may yield results affected by vacuuming opens the possibility for taking cooperative
action, providing, e.g., alternative queries that are similar to the original query, but are guaranteed to be
unaffected by vacuuming. This detection is contingent on the disciplined modification of vacuuming spec-
ifications. Specifically, we introduce the notions ofgrowing andalive specification parts, which open the
possibility of vacuuming the vacuuming specifications without loosing track of what is removed by vacu-
uming.

The techniques proposed in the framework separate the enforcement of vacuuming semantics from the
actual physical removal of data. This independence between correctness and physical vacuuming is highly
desirable because it offers maximum flexibility for the scheduling of physical removal.

Only little work related to vacuuming has been published. A preliminary exploration of vacuuming was
reported in reference [JM90]. In this unpublished technical report, we present different types of vacuuming
specifications and introduce an algebra for defining vacuuming specifications. The present paper is based
on and extends this report.

The TSQL2 temporal query language supports very basic vacuuming functionality: it is possible to
specify cut-off points [SAA+94, Jen95] that indicate that data current only prior to a certain cut-off date

1



should be physically deleted. The semantic framework provided in this paper provides precise definitions
of the concepts underlying this functionality, and provides much more advanced functionality.

Next, the Postgres DBMS [RS87], which supports transaction-time databases, includes a vacuuming
cleaner daemon that is responsible for the asynchronous and transparent movement of logically deleted data
from magnetic disk to cheaper optical disk storage. This kind of daemon and the associated techniques
for physical deletion and reorganization and for the scheduling of the daemon may possibly be applied for
implementing physical deletions. Beyond that, this research are accommodated by the framework presented
here and is unrelated to this paper.

In the context of data warehousing, an approach to “expiring” data has recently been presented [GMLY98].
This work studies the removal of data not needed for maintaining predefined views. Further, all access to the
data warehouse is assumed to occur through views. So, unlike in this paper, unrestricted, ad-hoc querying
is not considered. Perhaps more importantly, because the underlying databases are not append-only, the
correctness concerns fundamental to the work presented in this paper also play no role.

The contents are structured as follows. Section 2 offers an overview of a vacuuming-extended DBMS
and identifies challenges posed by the introduction of vacuuming and met in the remainder of the paper.
Section 3 provides the necessary details of the concrete data model context for the study of vacuuming,
setting the stage for the introduction of vacuuming specifications, the semantics of which are defined in
Section 4. Sections 5 and 6 then proceed to consider the querying and modification of databases with
vacuuming, respectively. Notions of correctness and user-friendliness are the foci of these sections. Finally,
Section 7 concludes and offers research directions.

2 Vacuuming—An Overview

In order to provide a global view of the paper’s topic, this section gives a comprehensive example of a
database system extended with vacuuming. Using the example, we introduce the semantics of vacuuming
and consider the querying of vacuumed databases.

Assume we have an instanceempof a temporal relation schemaEmp, given as follows.

Emp = fS : SURROGATE ;EmpId ; Sal ;Bal : INT ;Sex : fM;Fg; TT `; TT a : TIMEg

Attribute S is a tuple identifier,EmpId identifies an employee, andSal andBal record the salaries and
account balances of employees, respectively. AttributesTT` andTT a are both of typeTIME and record
the time of insertion and deletion, respectively1.

First, we assume no vacuuming is specified on the database that the relationempis part of. Thenempis
given as in Table 1.

All updates of a temporal relation such asempresult in tuples being inserted, and tuples are never
physically removed. (For emphasis, we will use “delete” for logical deletion and “remove” for physical
removal throughout the paper.) Therefore,empis ever-growing, and it is likely thatempwill eventually
contain some data that is irrelevant to its users or must be (physically) removed for other reasons. Now,
assume that the current business policy is that data (logically) deleted more than four years ago is not
to be retained, that tuples deleted between two and four years ago with valueF of attributeSex can be
disregarded, but that all tuples in the database containing aBal of $ � 5; 000 or less must be retained.
Using standard relational algebra, this may be specified with the following vacuuming specification,V =
fv1; v2; v3g.

1Updates are modeled as deletions followed by insertions and assign deletion timestamps to some tuples and insertion times-
tamps to others.
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S EmpId Sal Bal Sex TT` TTa

1 234 32k $� 6; 015 M 2/7/93 5/10/94
2 128 28k $ 10; 274 F 8/14/93 8/31/97
3 234 32k $� 2; 015 M 5/11/94 6/2/94
4 597 40k $� 4; 652 M 5/12/94 7/2/94
5 597 47k $� 2; 576 M 7/3/94 NOW

6 234 35k $ 1; 763 M 11/8/94 NOW

7 318 21k $ 211 F 11/24/94 6/2/95

Table 1: TheempRelation

v1 �(emp) : �TTa�NOW�4yrs(emp)

v2 �(emp) : �NOW�4yrs<TTa�NOW�2yrs^Sex=F (emp)

v3 �(emp) : �Bal�$�5;000(emp)

The specification is read as follows: “Remove (�) from empall tuples deleted more than four years ago, i.e.,
tuples where the value of the attributeTT a is less than the current time,NOW , minus four years. Remove
from empall tuples deleted between two and four years ago where attributeSex has valueF . Keep (�) in
empall tuples where attributeBal has the value$� 5; 000 or less.”

While v1 andv2 are removal specification parts and tell what possibly can be removed,v3 is a keep
specification part stating what must be kept. Keep specification parts always override removal specification
parts, for safeguarding reasons. Submitting specificationV yields the vacuumed relationempin Table 2,
the current time (and the value of variableNOW [CDI+97]) being7=14=98.

S EmpId Sal Bal Sex TT` TTa

1 234 32k $� 6; 015 M 2/7/93 5/10/94
2 128 28k $ 10; 274 F 8/14/93 8/31/97
5 597 47k $� 2; 576 M 7/3/94 NOW

6 234 35k $ 1; 763 M 11/8/94 NOW

Table 2: Relationempat Time7=14=98, Vacuumed According toV = fv1; v2; v3g

Without vacuuming, a transaction-time relation satisfies the property offaithful history encoding(to be
formalized later), stating that previously current database states are retained. This property is jeopardized
when vacuuming is allowed. To illustrate this, an example follows showing that querying a vacuumed
database, it is possible to obtain answers affected by vacuuming, i.e., some queries return different answers
than they would have without vacuuming.

Assume the queryQ = �Sal�35k(emp) is issued, letV = ;, and assume that the current time is
7=14=98. ThenQwould evaluate to the result shown in Table 3. If insteadV = fv1; v2; v3g,Qwill evaluate
to tuples5 and6, since tuple4 was logically deleted more than four years ago and hasBal > $� 5; 000.

So queryQ is affected by the vacuuming according toV , and in generalQ(emp; ;) 6= Q(emp; V )
(here,(emp; V ) denotes relationempvacuumed according toV ). Thus, our sample queryQ returns a result
inconsistent with the previously current database states. This result is misleading to users expecting faithful
history encoding. Users knowing that faithful history encoding may have been compromised are unable to
properly interpret the answer. To properly interpret an answer, the users must understand the vacuuming
specifications in effect.
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S EmpId Sal Bal Sex TT` TTa

4 597 40k $� 4; 652 M 5/12/94 7/2/94
5 597 47k $� 2; 576 M 7/3/94 NOW

6 234 35k $ 1; 763 M 11/8/94 NOW

Table 3: The Result ofQ = �Sal�35k(emp; ;)

A system with vacuuming should support its users in interpreting the results of queries. Specifically,
the system should supportfaithful history querying(also to be formalized later), stating that only queries
unaffected by vacuuming are answered without an accompanying warning. On the other hand, queries that
may return results affected by vacuuming must return an error or be accompanied by a warning. Assuming
that an error message is returned, the system should return also at least one alternative, similar query,Q0,
satisfying faithful history querying. This is illustrated in Figure 1. The reader may verify that the alternative

>> select [Sal >= 35k] (emp)
Error: Query affected by vacuuming; alternative query:
select [((TTend > NOW - 4yrs and (TTend > NOW - 2yrs or Sex = M))

or Bal <= -5000) and Sal >= 35k] (emp)
Run? (Y)

Figure 1: The Result of Submitting QueryQ = �Sal�35k(emp; V )

query (Q0) returns the tuplesf5; 6g. So, issued on the vacuumed version ofemp,Q0 returns the same answer
asQ (see Tables 1 and 2). However, queryQ0 is not affected by vacuuming, i.e.,Q0(emp; ;) = Q0(emp; V ),
and this query thus satisfies the faithful history querying property.

Presented with the vacuuming-modified query, the user can choose either to issue this query or to modify
it and reissue the result. In the latter case, the system may have to go through a new modification-and-display
process.

In the next sections, we present the necessary parts of a data model that will serve as the context for
introducing vacuuming; we show how to determine whether a query such asQ satisfies faithful history
querying and how to determine a similar query that is not affected; and we consider the modification of the
vacuuming of user-defined relations and vacuuming specifications.

3 Data Model Context

A concrete data model context is needed for presenting the vacuuming framework. This section presents
the necessary aspects of the temporal data model that provides the context for our study. Initially, the
data structures, schemas as well as instances, of the model are presented. Then the syntax of vacuuming
specifications is given. The framework is independent of the particular query language adopted, so rather
than adopting one of the many existing temporal algebras or defining yet a new algebra [MS91], we reuse
the well-known relational algebra as the language associated with the data structures.

3.1 Temporal Relation Structures

LetUD = fD1;D2; : : : ;DDg be a set of non-empty domains, and letD = [Di be the set of all values. Let
DV = fv1; v2; : : : ; vV g be the specific domain of vacuuming specification parts. LetT = ft0; t1; : : : ; txg
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be a finite, non-empty set of times with< as the total order relation. We use elementtnow in T for denoting
the current time. Finally, letTNOW = T [fNOW g, whereNOW is a variable that evaluates to the current
time [CDI+97]. Then, fort 2 T andt0 2 TNOW , we define the meaning oft0 at timet, [[t0]]t, as follows.

[[t0]]t =

(
t if t0 = NOW

t0 otherwise

Next, letUA = fA1; A2; : : : ; AAg be a set of attributes, letVspec 2 UA, and letTT ` and TT a

be distinguished time attributes representing insertion and deletion time, respectively [SA85]. With these
definitions in place, we can define the schema aspects of a database.

A temporal relation schema, Rx, is defined as a pairhARx ;DOMRxi, where: (1)ARx � UA, and
ARx [ fTT

`; TT ag is the set of attributes of the schema. The latter two attributes are timestamp attributes
of Rx; (2) DOMRx is a function fromARx [ fTT

`; TT ag to UD [ fT; TNOW g, which assigns domains
in UD to attributes inARx , the domainT to the attributeTT `, and the domainTNOW to the attributeTT a.

Next, symbolV denotes the specific temporal relation schemahfVspecg;DOM V i for vacuuming spec-
ification parts, whereDOM V is a function assigning the domainsDV ; T; and TNOW to the attributes
Vspec; TT `; andTT a, respectively.

A temporal database schemaDB is then a finite set of temporal relation schemasRx = hARx ;DOMRxi,
one of them being the schemaV = hfVspecg;DOM V i.

EXAMPLE: In Section 2,empis the temporal relation with schemahAemp ;DOM empi, whereAemp =
fS;EmpId ; Sal ;Bal ;Sexg andDOM emp is the function assigning the domainSURROGATEto S, the
domainINT to each attributesEmpId , Sal , andBal , the domainfM;Fg to attributeSex , and finally the
domainsT andTNOW to TT ` andTT a, respectively.

Furthermore, we haveDB = fhAemp ;DOM empi; : : : ; hfVspecg;DOM V ig, as an example of a tem-
poral database schema. 2

We proceed to define instances of the schemas just defined. Atuple, u, on relation schemahARx ;DOMRxi

is a function from the attribute setARx [ fTT
`; TT ag to D [ fT; TNOW g, which assigns an element in

DOMRx(Ai) to each attributeAi 2 ARx , an element inT to TT `, and an element inTNOW to TT a; u
assigns the elements to the satisfaction of:

8t0 � u:TT
` (u:TT ` � [[u:TT a]]t0 ^ (u:TT ` = tnow ) u:TT

a = NOW )):

This formula simply states that intervals must start no later than when they end and that the end time
must beNOW if the start time is the current time.

For any pair of tuplesu1 andu2 on relations with the same explicit attributesAi, we say thatu1 andu2
arevalue equivalent, u1

v :e:
= u2, if and only if8Ai (u1:Ai = u2:Ai).

We also say that a tupleu on relationRx is current at timet in the database if and only ifu:TT ` � t �

[[u:TT a]]t, and more specifically that a tuple iscurrent in the database if it is current attnow .
We define atemporal vacuuming specification part, v, to be a tuple on the vacuuming specification

schemahfVspecg;DOM V i, assigning values from the domainDV to theVspec attribute, and values from
T andTNOW to TT ` andTT a, respectively.

With tuples in place, we proceed to relations. Atemporal relationRx with schemahARx ;DOMRxi is
a finite set of tuples.Rx does not contain value equivalent tuples that are current at the same time. We term
these user-defined relations. As a specific temporal relation, we define atemporal vacuuming specification
V with schemaV = hfVspecg;DOM V i. Thus,V is a finite set of temporal vacuuming specification parts.

Having a temporal relationRx and a vacuuming specificationV , the effect of specifying vacuuming
for Rx is a modified relation̂Rx, written as(Rx; V ). SoR̂x is the relationRx modified by the vacuuming
specificationV . We will return to the semantics of vacuuming, and to the definition ofR̂x in Section 4.
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Finally, a temporal databaseDB with schemaDB = fR1; : : : ;Rn;Vg is a set of temporal relations
modified by vacuuming specificationV , i.e.,DB = fR̂1; : : : ; R̂n; V̂ g.

EXAMPLE: Our sample database contains the modified temporal relations^emp andV̂ .
Relationempcontains a set of tuples, and as shown in Table 1, the first tuple is the function assigning

value1 toS, values234, 32k, $� 6; 015 toEmpId , Sal ,Bal , respectively, value M toSex , and transaction
timestamps 2/7/93 and 5/10/94 to the time attributesTT` andTT a, respectively.

The temporal vacuuming specificationV = fv1; v2; v3g shown in Section 2 is given next as the rela-
tion V .

Vspec TT` TTa

v1 �(emp) : �TTa�NOW�4yrs(emp) 5=16=1992 NOW

v2 �(emp) : �NOW�4yrs<TTa�NOW�2yrs^Sex=F (emp) 8=30=1995 NOW

v3 �(emp) : �Bal�$�5;000(emp) 5=16=1992 NOW

Here,v1 is the tuple that assigns theSTRINGvalue “�(emp) : �TTa�NOW�4yrs

�
emp

�
” to attributeVspec,

the time 5/16/1992 toTT `, and the variableNOW to TT a.
Later, after defining the semantics of vacuuming, we will return to the modified counterparts ofempand

V . For now, Tables 1 and 2 show relationempand its modified counterpart^emp, respectively. 2

3.2 Syntax of Vacuuming Specifications

We have defined a vacuuming specification part as a tuple on the schemahfVspecg;DOM V i, assigning
values fromDV to Vspec. Next, we specify which values domainDV offers as possible, orwell-formed,
specification part expressions.

One aspect of a specification part expression being well-formed is being syntactically correct. The
syntax of a vacuuming specification part expressionv is given by the following specification. Note that this
specification essentially permits arbitrary relational algebra selections.

v ::= !(R) : Exp
! ::= � j �
Exp ::= R j �F (Exp) j (Exp)
F ::= true j false j F bop F j :F j (F ) j TT op tt j tt op TT j d op Ai j Ai op d
tt ::= t j NOW j tt� tt j tt+ tt j (tt)
TT ::= TT` j TTa

bop ::= _ j ^

op ::= < j > j = j � j � j 6=

In addition to being syntactically correct, a specification part expression must also satisfy conventional
semantic constraints. It is required thatd 2 DAi

, Ai 2 UA, andt 2 T in the specification above. For
expressions such asAi op d andd op Ai, op should be defined for the domainDAi

of Ai andd 2 DAi
.

And for �F (Exp), F should only include attributesAi in Exp.
Note that any specification part expression defined here can be rewritten to be on the form “!(Rx) :

�P (Rx),” using standard equivalence-preserving transformations (e.g., [ASU79b, Ull88a]).
Specification parts having expressions of the form “�(Rx) : Exp” are removal specification parts, and

specification parts having expressions of the form “�(Rx) : Exp” are keep specification parts. From our
example,v1 andv2 are removal specification parts, andv3 is a keep specification part.
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4 Specification Semantics

Having defined a data model context for vacuuming and its syntax, we turn to defining the semantics of
a vacuuming specification,V . The semantics ofV expresses for each relationRx in the database what
remains inRx with V in effect. This expression was previously denoted byR̂x and is termed themodified
relation. In defining the modified relation, three issues are considered. First we consider the objectives to
be satisfied by the definition of the semantics. The second issue is how to take into account the pairs of
time values associated with vacuuming specification parts and how to properly account forNOW -relative
specification parts in the semantics. Third, we define the modified relation itself.

Considering the first issue, the definition of the meaning of a vacuuming specification aims at satisfying
two objectives, namely ease of use and loss protection. The rationale for the former objective is self-
evident; the latter is important because vacuuming is irreversible. It should thus be possible to guard against
unintended removal of data.

With these objectives in mind, the semantics of a vacuuming specification will be defined to be indepen-
dent of the insertion order of the vacuuming specification parts. This is consistent with the formalization of
a vacuuming specification as a relation.

Mainly to guard against unintended removal of data, but also to provide increased ease of use, we have
included keep specification parts that specify what must be kept in the database.

Wanting to express—without the use of keep specification parts—that certain tuples from a relation
are to be retained in the database can be done by making sure that no removal specification part selects
these tuples for removal. But this is only an implicit expression, making it difficult to maintain. Further,
it does not protect against unintended loss of data. With keep specification parts that override the removal
specification parts, it is instead possible to specify in a single specification part the tuples that are to be
retained. This is easier, and new removal specification parts are guaranteed to not inadvertently lead to the
removal of tuples to be kept. In general, specifications may become simpler with both keep and removal
specification parts available.

Having both keep and removal specification parts and an order-independent semantics, where the keep
specification parts override the removal specification parts, improves ease of use and facilitates loss protec-
tion. We thus define vacuuming in this way.

With the semantics decided upon at this abstract level, we turn to the second issue of determining
how the vacuuming specification parts contribute to vacuuming based on their temporal aspects. Being
a temporal relation, each part of a specification is timestamped withTT` andTT a values that indicate
when the part was inserted and subsequently logically deleted. How should these time values be taken into
account in the semantics?

A first thought may be that only current vacuuming specification parts should be taken into account
in the semantics of a specification. However, the semantics must express for each relation what is left in
the relation, independently of when the missing data was removed. Because even non-current (logically
deleted) vacuuming specification parts may be responsible for the absence of tuples from a relation, all
parts, non-current as well as current, must be taken into account in the semantics.

However, theTT ` andTT a values of a part do affect the semantics. Recall that vacuuming specification
parts may involve the variableNOW that evaluates to the current time, making themNOW -relative. For
example, specification partv2 in the running example specifies the removal of tuples from relationempwith
Sex = F , for whichNOW � 4yrs < TT a � NOW � 2yrs . This specification part was inserted on
8/30/1995 and remains current. So at current time the effect of this specification is the removal of tuples
that at some time between 8/30/1995 and the current time have satisfied the specified property, that is tuples
with Sex = F and for which9t (t� 4yrs < TT a � t� 2yrs ^ 8/30/1995� t � tnow ).

In general, the expression of a vacuuming specification part is modified to take into account its times-
tamps as follows. All occurrences ofNOW in the expression are replaced by an unused variablet, the
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expression is augmented by the term “^ TT ` � t � [[TT a]]tnow ,” and the resulting expression is existen-
tially quantified byt. Equivalence-preserving transformations may subsequently be applied to the modified
specification parts in order to simplify them. Recalling that each specification part can be rewritten in the
form “!(Rx) : �P (Rx),” modifying a specification part to take its timestamps into account gives a specifi-
cation part in the form “!(Rx) : �9t (P 0 ^ TT`�t�[[TTa]]tnow )(Rx),” whereP 0 is the predicateP with NOW
replaced byt.

Modifying this way any user-specified vacuuming specification part that follows the syntax defined
in Section 3.2 yields a well-defined expression specifying inconstant termsexactly what is selected by
a NOW -relative specification part from its insertion until the current time. Note that a logical deletion
(which corresponds to replacing valueNOW of attributeTTa by a fixed value) fixes the upper bound of
the vacuuming to some time before the current time,tnow .

EXAMPLE: The selection predicate in specification partv2 (with TT ` = 8/30/1995 andTT a = NOW )
modified as explained above may be simplified as described next. We assume that the current timetnow is
7/14/1998.

9t (Sex = F ^ t� 4yrs < TTa � t� 2yrs ^ 8/30/1995� t � tnow ^ tnow = 7/14/1998)

= (Sex = F ^ 8/30/1995� 4yrs < TTa � tnow � 2yrs ^ tnow = 7/14/1998)

= (Sex = F ^ 8/30/1991< TTa � 7/14/1996) 2

In addition toNOW -relative specification parts, parts that specify vacuuming in the future are meaning-
ful and thus allowed, although they do not appear to be very useful. To understand the issue, consider a re-
moval specification part with predicate “NOW �1yrs � TT a � NOW +1yrs .” When this part is deleted,
at some timetnow , the upper bound ofTT a of tuples to be removed istnow + 1yrs , i.e., one year into the
future. So for one year after having deleted the specification part, this part continues to remove tuples; the
deletion does not stop the removals. The removal specification part with predicate “NOW � 1yrs � TTa”
would remove exactly the same tuples as the first one above, during the time both are current, and it ceases
to remove tuples when logically deleted. Note that both specification parts result in tuples being removed
immediately upon insertion. This kind of inappropriate specifications are expected to be rejected by an
implementation of vacuuming.

Having considered the various issues, we are able to define the semantics of a vacuuming specifica-
tion in terms of its effect on each relation in turn. To do that, we defineV jRx as all specification parts
in V that concernRx, i.e., parts with aVspec value of the form “!(Rx) : Exp.” Now, let V jRx=
fv1; : : : ; vk; vk+1; : : : ; vsg, wherevi 2 fv1; : : : ; vkg areremovalspecification parts andvj 2 fvk+1; : : : ; vsg

arekeepspecification parts. Following the observation in Section 3.2 and taking the timestamps into account
as above, allvi’s specifying vacuuming for a relationRx can be reduced to the form “!(Rx) : �Fi

(Rx),”
whereFi is of the form “9ti (P 0

i ^ TT ` � ti � [[TT a]]tnow ).” We assume without loss of generality that
eachvi andvj above are of this form.

Holding the assumptions and notation introduced above in mind, we define the modified relation ofRx

at current time,̂Rx, as follows.

R̂x
def
= �(:

Wk
i=1 Fi)_(

Ws
j=k+1 Fj)

(Rx) (1)

So, the modified relation̂Rx is the set of tuples fromRx either not satisfying any predicate of a removal
specification partFi, or, if so, also satisfying the predicate of at least one keep specification partFj . Tuples
not satisfying any predicates at all are present inR̂x, and so are tuples satisfying any number of predicates
from keep specification parts. Also, no tuples satisfying only predicates from removal specification parts
are present in̂Rx. This way, keep specification parts override removal specification parts.
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EXAMPLE: Let us illustrate vacuuming by creating the expression of the modified relation^emp, from re-
lationsempandV = fv1; v2; v3g presented in Section 2.V contain only well-formed specification parts,
which by equivalence transformations can be rewritten to be on the form “!(Rx) : �P (Rx).” Sincev1 andv2
areNOW -relative specifications, they are rewritten to the form “!(Rx) : �9t (P 0^TT`�t�[[TTa]]tnow )(Rx).”
Now, from Equation 1 we get the modified relation̂emp = (emp; V ) = (�:(F1_F2)_F3(emp); ;) =
( ^emp; ;). Let F1, F2, andF3 be the selection predicate in the rewritten specification partsv1, v2, and
v3, respectively. Then the selection predicateF 0 = :(F1 _ F2) _ F3 will be:

F 0 = : [9t1 (TTa � t1 � 4yrs ^ 5/16/1992� t1 � tnow ) _

9t2 (t2 � 4yrs < TTa � t2 � 2yrs ^ 8/30/1995� t2 � tnow ^ Sex = F )]

_ [Bal � $� 5; 000]

= : [TTa � tnow � 4yrs _ (8/30/1991< TTa � tnow � 2yrs ^ Sex = F )]

_ [Bal � $� 5; 000]

Note that the vacuuming-modified relation̂emp can be vacuumed due toV without changing; no additional
tuples will be kept or removed. Finding the vacuuming-modified expression, when vacuuming one more
time, is done using the selection predicates in the same way, and since they are already present in the first
vacuuming-modified expression, they can be left out leaving the same vacuuming-modified expression. In
our example this gives:�

�:(F1_F2)_F3(emp); V
�

=
�
�:(F1_F2)_F3(�:(F1_F2)_F3(emp)); ;

�
=

�
�:(F1_F2)_F3(emp); ;

�
2

A system that implements vacuuming should obey the semantics defined above. On the other hand, it
is also attractive for the system to not have to actually perform physical removals eagerly to ensure that the
semantics are obeyed. Rather, lazy physical removal is attractive.

In order to both ensure correct semantics and permit lazy removal, the system may use the vacuuming-
modified relation expressions defined above in place of the corresponding relations themselves. The expres-
sions then serve as shields that hide the tuples in the relations that have been vacuumed logically, but may
or may not yet have been physically removed.

5 Querying Vacuumed Databases

Having defined the notion of a database system with vacuuming facilities, we now turn to the querying
of databases in the context of vacuuming. Transaction-time databases without vacuuming retain a perfect
record of past states. When introducing vacuuming, this is no longer guaranteed, and the results of queries
become harder to interpret. For example, a query on a past state may return an empty result either because
this state never contained qualifying data or because all qualifying data has been removed because of vac-
uumed. In this section, we specify the property of faithful history querying, aiming at making queries on
vacuumed databases easier to interpret. Next, we lay out a strategy for satisfying this property, and we
present the details of the solution. Throughout we use the example introduced in Section 2 for illustration.

5.1 Faithful History Encoding and Querying

A transaction-time database without vacuuming retains all previously current states. So a query that retrieves
the current database state at some timet, and the query that at some later time retrieves the database state
recorded as being current at timet, will both give the same result. This property, we termfaithful history
encoding.
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To give a precise definition, we need to define the meaning of retrieving the state current as of some
time. For this purpose, we define the timeslice�t(Rx) of Rx at time t [Sch77]. This operator returns a
non-temporal relation having the explicit attributes ofRx. The relation contains the set of tuples that are
value equivalent to the tuples in relationRx current at timet.

�t(Rx) = fu j u0 2 Rx ^ u
v :e:
= u

0 ^ u0:TT ` � t � [[u0:TT a]]tg

To definefaithful history encoding, we also need to be able to “rollback” a relation to how it was at
some past time.

For this purpose, let[[Rx]]t denote relationRx at timet, i.e., the set of tuples present in the relation at
this time. Then[[Rx]]t contains the set of tuples inserted into the relation before or at timet, even if they
were later deleted (i.e., deleted between timet and the current time); further the timestamps of the resulting
tuples are restored to their original appearance at timet. More formally,[[Rx]]t is defined as follows.

[[Rx]]t
def
= fu j 9u0 2 Rx (u

v :e:
= u

0 ^ u:TT ` = u
0
:TT

` ^ u:TT ` � t ^

((u:TT a = u
0
:TT

a ^ [[u0:TT a]]t � t) _

(u:TT a = NOW ^ [[u0:TT a]]t > t)))g

So to obtain the result, we first consider only the subset ofRx inserted no later than timet. If a tuple was
deleted after timet, we replace the deletion time with the value it actually had at timet, NOW ; otherwise,
the tuples from our subset are returned unmodified. Note that[[Rx]]tnow = Rx.

EXAMPLE: To illustrate the definition, consider relationemp in Table 1. [[emp]]10=1=94 denotes the set
of tuples shown in Table 4. Tuples 6 and 7 where inserted inempafter 10=1=94, so they are not present

S EmpId Sal Bal Sex TT` TTa

1 234 32k $� 6; 015 M 2/7/93 5/10/94
2 128 28k $ 10; 274 F 8/14/93 NOW

3 234 32k $� 2; 015 M 5/11/94 6/2/94
4 597 40k $� 4; 652 M 5/12/94 7/2/94
5 597 47k $� 2; 576 M 7/3/94 NOW

Table 4: The[[emp]]10=1=94 Relation

here. Tuple 2 had a transaction-time end of8=31=97 and[[8=31=97]]10=1=94 = 8=31=97, which is larger that
10=1=94. Thus tuple 2 receives the variableNOW as its new transaction-time end value. Tuples 1, 3, 4,
and 5 all have[[TT a]]10=1=04 � 10=1=94, so they retain their transaction-time end values. The tuples in the
table are exactly the tuples inempat time10=1=94. 2

With the two preceeding definitions, we can precisely definefaithful history encoding.

8Rx

�
8t � tnow

�
�t(Rx) = �t([[Rx]]t)

��
(2)

That is, for all relations and all timest not exceeding the current time, evaluating the timeslice with
time parametert on the relation as it was at timet versus on the current relation gives the same result. As a
result, all previously current states are retained.

With faithful history encoding, if a query on a past state returns an empty result then this means that
there never were qualifying tuples in this state. However, transaction-time databases with vacuuming are
unable to satisfy the property of faithful history encoding, and this inference cannot be made.
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Rather than simply giving no guarantees, we instead give a guarantee, termedfaithful history querying,
that attempts to get as close to faithful history encoding as possible. This new property states that only
queries that return the same answers when submitted to the vacuumed database as when submitted to the
corresponding unvacuumed one should be answered. With this property satisfied, misinterpretations of the
answers are prevented.

Formulated precisely, the property offaithful history queryingis satisfied if and only if the following
holds for all queriesQ that are answered by the system.

8Rx

�
Q(Rx; V ) = Q(Rx; ;)

�
(3)

EXAMPLE: To illustrate faithful history querying, we consider two sample queries based on the running
example.

The first query,Q1 = �TTa=NOW^Bal�$0(emp), only selects from the part of relationempnot affected
by vacuuming. Therefore, it is unaffected by vacuuming, and a system satisfying faithful history querying
needs not reject this query, but can give the answer, in this casef6g.

The second query,Q2 = �Sal�35k(emp), overlaps with the part ofempaffected by vacuuming. With
this query, it is impossible to say whether the answer will be correct or not, and the system must for safety
reasons deny answering this query. 2

Having defined the desirablefaithful history queryingproperty, the next step is to consider how to
achieve a system that supports this property. It is essential for the system to be able to detect potential
problematic queries.

5.2 Query Handling

A vacuuming-enhanced system that satisfiesfaithful history queryinganswers only some queries, while
taking other actions for the remaining queries. The four overall steps necessary to achieve this functionality
are as outlined next and are discussed in detail in the remainder of this section.

1. At vacuuming specification time, create expressions for the vacuuming-modified relations.

2. At query time, create the modified counterpart of the query submitted, obtained by replacing the
relation names in the query with the corresponding vacuuming-modified expressions for the relations.

3. Check if the modified and the original queries are equivalent. If yes, the original query is not affected
by vacuuming.

4. If the result of the previous step is affirmative, the query is evaluated and the answer is returned. The
possible responses to the other outcome will be discussed later in this section.

The first step is to create the vacuuming-modified relation as an expression on the unvacuumed relation.
This was taken care of in Section 4.

EXAMPLE: In Section 4, we obtained the following expression�F 0(emp) for the modified version of
relationemp. F 0 is given by

: [(TTa � tnow � 4yrs) _ (8/30/1991< TTa � tnow � 2yrs ^ Sex = F )] _ [Bal � $� 5; 000];

wheretnow denotes the current time. 2
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The second step occurs when a queryQ is issued and the system must test whether the query violates
faithful history querying. In this step, a vacuuming-modified versionQ0 of Q is created. This modified
version is obtained replacing all relation names inQ by the expressions for the corresponding vacuuming-
modified relations. The technique used here is known asquery modificationand is the technique tradition-
ally used for implementing integrity constraints and views [Sto75]. For example, an occurrence of a view
name in a query is substituted by the definition of the view so that the resulting query only references the
base relation(s) that are used to define the view.

In the third step, an equivalence test is performed onQ andQ0. Although it has been shown that the
general problem of determining equivalence of relational expressions is NP-complete, efficient algorithms
have also been devised for determining equivalence for an important subset of relational expressions (most
practical SPJ-queries) [ASU79a, ASU79b, PS88]. So, the test employed is one that will never succeed
if, in fact, Q andQ0 are not equivalent (soundness), but also one that may fail to detect equivalence be-
tween complicated expressions (incompleteness). While a sound and complete procedure is preferable, the
incompleteness is only a minor inconvenience in practice.

EXAMPLE: In the second example in Section 5.1, we considered two queries. The first wasQ1 =
�TTa=NOW^Bal�$0(emp). When this query is issued, we replaceempwith the expression�F 0(emp) given
in the previous example to obtain the modified version,Q0

1. Using standard equivalence transformations,
it is straightforward to verify that the original and modified queries are equivalent,Q1 � Q0

1. (Note that
occurrences ofNOW in a query are replaced bytnow when it is issued to the system.) The system can
therefore evaluateQ1 and return the answer without violating faithful history querying.

The second query wasQ2 = �Sal�35k(emp). It is easy to see that this query is not equivalent to
Q2 = �Sal�35k(�F 0(emp)), again using the definition ofF 0 given in the previous example. It will thus
constitute a violation offaithful history queryingto return an answer for queryQ2. 2

The fourth step remains. If the outcome of the equivalence test is positive, the system proceeds to
evaluate queryQ and returns the answer to the user. The result is unaffected by any vacuuming and by
whether any parts of the database selected for removal still remain in the database, e.g., because the system
uses a lazy policy for the physical removal.

If the outcome of the test is negative, the system should not simply evaluate queryQ. Some other action
should be taken. In the remainder, we explore the options.

Focussing first on application access, the natural approach would be giving an error or a warning. An
error message might be accompanied by reasons for the error and perhaps by alternative queries that do
satisfy faithful history querying. A warning might be accompanied by the answer to the query along with
alternative queries and reasons as well. The application can then use exception-handling, and, depending
on the warning codes, choose how to proceed.

In an interactive situation, the preferences are a bit different. Some users may be closely familiar with
the vacuuming specifications and may want answers even to queries that violate faithful history querying.
Violation of faithful history querying might be preferable for these users. Other users might expect answers
that satisfy faithful history querying and may thus misinterpret answers that do not. For these, receiving an
error message and one or more alternative queries would be appropriate.

Common to the situations is the presentation of one or more alternative queries. But what alternative
queries should be given to the user? One possibility is to return the vacuuming-modified query expressionQ0

to the user. Given the vacuuming in effect, this query is as similar toQ as possible while also satisfying the
required condition of being equivalent to its own vacuuming-modified version, i.e., satisfyingQ0 � Q00. It is
possible to apply equivalence-preserving transformations to expressionQ0 with the purpose of simplifying
it before returning it to the user. For example, the transformations also used during query optimization (e.g.,
[SC75, Ull88b]) are applicable. This was the option chosen in Section 2 (recall Figure 1).
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As a further extension, several alternative queries can be derived using techniques forquery generaliza-
tion and specialization[Mot84, Cha90]. Specialized versions ofQ0 are more restrictive thanQ0 and return
a smaller result thanQ0. Such queries do thus not violate faithful history querying. Generalized versions
of Q0 are less restrictive thanQ0 and return larger results thanQ0. To make sure that these do not violate
faithful history querying, they must either be constructed carefully, or they should be subjected to and pass
the equivalence test prior to being presented to the user.

6 Modifying Vacuumed Databases

Having defined vacuuming and having also covered the querying of vacuumed databases, database modifi-
cation remains to be covered. We may distinguish between the four cases obtained by combining (i) regular
modification versus (ii) vacuuming with (a) regular user-defined relations versus (b) the special relationV

that has vacuuming specification parts as tuples. The introduction of vacuuming poses no constraints on
modifications—insertions, updates, and deletions—of regular user-defined relations, leaving three cases.
Because the vacuuming of regular user-defined relations and of the vacuuming relation are achieved by
modifying relationV , the remaining three cases all reduce to modification ofV .

Section 6.1 covers modification of relationV , considering vacuuming specification parts of the form
“!(Rx) : Exp” (see Section 3.2), whereRx is any relation, user-defined as well asV . In this section, we
shall see that the irreversibility of vacuuming poses certain constraints on which modifications are allowed.
For example, it makes no sense to insert a specification part in order to keep tuples that are already selected
by an existing removal specification part.

Section 6.2 proceeds to cover another type of constraint that applies only to the vacuuming of relationV

itself; a type constraint which is accomplished via vacuuming specification parts of the form “!(V ) : Exp.”
Specifically, to achieve the functionality described in this paper, it is necessary to retain a complete record
of what has been removed from the database by vacuuming, so not all vacuuming specification parts can
simply be removed.

Throughout we use the vacuuming relationV in Table 5 for illustration. A summary concludes the
section.

6.1 Irreversibility-Induced Constraints on Vacuuming

When updating the vacuuming of regular relations and the vacuuming relation, it is a challenge—the only
one for vacuuming regular relations—to contend with the irreversibility of vacuuming. For example, once
a tuple has been selected by some removal specification part, keep specification parts that would select the
tuple must be disallowed. The principle “once vacuumed, always vacuumed” must be satisfied.

Stated precisely, we require that the vacuuming specificationV is growing, which is defined as follows.

growing(V )
def
() 8t

�
8Rx

�
8u

�
u 2 ([[Rx]]t; ;) ^ u 62 ([[Rx]]t; [[V ]]t) ) 8t0 > t (u 62 ([[Rx]]t0 ; [[V ]]t0))

���
So, a vacuuming specificationV is growing if and only if all tuplesu being removed from relationRx at

some timet will continue to be removed for all timest0 aftert. Note that([[Rx]]t; [[V ]]t) denotes the relation
Rx as it was at timet, vacuumed by the vacuuming specificationV as it also was at timet. To ensureV to
be growing, we consider (logical) deletions and insertions onV in turn.

There are no restrictions on deletions of keep specification parts. Deletion of a keep specification part
cannot result in less being removed, but may result in more being removed, and so does not conflict with
the above requirement.

Consider deletion of a general removal specification partv, a tuple of the form(\�(Rx) : �P (Rx)” ; tins ;
NOW ). This part was inserted at timetins , remains current, and is thus a candidate for deletion. The
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expression for the corresponding vacuuming-modified relation (at timet0) is defined as

�:[9t (P 0 ^ tins�t�t0)](Rx); (4)

whereP 0 is P with occurrences ofNOW replaced byt. The valuet0 in this expression was obtained by
evaluating[[TT a]]t0 = [[NOW ]]t0 . Deletingv is done by updating theTT a value ofv to tdel , the current time
when the deletion occurs. The expression for the vacuuming-modified relation (at any time) then becomes

�:[9t (P 0 ^ tins�t�tdel )](Rx): (5)

To see that the deletion ofv does not render a growing specification non-growing, it is sufficient to
observe that Expression 5 is at least as restrictive as, i.e., returns no more tuples that, the one it replaces
at the time of the deletion, the time Expression 5 replaces Expression 4. At this time, Expression 4 has
t0 = tdel , making the two expressions equivalent.

Turning to insertions, first observe that any specification part by itself is growing. Inspecting Expres-
sion 4, it can be seen that the range of possible values of variablet increases as time passes. By virtue of the
negation, the selection predicate thus becomes more and more restrictive as time passes. The expression for
a deleted part, given in Expression 5, remains constant. These observations also hold for keep specification
parts.

One problem remains: It is possible for a keep specification part to select a tuple already selected by a
removal specification part, creating an impossible situation where a tuple selected for removal and possibly
already removed must be kept in the database. This situation may occur because of the insertion of either a
removal or a keep specification part. Before stating requirements to insertions that avoid this problem, we
give examples that explore the issues involved.

Vspec TT ` TT a

v1 �(emp) : �TTa�NOW�4yrs(emp) 5=16=1992 7=14=1997

v2 �(emp) : �Bal�$�5;000(emp) 5=16=1992 NOW

v3 �(emp) : �NOW�4yrs<TTa�NOW�2yrs^Sex=F (emp) 7=4=1996 NOW

v4 �(emp) : �TTa�NOW�6yrs(emp) 7=15=1997 NOW

v5 �(emp) : �7=15=3996�NOW�TTa�7=15=4000�NOW (emp) 7=14=1998 NOW

v6 �(V ) : �TTa�NOW (V ) 7=14=1998 NOW

v7 �(emp) : �TTa�NOW�1yrs^Sex=M (emp) 7=14=1998 NOW

v8 �(emp) : �TTa�NOW�3yrs(emp) 7=14=1998 NOW

Table 5: Vacuuming SpecificationV at Time 7/14/1998

EXAMPLE: Table 5 gives the vacuuming specificationV , with the current time being 7/14/98. The speci-
fication parts are ordered and numbered according to their insertion time. Specification partsv5 to v8 are to
be inserted at the current time.

Inserting a removal specification part may lead to a conflict with an existing keep specification part, as
we show next. When this occurs, the removal specification part should not be inserted. Now assume thatV

consists of only the keep specification partv5, which has just been inserted. At timet0, v5 states that tuples
of empsatisfying the following predicate must be retained.

9t (7=15=3996 � t � TT
a � 7=15=4000 � t ^ 7=14=1998 � t � t

0)
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For example, fort0 = 7/14/1998, the predicate is “1=1=1998 � TT a � 1=1=2002,” and the lower bound
onTT a will continue to decrease as time passes.

Now assume that we want to insert specification partv7 from Table 5. The semantics ofv7 at timet0 is

�: [9t (TTa�t0�1yrs ^ Sex=M ^ 7=14=1998�t�t0)](emp):

For t0 = 7/14/1998, the selection predicate becomes “:[TTa � 7/14/1997̂ Sex = M ],” and the upper
limit on TT a will increase as the current time increases.

Insertingv7 will not present a problem at the time of insertion, but after a few months, a situation
will occur where whatv5 says must be kept has already been selected for removal byv7. For example,
in six months the lower bound onTT a in the expression forv5 is 7/1/1997. Butv5 selects tuples with
TT a � 7/14/1997 (and withSex = M ) for removal already at the current time. In conclusion, insertion of
v7 is not acceptable.

Note that, going back in time to a prior situation, havingV = fv1; v2g at current time 7/4/1996 and
insertingv3 or v4 at some later time does not present problems.v2 is the only keep specification part, and it
does not expand to select tuples that are selected by the removal specification parts as time increases.2

Requirering an insertion of a removal specification part to begrowth assuringgeneralizes the obser-
vations in the example. Assume that removal specification partvi concerns relationRx. When tried for
insertion into specificationV at timet, insertion ofvi is growth assuring ifgrowRem(vi; t; V ), defined as
follows.

growRem(vi; t; V )
def
()

: [9t0; t00 (t � t0 < t00 ^ 9u (u 62 ([[Rx]]t0 ; [[V [ fvig]]t0) ^ u 2 ([[Rx]]t00 ; [[V [ fvig]]t00)))]

The definition states that insertion of a removal specification part is growth assuring if no two timest0

andt00 later than the insertion time exist so that a tupleu can be found not being in the vacuumed relation at
time t0, but being in the vacuumed relation at the later timet00.

Turning to the insertion of keep specification parts, two similar problems can occur. A keep specification
part to be inserted can specify that tuples already selected for removal must be kept, or the keep specification
part can at some future time select tuples for keeping that were selected for removal prior to that time. The
next example illustrates this.

EXAMPLE: Assume thatV = fv1; v2; v3; v4g and that we want to insertv8 (see Table 5).
At the current time, 7/14/1998, specificationv3 selects tuples satisfying predicate8=30=1991 � TT a �

7=14=1996 ^ Sex = F for removal. Sincev8 currently specifies that tuples satisfying predicateTTa �

7=14=1995 should be kept, insertingv8 will create an instant problem and cannot be inserted.
Insertingv5 creates a delayed problem. For example, after the date 1/1/2000,v5 will specify that tuples

should be kept if (logically) deleted on or after 7/14/1996, butv3 already selects tuples deleted at that date
for removal. So in time, also insertingv5 will create a problem. 2

Assume that keep specification partvj concerns relationRx. Then, when tried for insertion into speci-
ficationV at timet, insertion ofvj is growth assuringif growKeep(vj ; t; V ), defined as follows.

growKeep(vj ; t; V )
def
()

: [9t0 (t0 < t ^ 9u0 (u0 62 ([[Rx]]t0 ; [[V ]]t0) ^ u
0 2 ([[Rx]]t; [[V [ fvjg]]t)))]^

: [9t0; t00 (t � t0 < t00 ^ 9u (u 62 ([[Rx]]t0 ; [[V [ fvjg]]t0) ^ u 2 ([[Rx]]t00 ; [[V [ fvjg]]t00)))]

The first line in the definition states that, at the time of insertion, no tupleu0 must exist that is selected
for removal byV before that time, but not by the modified specification. The second line has the same
format as the definition of growth assuring for insertions of removal specification parts.
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6.2 Retention of Vacuuming Information

The vacuuming specification is itself a temporal relation, and so it is possible to also apply vacuuming
to the vacuuming specification itself. However, we must ensure that a complete record is retained of the
vacuuming that is or will be in effect. This section formulates constraints that ensure this.

It should be clear that removal of specification parts being current is problematic. Even parts that have
been deleted may not always be selected for removal. An example illustrates the potential problem.

EXAMPLE: Consider specification partsv1 and v4 in Table 5. Herev4 takes the place ofv1 at time
7/15/1997. Now, at the current time 7/14/1998, even thoughv1 is deleted, it is still the reason for the
removal of tuples withTT a � 7=14=1993, andv4 still has no tuples to remove, since it selects tuples
deleted before 7/14/1992 for removal. Thus,v1 although not current is still important if one is to understand
the contents of the database.

Consider alsov6 specifying the removal of vacuuming specification parts that have been deleted. This
specification would remove specification partv1. If that happens, it will, for some time, not be possible to
see that original data may have been removed. Due to this, specification partv6 should not be allowed.2

To ensure that relevant information about vacuuming is not lost, we introduce the notions ofactiveand
passivespecification parts. A specification partv of a vacuuming specificationV is activeat time t if it
is responsible for vacuuming at timet. We define this for a specification partv specifying vacuuming for
relationRx.

active(v; t; V )
def
()

[9u (u 62 ([[Rx]]t; [[V ]]t) ^ u 2 ([[Rx]]t; [[V n fvg]]t)) ^ 9Exp (v:Vspec = �(Rx) : Exp)] _
[9u (u 2 ([[Rx]]t; [[V ]]t) ^ u 62 ([[Rx]]t; [[V n fvg]]t)) ^ 9Exp (v:Vspec = �(Rx) : Exp)]

A removal specification partvi specifying vacuuming forRx is active at timet if a tupleu exists, with
u being in relation[[Rx]]t vacuumed byV excludingvi, and withu not being in[[Rx]]t vacuumed by all
of V . In the same way, a keep specification partvj is active at timet if a tuple u exists, withu being
in [[Rx]]t vacuumed by all ofV , but not being in[[Rx]]t being vacuumed byV excludingvj . Removal
and keep specification parts are thus active if their presence select additional tuples for removal and keep,
respectively.

Next, a specification part, removal or keep, is passive if it is not active, but will be so at a later time.

passive(v; t; V )
def
() : active(v; t; V ) ^ 9t0 > t (active(v; t0; V ))

Theactiveandpassivespecification parts may at some time be responsible for vacuuming. This makes
these partsalive in contrast to the ones that will never be responsible for vacuuming—thedeadones, see
Figure 2. For all specification partsv 2 V and timet we define these predicates next.

alive(v; t; V )
def
() active(v; t; V ) _ passive(v; t; V )

dead (v; t; V )
def
() : alive(v; t; V )

Finally, the sets of active and alive specification parts at timet may be defined as follows.

active
�
V; t

�
=
�
v j v 2 [[V ]]t ^ active(v; t; V )

	
alive

�
V; t

�
=
�
v j v 2 [[V ]]t ^ alive(v; t; V )

	
The first set is exactly the specification parts responsible for the vacuuming at the timet, and the second set
is the parts that either are responsible for vacuuming at timet or will be so at a later time.
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Dead

Alive

Passive

Active

Figure 2: Migration of Types of Vacuuming Specification Parts

EXAMPLE: To illustrate, letV = fv1; v2; v3; v4g be the current vacuuming specification at time 7/14/1998
as given in Table 5. Thenactive(V; 7=14=1998) = fv1; v2; v3g. At this time, partv4 selects only tuples
deleted before 7/14/1992 for removal, butv1 also selects these and more tuples for removal. So at time
7/14/1998,v4 is not active. Butv4 is passive and thus alive because it will be active after time 7/14/1999.
Note also that whenv4 becomesactiveafter time 7/14/1999,v1 will be dead. 2

To ensure that no relevant vacuuming information is lost, the system must retain all specification parts
in the set of alive parts. So, when modifying the vacuuming relation at some timet, all that is necessary is to
check if parts that are inalive(V; t) will be removed. Note that the vacuuming specification must continue
to begrowing.

Now, modifying vacuuming on the vacuuming relation corresponds to deleting and inserting tuples in
V jV .

Deleting tuples will not create any problems. Deleting a vacuuming specification part results in a fixed
timestamp end value in the tuple. This only stops the vacuuming, retaining existing vacuuming knowledge.
Thus, no vacuuming knowledge is lost and, for the same reason as above, the vacuuming specification will
continue to begrowing.

However, inserting tuples can create problems, since this will specify removal or keep of vacuuming
specification parts. First of all, it is still a possibility that the part to be inserted will make the vacuum-
ing specification non-growing. This was addressed in the previous subsection. Second, inserting a keep
specification part will not create further problems, but inserting removal specification parts forV will cre-
ate a potential loss of vacuuming knowledge. To ensure that this will not happen, specifying removal of
specification parts beingalive should not be allowed.

So, what makes a removal specification partvi, specifying vacuuming onV , admissible for insertion into
V ? First, as stated before, the insertion must assure growth, and second it must beinformation retaining.
Insertingvi into V retains vacuuming information ifinfRet(vi; t; V ), defined as follows.

infRet(vi; t; V )
def
()

: [9t0 (t0 � t ^ 9v0 (alive(v0; t0; [[V ]]t0) ^ v
0 2 ([[V ]]t0 ; [[V ]]t0) ^ v

0 62 ([[V ]]t0 ; [[V [ fvig]]t0)))]

The definition says insertion of a removal specification partvi at the timet retains information about
specification parts being alive, if and only if there at no timet0 aftert exists a vacuuming specification part
being alive att0, and being removed byvi at that time, i.e., the insertion retains information if only dead
parts will be removed byvi.
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6.3 Summary

So, two major problems can occur when inserting new specification parts. First, the insertion can violate
the principle “once vacuumed, always vacuumed,” and second the insertion can create a loss of vacuuming
knowledge. To secure that none of these problems occur, we have defined the properties for these cases in
the prior subsections. The full definition of admissibility for insertions is given next.

admInsertion(v; t; V )
def
()

[infRet(v; t; V ) ^ growRem(v; t; V ) ^ 9Exp (v:Vspec = �(V ) : Exp)] _

[growRem(v; t; V ) ^ 9Exp; Rx (v:Vspec = �(Rx) : Exp))] _

[growKeep(v; t; V ) ^ 9Exp; Rx (v:Vspec = �(Rx) : Exp _ v:Vspec = �(V ) : Exp))]

7 Conclusions and Research Directions

A wide range of applications are faced with accountability and trace-ability requirements, in turn yielding
underlying databases that retain their past states. Such databases, termed transaction-time databases, are
ever growing, and even logical deletions result in insertions at the physical level.

This paper presents a semantic framework for the physical removal of data, or vacuuming, from such
databases. While necessary, vacuuming compromises the property that past database states are retained.
The framework defines the semantics of vacuuming specification facilities, and it supports the detection of
queries that, if answered, may yield results affected by vacuuming. This support provides the foundation
for offering user-friendly query support on vacuumed databases, which is also covered. The detection of
vacuuming-affected queries imposes certain constraints on the modification of the vacuuming specifications
that are in effect; the concepts necessary to capture these constraints as well as the constraints themselves
are given.

The studies reported in this paper point to interesting research directions, some of which are described
next.

In the current framework, vacuuming is an “all-or-nothing” proposition: either data is irreversibly elim-
inated or is retained. Extending the framework to also allow for the specification of off-line (or even “near-
line”) archival in the context of multi-level storage architectures appears to be an interesting and very useful,
but also non-trivial direction.

One of today’s foci in data warehousing is the bulk-loading of very large amounts of data, but as years
of data are accumulating in data warehouses, vacuuming is likely to become a future focus of attention. The
advanced decision support queries in data warehousing are expected to introduce new challenges.

When a query against a vacuumed database may not return the same result as when issued against
the unvacuumed, but otherwise identical database, a cooperative system may offer alternative queries that
are similar to the original query and that are unaffected by vacuuming. The use of techniques such as
query generalization and specialization for obtaining simple and easily comprehensible alternative queries
deserves exploration.

Acknowledgements

This research was supported in part by the Danish Research Councils through grants 9700780 and 9701406,
by the CHOROCHRONOS project, funded by the European Commission, contract no. FMRX-CT96-0056,
and by a grant from the Nykredit corporation.

18



References

[ASU79a] A. V. Aho, Y. Sagiv, and J. D. Ullman. Efficient Optimization of a Class of Relational Expres-
sions.ACM Transactions on Database Systems, 4(4):435–454, December 1979.

[ASU79b] A. V. Aho, Y. Sagiv, and J. D. Ullman. Equivalences Among Relational Expressions.SIAM
Journal of Computing, 8(2):218–246, May 1979.

[CDI+97] J. Clifford, C. Dyreson, T. Isakowitz, C. S. Jensen, and R. T. Snodgrass. On the Semantics of
“Now” in Databases.ACM Transactions on Database Systems, 22(2):171–214, June 1997.

[Cha90] S. Chaudhuri. Generalization as a Framework for Query Modification. InProceedings of the
6th Data Engineering Conference, pages 138–145, February 1990.

[Cop82] G. Copeland. What If Mass Storage Were Free?IEEE Computer Magazine, 15(7):27–35, July
1982.

[GMLY98] H. Garcia-Molina, W. Labio, and J. Yang. Expiring Data in a Warehouse. To appear inPro-
ceedings of the 24th International Conference on Very Large Databases, August 1998.

[Jen95] C. S. Jensen. Vacuuming. In R. T. Snodgrass, editor,The TSQL2 Temporal Query Language,
Chapter 23, pages 451–462. Kluwer Academic Publishers, 1995.

[JM90] C. S. Jensen and L. Mark. A Framework for Vacuuming Temporal Databases. Technical
report, CS-TR-2516, UMIACS-TR-90-105, Department of Computer Science. University of
Maryland, College Park, MD 20742, August 1990.

[Mot84] A. Motro. Query Generalization: A Technique for Handling Query Failure. InProceedings of
the 1st International Workshop on Expert Database Systems, pages 314–325, October 1984.

[MS91] E. McKenzie and R. Snodgrass. Evaluation of Relational Algebras Incorporating the Time
Dimension in Databases.Computing Surveys, 23(4):501–543, 1991.

[PS88] J. Park and A. Segev. Using Common Subexpressions to Optimize Multiple Queries. InPro-
ceedings ofthe 4th Data Engineering Conference, pages 311–319, February 1988.

[RS87] L. A. Rowe and M. R. Stonebraker. The Postgres Papers. Memorandum UCB/ERL M86/85,
Electronics Research Laboratory, College of Engineering, University of California, Berkeley,
CA 94720, June 1987.

[SA85] R. T. Snodgrass and I. Ahn. A Taxonomy of Time in Databases. InProceedings of ACM
SIGMOD, pages 236–246, May 1985.

[SAA+94] R. T. Snodgrass, I. Ahn, G. Ariav, D. S. Batory, J. Clifford, C. E. Dyreson, R. Elmasri,
F. Grandi, C. S. Jensen, W. Kafer, N. Kline, K. Kulkarni, T. Y. C. Leung, N. Lorentzos, J. F.
Roddick, A. Segev, M. D. Soo, and S. M. Sripada. TSQL2 Language Specification.SIGMOD
Record, 1(23):65–86, March 1994.

[SC75] J. M. Smith and P. Yen-Tang Chang. Optimizing the Performance of a Relational Algebra
Interface.Communications of the ACM, 18(10):569–579, October 1975.

[Sch77] B. M. Schueler. Update Reconsidered. InProceedings of the IFIP Working Conference on
Modelling in Data Base Management Systems, pages 149–164, 1977.

19



[Sto75] M. R. Stonebraker. Implementation of Integrity Constraints and Views by Query Modification.
Memorandum ERL-M514, Electronics Research Laboratory, College of Engineering, Univer-
sity of California, Berkeley 94720, March 1975.

[Ull88a] J. D. Ullman. Database and Knowledge—Base Systems, Volume I of Principles of Computer
Science. Computer Science Press, Rockville, MD, 1988.

[Ull88b] J. D. Ullman. Database and Knowledge—Base Systems, Volume II of Principles of Computer
Science. Computer Science Press, Rockville, MD, 1988.

20


