
Conceptual Modeling of Time-Varying
Information

Heidi Gregersen, Christian S. Jensen

September 10, 1998

TR-35

A TIMECENTER Technical Report

Title Conceptual Modeling of Time-Varying Information

Copyright c 1998 Heidi Gregersen, Christian S. Jensen. All rights re-
served.

Author(s) Heidi Gregersen, Christian S. Jensen

Publication History September 1998. A TIMECENTER Technical Report.

TIMECENTERParticipants

Aalborg University, Denmark
Christian S. Jensen (codirector), Michael H. B¨ohlen, Renato Busatto, Curtis E. Dyreson,
Heidi Gregersen, Dieter Pfoser, SimonasŠaltenis, Janne Skyt, Giedrius Slivinskas,
Kristian Torp

University of Arizona, USA
Richard T. Snodgrass (codirector), Sudha Ram

Individual participants
Anindya Datta, Georgia Institute of Technology, USA
Kwang W. Nam, Chungbuk National University, Korea
Mario A. Nascimento, State University of Campinas and EMBRAPA, Brazil
Keun H. Ryu, Chungbuk National University, Korea
Michael D. Soo, University of South Florida, USA
Andreas Steiner, TimeConsult, Switzerland
Vassilis Tsotras, Polytechnic University, USA
Jef Wijsen, Vrije Universiteit Brussel, Belgium

For additional information, see The TIMECENTER Homepage:
URL: <http://www.cs.auc.dk/research/DBS/tdb/TimeCenter/>

Any software made available viaTIMECENTER is provided “as is” and without any express or implied war-
ranties, including, without limitation, the implied warranty of merchantability and fitness for a particular
purpose.

The TIMECENTER icon on the cover combines two “arrows.” These “arrows” are letters in the so-called
Runealphabet used one millennium ago by the Vikings, as well as by their precedessors and successors.
The Rune alphabet (second phase) has 16 letters, all of which have angular shapes and lack horizontal lines
because the primary storage medium was wood. Runes may also be found on jewelry, tools, and weapons
and were perceived by many as having magic, hidden powers.

The two Rune arrows in the icon denote “T” and “C,” respectively.

Abstract

A wide range of database applications manage information that varies over time. Many of the underlying
database schemas of these were designed using one of the several versions, with varying syntax and
semantics, of the Entity-Relationship (ER) model. In the research community as well as in industry, it is
common knowledge that the temporal aspects of the mini-world are pervasive and important, but are also
difficult to capture using the ER model. Not surprisingly, several enhancements to the ER model have
been proposed in an attempt to more naturally and elegantly support the modeling of temporal aspects of
information. Common to the existing temporally extended ER models, few or no specific requirements
to the models were given by their designers.

With the existing proposals, an ontological foundation, and novel requirements as its basis, this paper
formally defines a graphical, temporally extended ER model. The ontological foundation serves to aid
in ensuring a maximally orthogonal design, and the requirements aim, in part, at ensuring a design that
naturally extends the syntax and semantics of the regular ER model. The result is a novel model that
satisfies an array of properties not satisfied by any single previously proposed model1.

Keywords—Conceptual modeling, database design, entity-relationship models, temporal databases, tempo-
ral data models, temporal semantics.

1 Introduction

A wide range of prominent, existing database applications manage time-varying information. These include
financial applications such as portfolio management, accounting, and banking; record-keeping applications,
including personnel, medical-record, and inventory; and travel applications such as airline, train, and hotel
reservations and schedule management.

Frequently, existing temporal-database applications such as these employ the Entity-Relationship (ER)
model [Che76], in one of its different incarnations, for database design. The model is easy to understand
and use, and an ER diagram provides a good overview of a database design. The focus of the model is on the
structural aspects of the mini-world (we use the term “mini-world” for the part of reality that the database
stores information about), as opposed to the behavioral aspects. This focus matches the levels of ambition
for documentation adopted by many users.

In the research community as well as in industry, it has been recognized that although temporal aspects
of mini-worlds are prevalent and important for most applications, they are also difficult to capture elegantly
using the ER model. The temporal aspects have to be modeled explicitly in the ER diagrams, resulting in
ER diagrams with entities and attributes that model the temporal aspects and that make otherwise intuitive
and easy-to-comprehend diagrams difficult to understand. As a result, some industrial users simply ignore
all temporal aspects in their ER diagrams and supplement the diagrams with textual phrases such as “full
temporal support,” indicating that some temporal aspect of data is somehow captured. The result is that the
mapping of ER diagrams to the relational tables of the underlying DBMS must be performed by hand; and
the ER diagrams do not document well the temporally extended relational database schemas used by the
application programmers. An example, Figure 1 illustrates how temporal aspects may clutter an otherwise
simple and easy-to-comprehend ER diagram. The example will be used throughout the paper.

Example 1.1 Figure 1 presents an ER diagram for a company divided into different departments. Each
department has a number, a name, some locations, and is responsible for a number of projects. The company
keeps track of when a department is inserted and deleted. It also keep track of the various locations of a

1The authors are with the Department of Computer Science, Aalborg University, Fr. Bajers Vej 7E, DK–9220 Aalborg Øst,
Denmark,fgregori ;csj g@cs.auc.dk . This work is supported in part by grants 9502695 and 9700780 from the Danish
Technical Research Council, grant 9701406 from the Danish Natural Science Research Council, and the CHOROCHRONOS
project, funded by the European Commission, contract no. FMRX-CT96-0056.

1

department. A department keeps track of the profits it makes on its projects. Because the company would
like to be able to make statistics on its profits, each department must record the history of its profits over
periods of time.

Deletion_date

Amount

Employee

Salary

Manages
Manager

Rank

ID

Name

Birth_date

Insertion_date

Deletion_date

Join_date

App_date Type

Start_date End_date

Work_period

Works_for

hours/week

Lifespan

Start_date End_date

End_dateStart_date

Name

Department

Project

End_date

Budget

Start_date

ID

Deletion_date

Insertion_date for
Responsible

Period

Number

Location

Amount

Values

End_dateStart_date

Income

Loc_vals

Belongs_to

Dep_TT

Emp_Hist

Transaction Time

(1,1)

(1,1)

(1,N)

(1,N)

(1,N)

(1,N)

(1,N)(1,1)

Salary_period

Profit

(1,N)

(1,N)

(1,1)

(1,N)

(1,N)

(1,N)

(1,N)

(1,N)

(1,1)

(1,N)

(1,N)(1,N)
(1,N)

(1,N)

(1,N)

Expenses

Insertion_date

Location_Period

Figure 1: ER Diagram Modeling Temporal Aspects

Each project has a manager who manages the project and some employees who work for the project.
Each project has an ID and a budget. The company registers the history of the budget of a project. Each
project is associated with a department that is responsible for the project. Each employee belongs to a single
department throughout his or her employment. For each employee, the company registers the ID, the name,
the date of birth, and the salary. The company also records the history of employments. The departments
would like to keep records of the different employees’ salary histories. For reasons of accountability, it is
important to be able to trace previous records of both profits and salaries.

Employees work on one project at a time, but employees may be reassigned to other projects, e.g., due
to the fact that a project may require employees with special skills. Therefore, it is important to keep track
of who works for which project at a given time and what time they are suppose to be finished working on
their current project. Some of the employees are project managers. Once a manager is assigned to a project,
the manager will manage the project until it is completed or otherwise terminated.

If we ignored the temporal aspects, we could remove all the entity types in Figure 1 that model time peri-
ods; and the relationship types Profit, Budget, and Salary may be modeled simply with attributes. Figure 11
shows the same mini-world, but now captured using the TIMEER model proposed in this paper.

2

The research community’s response to the shortcomings of the regular ER model for the modeling
of temporal aspects has been to develop temporally enhanced ER models, and a number of models have
been reported in the research literature. These temporal ER models are developed in an attempt to provide
modeling constructs that more naturally and elegantly permit the designer to capture temporal aspects,
such as valid and transaction time, of information. For a detailed description of the existing models, see
Gregersen and Jensen [GJ].

2

The approaches taken to add built-in temporal support into the ER model are quite different. The
temporal ER models generally either change the semantics of the existing ER model constructs or introduce
new constructs to the model. One approach is to devise new notational shorthands that replace some of the
patterns that occur frequently in ER diagrams when temporal aspects are being modeled. Another approach
is to change the semantics of the existing ER model constructs, making them temporal. In its extreme form,
this approach does not result in any new syntactical constructs—all the original constructs have simply
become temporal.

While the existing temporal ER models represent a rich body of insight into the modeling of temporal
data, an evaluation [GJM97] of the models according to a dozen evaluation criteria indicate that no model
is entirely satisfactory. For example, only one model supports the transaction-time aspect of data, which is
important for many applications. A common characteristic of the existing temporal ER models is that few
or no specific requirements to the models were given by their designers. Rather than being systematically
founded on an analysis of general concepts and temporal aspects, their designs are often ad hoc. For
example, the design of one model is the result of the need for the modeling of temporal aspects in a specific
application. The definitions of the existing models also generally lack comprehensiveness and precision
and rely heavily on the reader’s intuition. These conditions make it difficult to identify the ideas behind the
designs of the models and to understand their semantics. Section 4 compares the proposed model to the
existing models in more detail.

It is out contention that there is a need for a temporally extended ER model with an ontological foun-
dation that analyzes and explicitly describes concepts fundamental to temporally enhanced data modeling.
It is also essential that this model has explicitly formulated design goals and a comprehensive and precise
definition.

We define a graphical, temporally extended ER model, called TIMEER, that extends the EER model as
defined by Elmasri and Navathe [EN94] to provide built-in support for capturing temporal aspects of entities,
relationships, superclasses and subclasses, and attributes. The design of the model is based on an ontology,
which defines database objects, fundamental aspects of time, and indicates which aspects of time may be
associated meaningfully with which database objects. Next, the model is designed to satisfy additional,
explicitly formulated design goals for temporally extended ER models. Finally, a formal semantics, based
on denotational semantics, for the TIMEER model is provided.

The paper is structured as follows. Section 2 first gives the ontological foundation of the TIMEER
model, then formulates the design goals for the model. Section 3 proceeds to define the TIMEER model.
An appendix gives the formal semantics of the model. Section 4 compares TIMEER with the most closely
related and prominent previously proposed temporal ER models, pointing out the obtained improvements.
Finally, Section 5 concludes and identifies promising research directions.

2 Ontological Foundations and Requirements

This section first relates the aspects of reality that may be captured by an ER model to the fundamental
modeling constructs in ER modeling. Then follows an introduction of generic temporal aspects of informa-
tion that are prime candidates for being given built-in support in an ER model. We proceed to introduce
two fundamental distinctions; different decisions for these distinctions lead to fundamentally different ER
models, and so these distinctions must be considered early in the process of designing an ER model. Fi-
nally, we present a set of requirements to a temporal ER model. We first relate the modeling constructs
and temporal aspects, thus identifying exactly which combinations are meaningful. Next, we present de-
sign guidelines derived from a set of criteria for evaluating temporally extended ER models that we have
previously developed [GJM97].

3

2.1 Database Objects

Anything that exists in the mini-world and can be separated from other things in the mini-world is anentity;
hence, a data model used for capturing a database representation of an entity should provide means of
conveniently modeling the existence and unique identification of entities. The time during which an entity
exists in the mini-world, we call theexistence timeof the entity.

Beyond having an independent existence, an entity is characterized by its properties, modeled by at-
tributes. At any given point in time, an entity has a value for each of its attributes. The values of some
attribute remain unchanged over time while others vary, that is, at different points in time, the values of
an attribute for an entity may be different. We assume that it is meaningful for entities to have properties
exactly when they exist (i.e., when they are entities)—it is meaningless for something that does not exist to
have properties.

A database represents sets of entities that are similar, that is, have the same structure, or put differently,
entities that have the same attributes. Entity types define sets of entities with the same attributes, and the
entities of the same type is termed an entity set.

Entities may be interrelated via relationships. Such relationships can be seen from two very different
points of view. We can either perceive relationships among entities as attributes of the participating entities,
or we can perceive relationships as having existence in their own right. Both points of view have merit.

A relationship type among some entity types defines a set of relations among entities of these types.
Each relationship relates exactly one entity from each of the entity types that the relationship type is defined
over. The set of relationships defined by a relationship type is called a relationship set.

Another type of relationships exists, namely the superclass/subclass relationships that classifies entities
of a superclass into different subclasses, e.g., employees may be divided into secretaries, engineers, and
technicians. It is the same entities that occur in the subclasses and in the superclass; superclass/subclass
relationships represent inheritance hierarchies rather than relate entities. For this reason, superclass/subclass
relationships cannot exist in their own right, and nor can they be seen as attributes of the involved entity
types. The entities of the subclasses inherit all the properties of entities of the superclass. It is not possible
in subclasses to delete or modify the inherited properties, but it is possible to add new properties.

A data models should make it possible to conveniently and concisely capture all information about the
mini-world that is meaningful to capture and is relevant for the application at hand. For example, since
entities exist during some periods of time, it should be possible to capture this in the data model. In turn,
this implies that the database designers should have the ability to indicate, using the conceptual data model,
whether or not they want to register these periods of time for the entities.

2.2 Aspects of Time

In the database community, several types of temporal aspects of information have been discussed over the
years. In this paper, we focus on five distinct types of temporal aspects that are candidates for being given
built-in support in an ER model, namelyvalid time, lifespan, transaction time, user-defined time[JD98],
anddecision time[EGS92, CK93].

We use the term “fact” to denote any statement that can be assigned a truth value, i.e., true or false. The
notion ofvalid timeapplies to facts: the valid time of a fact is time when that fact is true in the mini-world.
Thus, any fact in the database may be associated with a valid time. However, the valid time may or may not
be captured explicitly in the database.

In ER models, unlike in the relational model, a database is not structured as a collection of facts, but
rather as a set of entities and relationships with attributes, with the database facts being implicit. Thus, the
valid times are associated only indirectly with facts. As an example consider an Employee entity “E1” with
a Department attribute. A valid time of June 1996 associated with the value “Shipping” does not say that

4

“Shipping” is valid during June 1996, but rather that the fact“E1 is in Shipping” is valid during June 1996.
Thus, when valid time is captured for an attribute such as Department, the database will record the varying
Department values for the Employee entities. If it is not captured, the database will (at any time) record
only one department value for each Employee entity.

The lifespanof an entity captures the existence time of the entity. If the concept of lifespan of entities
is supported, this means that the model has built-in support for capturing the times when entities exist. The
lifespan of an entitye may be seen as the valid time of the related fact, “e exists.” However, we choose
to consider lifespans as separate aspects since the recording of lifespans of entities is important for many
applications. If relationships are regarded as having existence in their own right, the concept of lifespan is
also applicable to relationships, with the same meaning as for entities.

The transaction timeof a database fact is the time when the fact is current in the database and may be
retrieved. As is the case for lifespans, the transaction time of a factF may be seen as the valid time of a
related fact, namely the fact, “F is current in the database,” but we have also chosen to record transaction
time as a separate aspect. Unlike valid time, transaction time may be associated with any element stored in
a database, not only with facts. Thus, all database elements have a transaction-time aspect.

Observe that all the above-mentioned temporal aspects have a duration.
User-defined timeis supported when time-valued attributes are available in the data model [SA85].

These are then employed for giving temporal semantics—not captured in the data model, but only externally,
in the application code and by the database designer—to the ER diagrams. For employee entities, such
attributes could record birth dates, hiring dates, etc.

The decision timeof a fact is the time when the fact was decided. A fact can therefore have many
decision times. Since the number and meaning of “the decision times of” a fact varies from application
to application and because decision times, unlike transaction time, generally do not exhibit specialized
properties, the desirability of building in decision time support into a temporal ER model appears to be
somewhat limited.

2.3 Fundamental Design Decisions

Two questions must be answered initially—the answers to these fundamentally affect the nature and prop-
erties of a temporally extended ER model.

2.3.1 Temporal Support, How?

The first question is whether temporal support should be achieved by giving new temporal semantics to the
existing constructs, or by introducing completely new temporal constructs.

The approach where all existing ER model constructs are given temporal semantics has been used in
several of the existing temporal models [EW90, LKG94, EEAK90] and has its strong points. Database
designers are likely to be familiar with the existing ER constructs. So, after understanding the principle
of making these constructs temporal, the designers are ready to work with, and benefit from using, the
temporal ER model. However, this approach is not totally without problems. In its extreme, this approach
rules out the possibility of designing non-temporal databases, i.e., databases that do not capture the temporal
aspects of data. It is also not possible to design databases with non-temporal parts. Another problem is that
old diagrams are no longer correct, i.e., while their syntax is legal, their semantics have changed, and they
therefore no longer describe the underlying relational database schemas.

It is also possible to retain the existing ER constructs with their usual semantics while achieving tempo-
ral support. This is accomplished by adding new temporal constructs to the model that provide the support,
and this approach is also widely used [Klo81, Fer85, Nar88, TLW91, MSW92, Tau91, Kra96]. The extent
of the changes made to the ER model may range from minor changes to a total redefinition of the model.

5

Two types of new temporal constructs may be distinguished. Withimplicit temporal support, the times-
tamp attributes used for capturing a temporal aspect are “hidden” in the new modeling constructs—explicit
timestamps for capturing the temporal aspects are absent. In contrast, withexplicit temporal support, times-
tamp attributes are explicit, and the semantics of the existing ER constructs are retained. Any new modeling
constructs are notational shorthands for elements of regular ER diagrams, introduced to make the modeling
of temporal aspects more convenient. Figure 2 exemplifies this approach [Fer85, GJ].

Employee
ID

BEGINstamp
ENDstamp

Time Period

Project

ID

Employee
ID

Project

ID

BEGIN
stamp

(b)

ENDstamp

Works_for

(a)

Works_for

Figure 2: Modeling Time-Varying Attributes in RAKE [Fer85]

The models that retain the existing constructs with their old semantics and introduce new temporal
constructs also have problems. If their extensions are comprehensive, they are likely to be more difficult
for the database designers to learn and understand. The larger initial investment in training that this induces
may prevent a model from being accepted in industry. On the other hand, this approach avoid the problem
of legacy diagrams not describing the underlying database, since the semantics of the existing ER constructs
are retained.

2.3.2 Design Model or Implementation Model?

The second question is whether the temporal ER model should have a query language, or whether algorithms
that map ER diagrams to implementation platforms should be provided.

A mapping algorithm translates a temporal ER diagram into a corresponding database schema in another
data model. The most obvious possible target data models are the relational model, some temporal relational
model, and the conventional ER model.

The algorithm may map temporal ER diagrams directly to relational database schemas [Fer85, Klo81,
Nar88, TLW91, MSW92, LKG94], or a two-phase approach may be adopted where temporal ER diagrams
are first mapped to conventional ER diagrams and then mapped to relational database schemas, reusing
mappings from the conventional ER model to the relational model [Fer85, Tau91]. For minor extensions of
the ER model, the reuse in the two-phase approach may be attractive. However, the two-phase translation
yields less control over what relational schemas result from the combined mapping. With this approach,
which is the one assumed in most existing temporal ER models, the ER model is a design model that is
used solely for database design and has no directly associated database instance. In industry, the ER model
is generally used as a design model, with variations of the relational model (as supported by the various
specific relational products) being the most popular target models.

As an alternative to mapping ER diagrams to the schema of a separate implementation platform, another
approach is to assume a system that implements the ER model directly [EW90, EEAK90, TLW91, MSW92,
LKG94]. With this approach, a mapping to an implementation platform is not required. Instead, a query
language should be available for querying ER databases. If this approach is taken, one faces the challenges
of devising a query language for a temporal ER model.

6

2.4 Requirements for Capturing Temporal Aspects

Valid and transaction time are general—rather than application specific—aspects of all database facts [SA85].
Lifespan and transaction time are general aspect of entities. As such, these aspects are prime candidates for
being built into a temporal ER model. In this section we describe what aspects of time we believe that a
temporal ER model should provide built-in support for, and for which database objects this support should
be provided.

Lifespan Since any entity has existence and thus an existence time, and since this aspect is important for
many applications, it must be possible for database designers using a temporal ER model to conveniently
register the existence time of entities. Lifespans are used for capturing existence time in the database, so a
temporal ER model should offer built-in support for the registration of lifespans of entity types. Lifespans
may or may not, at the designer’s discretion, be captured in the database.

We have argued that a relationship can be seen as having independent existence; in that case, it also
has an associated existence time, and it should be possible to register lifespans for relationships in the same
way as for entities. Superclass/subclass relationships are closely tied to the superclasses and subclasses they
relate, and their existence is dependent on these. We therefore do not find it useful to capture lifespans for
this type of relationships.

When a model provides a built-in notion of relationship lifespans, it may also enforce certain constraints
that involve these lifespans. The obvious constraint on a relationship lifespan is that the lifespan of an
relationship instance should be a non-empty subset of the union of the lifespans of the participating entities.

Built-in support for capturing lifespans of entities and relationships is important because lifespans are
important in many applications and because entities and relationships may exist beyond the times when
their attributes have (non-null) values—it is thus not possible to infer lifespans of entities or relationships
from the valid times of the attribute values associated with the entities or relationships.

Valid Time Because facts have valid time and attributes are the modeling constructs used to capture
facts at the conceptual level, a temporal ER model should support the possibility to register valid time for
attributes. Built-in support for valid time is important because it is fundamentally important in a large class
of applications to know at what times the facts recorded in the database are true.

Three different cases arise in connection with the recording (or non-recording) of the valid time of an
attribute. First, if we record the valid time, this implies that we obtain the ability to capture all the values that
have ever been valid for the attribute. Second, if we do not register the valid time of the attribute, this may
be because the value of the attribute either never changes or because we are only interested in the current
value of the attribute. Third, it could be that we do not know the valid time of the attribute—we know the
valid value, but not the time when it is valid.

An inherent constraint applies to valid time and lifespans. Specifically, at any time during the database’s
evolution, the valid time of any attribute value of any entity must be a subset of the lifespan of the entity.
If a relationship is viewed as an attribute of the participating entities, the data model should also provide
built-in support for capturing the valid times of relationships. Superclass/subclass relationships are excluded
because these are not considered attributes of the involved entities.

Transaction Time Transaction time is similar to valid time, but there are also some differences. Anything,
not just facts, that may be stored in a database has a transaction time. With transaction time captured,
past states of a database are retained, which is essential in applications with accountability or trace-ability
requirements, of which there are many. The need for recording transaction time is thus widespread. It
should be noted that separate support for transaction time of superclass/subclass relationships is not needed,
due to the semantics of these.

7

It is an inherent constraint that the transaction time of an entity (or relationship with identity) be a subset
of its lifespan: something that does not exist cannot be captured in the database.

User-Defined Time User-defined time attributes, i.e., time-valued attributes with no special support, are
already available in the ER model and should also be available in a temporally extended ER model.

Relating Temporal Aspects and Modeling Constructs Figure 3 summarizes the temporal support we
believe a temporal ER model must offer. The “Yes”’es in parenthesis indicate that a temporal ER model
should offer support for both valid time and lifespans for relationship types. The users of the model must
then decide whether or not relationships are to have independent existence and thus whether to capture
lifespans or valid times for them.

Entity types Relationship types Superclass/subclassAttributes
Relationships

Lifespan Yes (Yes) No No
Valid time No (Yes) No Yes
Transaction time Yes Yes No Yes

Figure 3: Modeling Constructs and Their Supported Aspects of Time

Maximally Meaningful and Flexible Support So far, we have argued that the different temporal aspects
should be supported for exactly the modeling constructs where the aspects make sense. This provides
maximum meaningful temporal support.

The different temporal aspects may or may not, depending on the application requirements, be captured
in the database. Therefore, the support for these aspects should be user-specifiable and maximally flexible.
This is achieved if the temporal ER model permits the database designer to decide which temporal aspects
to capture of the different database elements. It must be possible to make these decisions independently for
independent database elements. Following this principle, the granules of temporal support in an ER model
are the following.

� Entity types.

� Relationship types.

� Attributes.

This means that the ER model should allow the designer to, e.g., specify the temporal support of an
attribute and the attribute’s entity independently. For example, the designer may capture lifespans for the
Employee entity type while capturing both transaction time and valid time for some of the attributes of
Employee.

Time Data Type Support Different time data types may be used for capturing the temporal aspects of
database objects, including instants, time intervals, and temporal elements (temporal elements are finite
unions of time intervals [Gad88]).

For example, one option is to associate valid-time intervals with attribute values of entities, and another
option is to timestamp attribute values with valid-time elements. An attribute value may also be defined
as a function from a time domain to a value domain. This is similar to element timestamping in that an

8

attribute may associate a value with some subset of the time domain. A data type of sets of time intervals
is somewhat similar to the time element data type: with a discrete and bounded time domain, the two types
are equivalent, but this does not hold in general.

A temporal ER model may provide the database designer with a choice of data types, thereby increasing
the utility of the model. Instants, intervals, and elements may all be used for encoding durations. When
instants are used for this purpose, they have associated interpolation functions. The instant data type may
also encode the occurrence of instantaneous events. The importance of the availability of time data types is
dependent on whether the model under consideration is used solely as a design model or is also used as an
implementation model, complete with database instances and a query language.

Support for Interpolation Temporal interpolation functions derive information about times for which no
data is explicitly stored in the database (see, e.g., [Klo81] and [JS96]). For example, it is possible to record
times when new salaries of employees take effect and then define an interpolation function (using so-called
step-wise constant interpolation) that gives the salaries of employees at any time during their employment.
In the scientific domain, interpolation is particularly important, e.g., when variables are sampled.

Support for Granularities and Temporal (Im-) Precision It may be that the temporal variability of
different objects in the mini-world is captured using times of different granularities [WJL91, DS95a]. It
should then also be possible to capture the variability of the different objects in the database using these
different granularities. To exemplify, the granularity of a minute may be used when recording the actual
working hours of employees, while the granularity of a day may be used when recording the assignment of
employees to projects.

The temporal variability of different objects in the mini-world may be known with different precisions
[Klo81, DS98, DS95b, DS94], and although some imprecision may be captured using multiple granularities,
granularities do not provide a general solution.

For example, the variability of an attribute may be recorded using timestamps with the granularity of
a second, but the varying values may only be known to the precision of�5 seconds of the recorded time.
This phenomenon may be prevalent and important to capture in scientific and monitoring applications that
store measurements made by instruments. Thus the usability of a temporal ER model would be increased if
support for temporal precision is provided.

Upward Compatibility To increase the usability of a new ER model, it is very important that legacy
ER diagrams remain correct in the new model. This property, briefly mentioned earlier, is calledupward
compatibility. A temporal ER model is upward compatible with respect to a conventional ER model if any
legal conventional ER diagram is also a legal ER diagram in the temporal model and if the semantics of
the diagrams in the two models are the same. Upward compatibility protects investments in legacy systems
and provides the basis for a smooth transition from a conventional ER model to a temporally enhanced ER
model [SMJS95]. We thus require that a temporal ER model be upward compatible with respect to the
conventional ER model it extends.

Snapshot Reducible Temporal Support The next property of a temporal extension is that of snapshot
reducibility [Sno87], which may be explained as follows. A temporal ER model that adds temporal support
implicitly may provide temporal counterparts of, e.g., the ordinary attribute types, meaning that it provides
temporal single-valued, temporal multi-valued, temporal composite, and temporal derived attribute types.

These temporal attribute types may be snapshot reducible with respect to their corresponding snapshot
attribute types. In general, this occurs if snapshots of the databases described by a temporal ER diagram

9

are the same as the databases described by the corresponding snapshot ER diagram where all temporal
constructs are replaced by their snapshot counterparts.

For example, a temporal single-valued attribute is snapshot reducible to a (snapshot) single-valued at-
tribute if it is single-valued at each point in time. Generalizing snapshot constructs this way yields a natural
temporal model that is easily understood in terms of the conventional ER model.

Beyond attributes, snapshot reducibility also applies to the various constraints that may be defined on
relationship types, including specialized relationship types such as superclass/subclass (ISA) and PART-OF
(composite/component) relationships. For example, the temporal cardinality constraint 1–N on a binary
temporal relationship type is snapshot reducible to the snapshot cardinality constraint 1–N on a binary
snapshot relationship type if the 1–N snapshot constraint applies to any state, valid at any single point in
time, of any possible instances of the temporal relationship type.

3 The Time extended EER (TIMEER) Model

In this section, the Time-Extended-EER model, TIMEER, is presented. First, the model on which to base the
new model and positions regarding the fundamental design decisions from Section 2.3 are chosen. Second,
the constructs of the new model are described.

3.1 The Basic Model ofTIMEER

Since its publication, the ER model [Che76] has had various notations and semantics. It has been extended in
order to capture superclass/subclass relationships and complex entity types, to name but a few extensions,
and is then known as the EER model. Because no EER model has become a standard, the EER model
presented by Elmasri and Navathe [EN94] is chosen as the basic model of TIMEER. The reader is assumed
to be familiar with this model.

With respect to the fundamental design decisions presented in Section 2, the following choices are
made. We have chosen to introduce new temporal constructs and provideimplicit temporal support for the
TIMEER model. This choice makes it possible to achieve a temporal ER model that is upward compatible
with the ER model it extends. This means that existing legacy ER diagrams are valid temporal ER diagrams
and retain their legacy meaning in the new model. This is important for industrial users with many legacy
diagrams. Another important reason for this choice is the desire to retain the ability to design non-temporal
databases as well as databases where some parts are non-temporal and others are temporal. We have chosen
to provide mapping algorithms for the TIMEER model (described elsewhere). This decision is consistent
with most temporal ER models being considered design models and with current practice in industry. Upon
designing an ER diagram, the diagram is mapped to a schema of an available DBMS, i.e., is mapped to an
implementation platform. A description of the mapping algorithms is beyond the context of this paper.

TIMEER supports the time data types “instant” and “temporal element.”

3.2 TIMEER Modeling Constructs

We proceed to present the modeling constructs of TIMEER model. The TIMEER model has implicit tem-
poral support, and the existing EER constructs and their semantics are retained, meaning that new notation
with implicit temporal support is added to the EER model to reach the TIMEER model. More specifi-
cally, TIMEER extends the EER model to include, where indicated, built-in temporal support for entities,
relationships, superclasses/subclasses, and attributes.

10

Regular Entity Types

A regular entity type is represented by a rectangle. Since all entities represented by an entity type have
existence time, modeled by lifespans in the database, and a transaction time aspect, the TIMEER model
offers support for lifespans and transaction time for entity types. Thus, for each entity type in a TIMEER
diagram, the database designer must decide whether or not to capture these temporal aspects of the entities
in the database.

If the lifespan or the transaction time of an entity type is to be captured, this is indicated by placing an
LS (LifeSpan) or a TT (Transaction Time) in the upper right corner of the rectangle, respectively. If both
lifespan and the transaction time are captured, an LT (Lifespan and Transaction time) is placed as before.
Entity types that capture at least one temporal aspect are termed temporal entity types; otherwise, they are
termed non-temporal.

In Figure 1 in Example 1.1, we model that we want to capture both the lifespan and the transaction
time of the entity type Employee, by associating it with two different time period entity types, Lifespan and
Transaction Time. In the TIMEER this is modeled as shown in Figure 4.

Employee
LT

Figure 4: The Temporal Entity TypeEmployee

Weak Entity Types

Weak entity types are represented by double rectangles and are used to represent entities that are existence
dependent on specific entities of another entity type and that cannot by themselves be lexically uniquely
identified. A weak entity type must therefore be related via an (or a chain of) identifying relationship type
(represented by a double diamond) to at least one regular entity type that is then the owner of the weak
entity type. Weak entity types can be specified to capture the same temporal aspects as regular entity types,
and this specification is independent of the temporal support specified for the owner(s) of the weak entity
type. It is an inherent constraint that the existence time of a weak entity must be included in the existence
time of the owner entity, due to the existence dependency.

Attributes

Entities are characterized by their attributes. A single-valued attribute is represented by an oval, a multi-
valued attribute is represented by a double oval, and a composite attribute is represented by an oval con-
nected directly to other ovals representing the component attributes of the composite attribute.

All facts, modeled by attributes, have a valid time and a transaction time aspect, and the TIMEER model
offers support for valid time and transaction time for all attribute types. If the database designer decides
to capture the valid time of an attribute is captured, a VT is placed to the right in the oval; if transaction
time is captured, a TT is placed as before. If both the valid time and the transaction time is captured, a BT
(BiTemporal) is used. The components of a temporal composite attribute inherit the temporal specification
for the composite attribute because we assume that all the components change synchronously, that is, the
composite is considered to be one element; therefore, temporal support cannot be added separately to the
components of a composite attribute. If no temporal aspects of an attribute are captured, we call the attribute
non-temporal; otherwise, it is temporal.

11

It is meaningful for both temporal and non-temporal entity types to have temporal and non-temporal
attributes. Temporal entity types may have non-temporal attributes; for example, it could be that the appli-
cation at hand does not require the capture of any temporal aspects of the attributes of a temporal entity type;
it could also be that some attributes are temporal. Similarly, for non-temporal entity types, it is possible that
temporal aspects of some attributes are to be captured, even if no information about the entity is of interest
after the deletion of the entity from the database.

In Figure 1 in Example 1.1, we model that we want to capture the valid time and the transaction time
of the Salary of an Employee. To be able to capture the valid time, we convert the attribute Salary into a
relationship type, Salary, between Employee and Salaryperiod, with an single-valued attribute Amount to
actually record the salary. The transaction time is captured by associating the attributes Insertiondate and
Deletion date with the relationship. In TIMEER this may be modeled as shown in Figure 5.

Employee LS

ID Name

Birth_date Salary BT

Figure 5: The Temporal, Single-Valued Attribute, Salary

Key Attributes

To indicate that a set of attributes represent the key of an entity type, the attribute names of the involved
attributes are underlined. Key attributes of an entity type can be specified as temporal or non-temporal.
Simple and composite attributes may be specified as key attributes.

We allow key attributes to be specified as temporal and define these in terms of conventional keys and
snapshot reducibility. Snapshot reducibility ensures, for example, that a single-valued attribute capturing
valid time, at any point in the valid-time domain, is single-valued. Thus, combining snapshot reducibility
of attribute types with the application of the conventional key constraint, we have that any key attribute at
any point in time uniquely identifies an entity.

Relationship Types

A relationship type is represented by a diamond. The model offers support for lifespans and valid and
transaction time for relationship types. The reason for offering support for both lifespans and valid time is
that relationships can be perceived as either attributes of the participating entities, or as things that exist in
their own right. For each relationship type, it has to be decided by the database designer whether or not to
capture the temporal aspects for the relationship type. If some temporal aspect is captured for a relationship
type, we call it temporal; otherwise, it is non-temporal.

If the relationship is perceived as an attribute, the possible temporal aspects are as for attributes, and
the indication is placed in the lower corner of the diamond. When relationships are perceived as things that
exist in their own right, the temporal aspects supported are lifespans and transaction time.

In Figure 1 in Example 1.1, we model that we want to capture the valid time of the relationship
Works for between Employee and Project. We therefore have to make the relationship type ternary by
associating an entity type Workperiod with the attributes Startdate and Enddate to model this. A corre-
sponding TIMEER diagram is shown in Figure 6.

12

hours/week

Project

ID

Budget BT

Income

Expences

Employee LS

ID Name

Birth_date Salary BT

VT
Works_for

Figure 6: The Temporal Relationship Type Worksfor

The temporal support of a relationship type can be specified independently of the temporal support
for the participating entity types. An example is seen in Figure 6 where the relationship type Worksfor,
capturing valid time, relates the entity type Employee, capturing lifespans, and the non-temporal entity type
Project. This means that during the valid time of a relationship instance, the entities participating in the
relationship must exist, i.e., for a sample relationship, the participating Project entity has to be (current) in
the database during the valid time of the relationship, and the participating Employee entity must have a
lifespan that includes the valid time of the relationship.

Snapshot Participation Constraints

The snapshot participation constraint of an entity typeE with respect to a relationship typeR is represented
by placingmin andmax values in parentheses by the line connecting entity typeE with relationship type
R. If min = 0 then the participation of the entities ofE is optional; ifmin � 1 then the participation is total
(mandatory). Ifmax = 1, this means that the entities ofE cannot participate in more than one relationship
at a time, whereas amax = n, with n > 1 means thatE entities can participate inn relationships at a time.

The intuitive meaning of this is: at any point in time, each instancee of the entity typeE will participate
in at leastmin and at mostmax instancesr of R. That is, the the snapshot participation constraint is
snapshot reducible with respects to the conventional participation constraints.

E R
(min,max)

Figure 7: Representation of Snapshot Participation Constraints in TIMEER

We can now describe that an Employee works on one project at a time by adding the participation
constraint(1; 1) next to the line connecting the relationship type Worksfor to the entity type Employee.
In Figure 8, we have also added a participation constraint stating that a project must have at at least one
employee assigned to it at any point in time.

3.3 Advanced Features

The previous section described the fundamental design of the TIMEER model. This section proceeds to
present additional features of the model.

13

hours/week

Project

ID

Budget BT

Income

Expences

Employee LS

ID Name

Birth_date Salary BT

VT
Works_for

(1,1) (1,N)

Figure 8: The Temporal Relationship TypeWorksfor with Participation Constraints

Lifespan Participation Constraints

The snapshot participation constraints already described constrain the participation of the entities at each
isolated point in time. It is also useful to be able to describe the participation of an entity in a relationship
over the entire existence time of the entity. This is useful if, for example, we want to state that an employee
only can be assigned to at most one project at a time, but can be assigned to any number of projects and
must be on at least one during the entire employment.

The participation constraint in Figure 8 ensures that an employee participates in exactly one relationship
at any point in time, but it says nothing about the entire employment period. If we change the participation
constraint from(1; 1) to (1; N), this means that an employee at any single point in time is now allowed
to appear in Worksfor N times, which is not intended. Another type of participation constraint, called
the lifespan participation constraint, must instead be added to the model, making it possible to express
participation constraints throughout the existence times of the entities.

The lifespan participation constraint of entity typeE with respect to relationship typeR is represented
by placingmin andmax values in square brackets by the line connecting entity typeE with relationship
typeR.

The intuitive meaning of the lifespan participation constraint is: over all of time, any instancee of the
entity typeE must participate in at leastmin and at mostmax instancesr of R.

E R
(min,max)

[min,max]

Figure 9: Representation of Lifespan Participation Constraint in TIMEER

The lifespan participation constraint specified for the participation of an entity type with respect to
a non-temporal relationship type must be the same as the specified snapshot participation constraint, for
which reason they can be omitted from the diagrams.

There are combinations of snapshot and lifespan participation constraints that are contradictory. For
constraints(a; b) and[c; d], this occurs whena > d, which is the case for the combination of(M;N) and
[1; 1].

Other cases exist where lifespan participation constraints do not add to preexisting snapshot partici-
pation constraints. For example, a lifespan participation constraint[1; N] does not add to the snapshot
participation constraint(1; 1).

Generally, we expect theminof the lifespan participation constraint to be equal to or larger than themin
of the snapshot participation constraint; and themaxof the lifespan participation constraint is expected to
be equal to or larger than themaxof the snapshot participation constraint.

14

Using both participation constraints, we can state that any employee must be assigned to at most one
project at a time, but must be assigned to at least one project during the employment period. This is shown
in Figure 10.

Employee LS

ID

Birth_date Salary BT

Name

Project

ID

Budget BT

Income

Expences

hours/week

VT
Works_for (1,N)

[1,N]

(0,1)

Figure 10: The Temporal Relationship Type Worksfor with Participation Constraints

Superclasses and Subclasses

We offer support for specifying superclass/subclass relationships. The syntax is as in the EER model.
All subclasses inherit the attributes of the their superclasses, and just as inherited attributes cannot be

given new data types, it is not possible to change the temporal support given in the superclasses to the
inherited attributes. But it is possible to add temporal and non-temporal attributes in the subclasses.

It must also be decided whether a subclass inherits the temporal specification of its superclass, or
whether this is to be specified for each individual class participating in a superclass/subclass relationship.

We have chosen that subclasses inherit the temporal aspects of their superclasses and that the inherited
time specification is expandable, e.g., if we decide to capture lifespans for Employee entities and let Secre-
tary be a subclass of entity type Employee, we can decide to capture both lifespans and transaction time for
Secretary entities. It is not possible to delete the inherited temporal support. This choice is consistent with
the fact that subclasses inherit all properties, and thereby also the temporal support, of their superclasses
and that it is not possible to delete or modify inherited properties, but only to add properties.

Temporal Interpolation Functions

As described earlier, temporal interpolation functions derive information about times for which no data is
explicitly stored in the database. Support for interpolation is perhaps particularly important in applications
where processes are monitored and variables are sampled.

We provide the designer with the possibility to define not only temporal interpolation, but also deriva-
tion functions for derived attributes, and we extend the model with temporal (and non-temporal) derived
attributes. These are represented by dotted ovals with the same possibilities for specifying temporal sup-
port as for the stored attributes. The interpolation functions must be specified in the query language of the
intended target platform, since we do not provide a query language with the TIMEER model. The tool im-
plementing the model must provide means for linking the derived attribute with its defining query-language
statement.

Example 3.1 Figure 11 gives a TIMEER diagram that corresponds to the the EER diagram given in Fig-
ure 1. 2

In Appendix A we develop the formal semantics of the TIMEER model based on denotational seman-
tics. To ease the development of the formal semantics, we initially transform the graphical notation of the

15

Belongs_to

ID

Name

Birth_date

Join_date

hours/week

Salary BT

Works_for
VT

Name

 for
Responsible

Number

Profit BT

Manages
Manager

Rank
App_date Type

Project

ID

Budget BT

Income

Expences

Employee LT

(1,1)
(1,N)

(1,N)

(1,1)

(1,1)

(1,N)

Department TT

(1,1)

Location VT

(1,1)

[1,N]

Figure 11: TIMEER Diagram of the Example

model into an equivalent textual notation. The appendix uses part of the running example to exemplify the
translation and explain the semantics.

3.4 Properties of TheTIMEER Model

In Section 2 we listed a set of design goals. Having introduced TIMEER, we now examine its design with
respect to the goals.

Temporal Aspects Supported We provide built-in support for capturing lifespans and transaction time
for entities and relationships. This is achieved by making it possible for the database designer to specify
for every entity type and relationship type whether or not to capture the temporal aspects of the model-
ing constructs. Similarly, built-in support for capturing valid time and transaction time for attributes and
relationships is provided. Finally, user-defined time attributes are available.

Maximally Meaningful and Flexible Support TIMEER provides maximally meaningful and flexible
temporal support, since the database designer is able for each modeling construct to specify whether or not
to capture each meaningful temporal aspect of the construct. The model has optional use of the tempo-
ral constructs, providing the database designer with the possibility of mixing temporal and non-temporal
constructs in the same diagram.

Time Data Type Support TIMEER supports time data types for the modeling of both instantaneous
events and phenomena that persist in time, namely the “instant” and “temporal element” types. For simplic-
ity, we have omitted the“interval” (or “period”) data type. This type may be introduced in the model or may
be introduced in the actual representation of modeled database instances.

16

Support for Interpolation The model provides support for defining temporal interpolation functions and
derivation functions for derived attributes. The interpolation functions must be specified in the query lan-
guage of the intended target platform—a separate language for this is not provided. A tool supporting
the development of TIMEER diagrams must offer means for associating the definition of the interpolation
functions with the attributes they compute.

Support for Granularities and Temporal (Im-) Precision The time granularities supported by TIMEER
are second, minute, hour, day, week, month, and year. The model does not, at present, support temporal
imprecision.

Upward Compatibility The designed model is upward compatible with respect to the EER model [EN94]
because weextendthis model with new temporal constructs while retaining all original EER constructs, with
their original syntax and semantics.

Snapshot Reducible Temporal Support The temporal ER model presented in this paper has implicit
temporal support and includes snapshot reducible temporal counterparts of the ordinary attribute types, i.e.,
provides temporal single valued, temporal multi-valued, temporal composite, and temporal derived attribute
types. To achieve this, the semantics of the model given in Appendix A define the temporal attributes as
functions from the time domain specified for the attributes into a domain of values.

Next, the snapshot participation constraints are also snapshot reducible, while lifespan participation
constraints have no non-temporal counterparts. Finally, the constraints associated with superclass/subclass
relationships are snapshot reducible. For example, the temporal participation constraint (disjoint, total) for
a superclass/subclass relationship is snapshot reducible, so that for any snapshot of the underlying database,
any entity of the superclass is present in exactly one subclass.

4 Related Research

We have previously conducted a comprehensive survey [GJ] of all previously proposed temporally extended
ER models that we found in the research literature. The study of these models pointed to varying limitations
in the existing models, motivating the development of a new temporal ER model that attempted to build
maximally on the insights accumulated in the existing models.

More specifically, the existing temporal ER models represent quite diverse approaches to capturing
temporal aspects of data at the conceptual level, and it is our contention that the models, to varying degrees,
have succeeded in more elegantly capturing the temporal aspects of data than does the ER model. However,
evaluating the existing models against a list of desirable properties [GJM97] reveals that no single model
satisfies all properties, but that the models collectively cover the design space well.

As mentioned in the introduction, a common characteristic for the existing temporally extended ER
models is that few or no specific requirements to the models are given by their designers. In contrast, we
have based the design of the TIMEER model on the design goals presented in Section 2, some of which are
based on ontological considerations, and some of which are derived from previously presented properties
[GJM97].

One approach to developing a temporal extension is to give the existing ER constructs new temporal
semantics. This approach has been followed in several models [EW90, LKG94, EEAK90], and it has its
strong points. But there are also weaknesses. The main weakness is the lack of upward compatibility, and
for this reason we have not chosen this approach for TIMEER.

Another approach is to retain the existing ER constructs with their usual semantics and introduce new
temporal constructs that provide temporal support. This can be done by offering new modeling constructs

17

with either implicit temporal support [Klo81, Nar88, TLW91, MSW92, Tau91, Kra96] or explicit temporal
support [Fer85]. Since the latter type of support still leads to cluttered diagrams, although to a lesser degree
than in the ER model, we have chosen to add new temporal constructs with implicit temporal support.

The ideal temporal ER model is easy to understand in terms of the ER model; does not invalidate legacy
diagrams and database applications; and does not restrict databases to be temporal, but rather permits the
designer to mix temporal and non-temporal parts. We believe that the TIMEER model has these properties.

The concept of snapshot reducibility applies to attributes as well as the various constraints that may
be defined on relationship types, including those on superclass/subclass hierarchies. Satisfying reducibility
is very important because this provides a uniform and natural generalization of standard, snapshot ER
modeling constructs to temporal counterparts.

Although we have seen that this requirement never previously has been applied explicitly to an ER
model, aspects of existing temporal ER models turn out to be snapshot reducible. Only two temporal ER
models have snapshot reducible relationship constraints [Tau91, Kra96], while most models have snapshot
reducible attributes [Fer85, Klo81, Nar88, EW90, EEAK90, LKG94, Kra96], This latter property of the
various models follows implicitly from how the temporal attributes are defined as shorthands for patterns
made up of conventional constructs, from the properties of the models’ mapping algorithms, from explicitly
formulated semantics for the attributes, or from the attributes being defined in terms of snapshot reducible
temporal relationships types.

The TIMEER model provides snapshot reducible attribute types as well as relationship constraints.
Lifespan participation constraints do not have non-temporal counterparts to reduce to.

All but one of the existing temporal ER models support only valid time. We believe that the support for
transaction time is just as important, and TIMEER supports both time aspects. Support for lifespans is also
included, which is only provided by a subset of the existing temporal ER models [Klo81, EW90, EEAK90,
TLW91, LKG94].

5 Conclusions and Research Directions

Temporal aspects are prevalent in most real-world database applications, but they are also difficult to capture
elegantly using the ER model. In an attempt to alleviate this problem, this paper presents a temporally
extended ER model capable of more elegantly and naturally capturing temporal aspects of data.

The TIMEER model systematically extends the EER model [EN94] with new, enhanced modeling con-
structs with implicit temporal support. The new constructs provide built-in support for capturing lifespans
of entities and relationships and provides built-in support for capturing valid times for attributes and re-
lationships. And the model provides built-in support for capturing the transaction times for all modeling
constructs. The temporal aspects of the modeling constructs are captured using either instants or temporal
elements, and support for multiple granularities is included. The database designer may, or may not, use the
new temporal constructs, and the resulting model is upward compatible with respect to the EER model.

We are currently developing algorithms that provide well-behaved mappings from TIMEER diagrams
to various implementation platforms, including non-temporal (e.g., SQL–92) and temporal (e.g., TSQL2)
platforms. Next, it may be desirable to extend the model to includegraphicalnotation for describing more
temporal aspects of data, including the update and observation patterns for temporal attributes [JS98], as
well as other advanced temporal constraints (allowing the designer to specify that, e.g., the values of an
attribute must increase over time). The extent to which this is feasible is still unclear. Also, we are currently
conducting new (internal) case studies in order to gain insight into the strengths and potential weaknesses of
the TIMEER model. Finally, the presence of a graphical editor that supports the development of TIMEER
is highly desirable. The availability of such a tool will facilitate the evaluations of the model involving real
users.

18

References

[Che76] P. P-S. Chen. The Entity-Relationship Model – Toward a Unified View of Data.Transaction on
Database Systems, 1(1):9–36, March 1976.

[CK93] S. Chakravarthy and S. K. Kim. Semantics of Time-Varying Information and Resolution of
Time Concepts in Temporal Databases. In R. T. Snodgrass, editor,Proceedings of the Interna-
tional Workshop on an Infrastructure for Temporal Databases, June 1993.

[DS94] C. E. Dyreson and R. T. Snodgrass. Temporal Granularity and Indeterminacy: Two Sides of
the Same Coin. Technical Report TR 94-06, University of Arizona, Department of Computer
Science, February 1994.

[DS95a] C. E. Dyreson and R. T. Snodgrass. Temporal Granularity. In R. T. Snodgrass, editor,The
TSQL2 Temporal Query Language, Chapter 19, pp. 347–383. Kluwer Academic Publishers,
1995.

[DS95b] C. E. Dyreson and R. T. Snodgrass. Temporal Indeterminacy. In R. T. Snodgrass, editor,The
TSQL2 Temporal Query Language, Chapter 18, pp. 327–346. Kluwer Academic Publishers,
1995.

[DS95c] C. E. Dyreson and R. T. Snodgrass. The Baseline Clock. In R. T. Snodgrass, editor,The TSQL2
Temporal Query Language, Chapter 5, pp. 77–96. Kluwer Academic Publishers, 1995.

[DS98] C. E. Dyreson and R. T. Snodgrass. Supporting Valid-time Indeterminacy.ACM Transaction
on Database Systems, 23(1):?–?, March 1998.

[EEAK90] R. Elmasri, I. El-Assal, and V. Kouramajian. Semantics of Temporal Data in an Extended ER
Model. In 9th International Conference on the Entity-Relationship Approach, pp. 239–254,
October 1990.

[EGS92] O. Etzion, A. Gal, and A. Segev. A Temporal Active Database Model. Technical Report LBL
32587, Lawrence Berkeley Laboratory, 1992.

[EN94] R. Elmasri and S. B. Navathe.Fundamentals of Database Systems. The Benjamin/Cummings
Publishing Company, 2. edition, 1994. ISBN 0-8053-1753-8.

[EW90] R. Elmasri and G. T. J. Wuu. A Temporal Model and Query Language for ER Databases. In
Proceedings of the Sixth International Conference on Data Engineering, pp. 76–83, 1990.

[Fer85] S. Ferg. Modeling the Time Dimension in an Entity-Relationship Diagram. In4th International
Conference on the Entity-Relationship Approach, pp. 280–286, 1985.

[Gad88] S. K. Gadia. A Homogeneous Relational Model and Query Languages for Temporal Databases.
Transactions on Database Systems, 13(4):418–448, December 1988.

[GH91] M. Gogolla and U. Hohenstein. Towards a Semantic View of an Extended Entity-Relationship
Model. ACM Transaction on Database Systems, 16(3):369–416, September 1991.

[GJ] H. Gregersen and C. S. Jensen. Temporal Entity-Relationship Models—a Survey.IEEE Trans-
actions on Knowledge an Data Engineering. To appear.

19

[GJM97] H. Gregersen, C. S. Jensen, and L. Mark. Evaluating Temporally Extended ER Models. In
K. Siau, Y. Wand, and J. Parsons, editors,Proceedings of the Second CAiSE/IFIP8.1 Interna-
tional Workshop on Evaluation of Modeling Methods in Systems Analysis and Design, 12 pages,
June 1997.

[JD98] C. S. Jensen and C. E. Dyreson, editors. The Consensus Glossary of Temporal Database
Concepts - February 1998 Version. In O. Etzion, S. Jajodia, and S. Sripada, editors,Tempo-
ral Databases: Research and Practice, volume 1399 ofLecture Notes in Computer Science,
pp. 367–405. Springer-Verlag, 1998.

[JS96] C. S. Jensen and R. T. Snodgrass. Semantics of Time-Varying Information.Information Sys-
tems, 21(4):311–352, March 1996.

[JS98] C. S. Jensen and R. T. Snodgrass. Temporally Enhanced Database Design. In M. P. Papazoglou,
S. Spaccapietra, and Z. Tari, editors,Object-Oriented Data Modeling, MIT Press, 1998. To
appear.

[Klo81] M. R. Klopprogge. TERM: An Approach to Include the Time Dimension in the Entity-
Relationship Model. InProceedings of the Second International Conference on the Entity
Relationship Approach, pp. 477–512, October 1981.

[Kra96] P. Kraft. Temporale kvaliteter i ER modeller. Hvordan? Working paper 93, The Aarhus School
of Business, Department of Information Science, January 1996.

[LKG94] V. S. Lai, J-P. Kuilboer, and J. L. Guynes. Temporal Databases: Model Design and Commer-
cialization Prospects.DATABASE, 25(3):6–18, 1994.

[MSW92] P. McBrien, A. H. Seltveit, and B. Wangler. An Entity-Relationship Model Extended to describe
Historical information. InInternational Conference on Information Systems and Management
of Data, pp. 244–260, July 1992.

[Nar88] A. Narasimhalu. A Data Model for Object-Oriented Databases with Temporal Attributes and
Relationships. Technical report, National University of Singapore, 1988.

[SA85] R. Snodgrass and I. Ahn. A Taxonomy of Time in Databases. In S. Navathe, editor,Proceedings
of ACM-SIGMOD 1985 International Conference on Management of Data, pp. 236–246, May
1985.

[SMJS95] R. T. Snodgrass, B¨ohlen M., C. S. Jensen, and A. Steiner. Change Proposal to SQL/Temporal:
Adding Valid Time—Part A.International Organization for Standardization, page 40, Decem-
ber 1995. ANSI Expert’s Contribution.

[Sno87] R. T. Snodgrass. The Temporal Query Language TQuel.ACM Transaction on Database Sys-
tems, 12(2):247–298, June 1987.

[Tau91] B. Tauzovich. Toward Temporal Extensions to the Entity-Relationship Model. InThe 10th
International Conference on the Entity Relationship Approach, pp. 163–179, October 1991.

[TLW91] C. I. Theodoulidis, P. Loucopoulos, and B. Wangler. A Conceptual Modelling Formalism for
Temporal Database Applications.Information Systems, 16(4):401–416, 1991.

[WJL91] G. Wiederhold, S. Jajodia, and W. Litwin. Dealing with Granularity of Time in Temporal
Databases. In R. Anderson et al., editors,Proceedings of the 3rd International Conference on
Advanced Information Systems Engineering, pp. 124–140, May 1991.

20

A Formal Semantics ofTIMEER

This section defines the formal semantics of TIMEER. As a first step, we we translate the graphical TIMEER
diagrams into equivalent textual representations. The semantics of a TIMEER diagram is then defined as
the semantics of the equivalent textual variant of the diagram.

In Section A.1, we present the textual representation of the model and exemplify the transformation
of the graphical representation of a diagram into an equivalent textual representation. We also present the
axiomatic conventions that define the notation used, followed by definitions of the predefined atomic data
types supported by the TIMEER model.

In section A.2, we proceed to define the semantics of the basic data types supported by TIMEER, then
define the semantic domains of the timestamps data types supported, followed by the semantics of the
textual representation of the TIMEER model. Part of the running example is used to illustrate the main
ideas behind the semantics.

A.1 Textual Representation of TIME ER Diagrams

The translation from TIMEER diagrams to the equivalent textual representations is straightforward; given
the TIMEER diagram in Figure 11, we will transform a part of this diagram in order to explain the transfor-
mation.

Before we present the full syntax of the textual representation of the TIMEER model, we describe the
notation as well as conventions used in the abstract syntax of the textual representation and in the defintion
of the semantics.

Axiomatic Conventions

We letSETdenote the class of sets,FSETthe class of finite sets,FUN the class of total functions, andREL
the class of relations. The following inclusions holdFSET� SETandFUN � REL � SET .

Next, assume that setsS; S1; : : : ; Sn 2 SET are given. We letF (S) denote the restriction of the power
set2S to finites sets,S� denote the set of finite lists overS, S+ the set of non-empty finite lists overS,
andS � S1 � � � � � Sn denote the Cartesian product over the setsS; S1; : : : ; Sn. The set of finite multisets
overS is given byM(S). A multiset can be considered a finite setS together with a counting function
occ : S ! N , giving for each element the number of occurrences in the multiset. We letS1]S2 denote the
disjoint union of sets, that is, the result ofS1] S2 is fS1; S2g.

We write finite sets asfc1; c2; : : : ; cng, lists ashc1; c2; : : : ; cni, elements of Cartesian products as
(c1; c2; : : : ; cn), and multisets asffc1; c2; : : : ; cngg. For a setfc1; c2; : : : ; cng, i 6= j implies ci 6= cj .
This is not necessarily true for multisets. Given multisetffc1; c2; : : : ; cngg with occ(c) = k, there arek
indicesi1; : : : ; ik 2 1; : : : ; k with cij = c for j 2 1; : : : ; k. For any set, we use? to denote the undefined
value of the set.

Predefined Data Types

A data signature describes the predefined data types, operations, and predicates. We assume the data types
int , real , andstring ; adding additional data types is straightforward. The data typesint , real , andsting
and the operations and predicates on these have the usual semantics, and this interpretation is fixed, that is,
defined once and for all. This definition follows the approach of Gogolla and Hohenstein [GH91].

Let the syntax of a data signature DS be given as follows.

� the setsDATA, OPNS, PRED2 FSET

21

� a functioninput 2 FUN such thatinput : OPNS ! DATA�

� a functionoutput 2 FUN such thatoutput : OPNS ! DATA

� a functionargs 2 FUN such thatargs : PRED ! DATA+

If � 2 OPNS, input(�) = hd1; : : : ; dni, andoutput(�) = d, this is denoted as� : hd1; : : : ; dni ! d. If
� 2 PREDwith args(�) = hd1; : : : ; dni, this is denoted as� : hd1; : : : ; dni

Example A.1 The predefined data types and some operators and predicates working on the data types are
given below.

DATA � f int ; real ; string g

OPNS � f +i;�i; �i : int � int ! int ,
+r;�r; �r : real � real ! real ,
=i : int � int ! real ,
=r : real � real ! real ,
"i: int � int ! int ,
"r: real � int ! real ,
squarei : int ! int ,
squarer : real ! real ,
absi : int ! int ,
absr : real ! real ,
trc; rnd : real ! int ,
cat : string � string ! stringg

PRED � f <i; >i;�i;�i; 6=i: int � int ,
<r; >r;�r;�r; 6=r: real � real ,
<s; >s;�s;�s; 6=s: string � string g

2

Example A.2 As a precursor to giving the textual representation of TIMEER diagrams, we transform the
entity types Employee and Department, the relationship type Belongsto, and the constraints related to these
three modeling constructs into their textual representations.

For the entity type Employee, it is specified that both the lifespan and the transaction time of the in-
stances must be captured. In the diagram in Figure 11, the data types of the timestamps are implicit; in the
textual representation they are specified explicitly. The data type is temporal elements, and the granularity
of the timestamps is hour for both temporal aspects to be captured. This results in the textual description
below. Words in boldface are keywords.

Entity Type Employee with (LS ; temporal element ; hour); (TT ; temporal element ; hour)

We now have to add the attributes of the entity type Employee. It has the attributes ID, Name, Birthdate,
and Salary. The only attribute where the temporal aspect is captured is Salary, and the time dimensions
captured are valid time and transaction time. For all attributes, we have to specify the data type of the
attribute values. For the temporal attributes, as for temporal entity types, the data type and the granularity
of the timestamps capturing the temporal aspects are implicit in the diagrams, but have to be specified

22

explicitly in the textual representation of the temporal attributes. The attributes of the Employee entity type
are given as next.

Attribute ID is of type int ;
Attribute Name is of type string ;
Attribute Bith date is of type string ;
Attribute Sal is of type real with (VT ; temporal element ; day); (TT ; temporal element ; day);

The translation of the other modeling constructs follow the same procedure and the textual representa-
tions of entity type Department and relationship type Belongsto are as follows.

Entity Type Department with (TT ; temporal element ; day) has
Attribute Number is of type int ;
Attribute Name is of type string ;
Attribute Location is Multivalued of type string with (VT ; temporal element ; day);
Attribute Pro�t is of type real with (VT ; temporal element ;month);

(TT ; temporal element ;month);

Relationship TypeBelongs to has
Attribute Join date is of type string ;

involvesEmployee;Department ;

We now add key constraints to the entity types and snapshot participation constrains to the relationship
type. ID is the key of Employee and Number is the key of Department; the snapshot participation constraint
on Employee is (1,1), and the snapshot participation constraint on Department is (1,N). This gives us the
following textual representation of the constraints.

ID is key ofEmployee ;
Number is key ofDepartment ;
participation of Employee in Belongs to is (1,1);
participation of Department in Belongs to is (1,N);

2

The full syntax of the textual representation of the TIMEER model is given next.

Meta variables

ScD 2 Schemadecls — TIMEER schema declarations
ED 2 Enttypedecls — Entity type declarations
RD 2 Reltypedecls — Relationship type declarations
AD 2 Attributedecls — Attribute declarations
ICD 2 ICdecls — Integrity constraints declarations
E 2 E TYPE — The set of entity type names
R 2 R TYPE — The set of relationship type names
A 2 ATT — The set of attribute names
B 2 2ATT — The set of subsets of attribute names
TS 2 T SPEC — The set of specifications for temporal support
IS 2 I SPEC — The set of involvement specifications
d 2 DATA — The set of basic data types supported by TIMEER
max;min 2 Integer contants — The set of integer constants
dim 2 fLS; V T; TTg— The set of time dimensions supported by TIMEER
ts 2 finstant; temporal elementg— The set of data types for timestamps supported by TIMEER
g 2 fsec;min; hour; day; week;month; yearg— The set of granules supported by TIMEER
p1; p2 2 fdisjoint; overlapping; total; partielg— The set superclass/subclass participation constraints

23

Abstract Syntax

ScD ::= ED;RD; ICD

ED ::= ED1
;ED2

j Entity Type E hasAD

j Entity Type E with TS hasAD

j Weak Entity Type E hasAD

j Weak Entity Type E with TS hasAD

j SubclassE1 of E2 hasAD

j SubclassE1 of E2 with TS hasAD

RD ::= RD1
;RD2

j Relationship TypeR hasAD involvesIS
j Relationship TypeR with TS hasAD involvesIS

ICD ::= ICD1
; ICD2

j B is primary key of E
j B is partial key of E
j Snapshot participation ofE in R is (min;max)

j Lifespan participation of E in R is [min;max]

j Participation of IS with respect toE is p1; p2
AD ::= AD1

;AD2

j Attribute A isA0

D

A0

D ::= of type d
j of type d with TS
j composite(AD)

j composite(AD) with TS
j Multivalued of type d

j Multivalued of type d with TS
TS ::= TS1 ;TS2

j (dim; ts; g)

IS ::= IS1 ; IS2
j E

j E(identifies)
dim ::= LS j V T j TT

ts ::= instant j temporal element

g ::= sec j min j hour j day j week j month j year

d ::= int j real j string

p1 ::= disjont j overlapping

p2 ::= total j partial

A.2 Semantics of TIME ER

We are now able to define the semantics of the TIMEER model. First, we define the semantics of the
predefined data types and define the model of time used in the semantics. Next, we explain the ideas behind
the semantics, followed be the full semantics of the TIMEER model.

The semantics of a data signature DS is given by three functions.

� A function D[[DATA]] 2 FUN such thatD[[DATA]] : DATA ! SET and?2 D[[DATA]](d) for
everyd 2 DATA. The membership of?2 D[[DATA]](d) is required because it is necessary to have
an undefined value as a result of an incorrect application of a function.

24

� A functionD[[OPNS]] 2 FUN such thatD[[OPNS]] : OPNS ! FUN and� : d1 � � � � � dn ! d

impliesD[[OPNS]](�) : D[[DATA]](d1) � � � � � D[[DATA]](dn) ! D[[DATA]](d) for everyd 2

DATA.

� A functionD[[PRED]] 2 FUN such thatD[[PRED]] : PRED ! REL and� : d1 � � � � � dn implies
D[[PRED]](�) � D[[DATA]](d1)� � � � � D[[DATA]](dn) for everyd 2 DATA.

Example A.3 The semantics of the predefined data types in Example A.1 and some of the associated oper-
ations are defined as follows.

D[[DATA]](int) = Z[f?g

D[[DATA]](real) = R [f?g

D[[DATA]](string) = A
� [f?g

D[[OPNS]](+i) : D[[DATA]](int)�D[[DATA]](int) ! D[[DATA]](int)

=

�
i1 � i2 ! i1 + i2 if i1; i2 2 Z

? otherwise
D[[OPNS]](squarer) : D[[DATA]](real) ! D[[DATA]](real)

=

�
r ! r � r if r 2 R

? otherwise

2

The Time Model

We assume that the real time line is bounded in both ends, so that time begins at the “Big Bang” and ends
at the “Big Crunch.” A pointt on the real time line is called an instant. The real time line is represented in
the database by a so-called baseline clock [DS95c]. In accord with the general consensus in the database
community that a discrete model of time is adequate, the base-line clock, and thus our time domains, is
discrete. Our time domains are then ordered, finite sets of elements isomorphic to finite subsets of the
natural numbers. The elements are termed chronons. This may be seen as dividing the real time line into
indivisible equal-size segments (the chronons). Real-world time instants are represented in the model by
the chronons during which they occur. We will usec, possibly indexed, to denote chronons. The size of a
chronon, called the granularity of the chronon, can be specified explicitly.

We introduce a domain for each combination of the temporal aspects and granularities supported. These
domains are given byDg

dim. The different valid-time domains are given asDg
V T = fcv

1
; cv
2
; : : : ; cvkg. The

domain of all valid times is given asDV T = [gD
g
V T . The transaction-time domains are given asD

g
TT =

fct
1
; ct
2
; : : : ; ctnowg [fUCg whereUC (”until changed”) is a special transaction-time marker. The domain

of all transaction times is thenDTT = [gD
g
TT . The different lifespan domains are given asDg

LS =

fcl
1
; cl
2
; : : : ; clnowg, and the domain of all lifespan times is given asDLS = [gD

g
LS . Some chronons are

expected to be in the future and some are expected to be in the past. The chrononcnow denotes the chronon
representing the current time.

A time interval is defined as the time between two instants, a starting instant and a terminating instant. A
time interval is thus represented by the sequence of consecutive chronons where each chronon represents the
instants that occurred during the chronon. We may represent a sequence of chronons by the starting and the
ending chronon. We define intervals[ci; cj]g whereci is the starting chronon,cj is the terminating chronon,
and the size of the chronon isg. We let [ci; cj]

g
vt; [ci; cj]

g
tt; [ci; cj]

g
ls denote intervals over the valid-time,

transaction-time, and lifespan domains, respectively.
We also define temporal elements over time domains. A temporal element is a union of intervals and is

represented byIg = [ci; cj]
g [� � � [[cl; ck]

g. Since our time domains are discrete and finite, we can define

25

a temporal element as an element of the set2D
g

dim . We letIgvt; I
g
tt; I

g
ls denote temporal elements over the

valid-time, transaction-time, and the lifespan domains, respectively.

Semantics of Example A.2

In order to better understand the ideas behind the semantics of TIMEER, we will explain in detail the
semantics of the entity type Employee, the relationship type Belongsto, the key constraint on Employee,
and the snapshot participation constraint of Employee in Belongsto.

An entity type in a TIMEER diagram defines an entity set. The attributes of an entity characterize
the entity, and each attribute of an entity has a value domain. The association between a set of attributes
X = fA1; A2; : : : ; Ang and the set of value domainsD is given by a functiondom : X ! D. An entity
together with its attributes can be regarded as a tuple. A tuplet over a set of attributesX is actually a
function that associates each attributeAi 2 X with a value from the value domaindom(Ai). For attribute
A, we denote this valuet[A] . In TIMEER, we use surrogates to identify the entities, and so extend the
tuples with a surrogate attribute.

The semantics of the entity type Employee is therefore a set of functions (tuples), termedEmployee .
The domain of each functiont is the set of attribute names connected to the entity type and the surrogate
attribute,s. The value domain of the attributes connected to the entity type Employee is determined by
the semantics of the attribute declarations, while the value domain of the surrogate attribute is the set of
surrogate values assigned toEmployee . The mathematical description of the above is presented next.

E [[Entity Type Employee : : :]] =

fEmployeeg � ft j t 2 FUN ^ dom(t) = fs ; ID ;Name;Bith date ;Salg ^ t[s] 2 D
Employee

S ^

t[ID] 2 A[[Attribute ID isA0
D]] ^ t[Name] 2 A[[Attribute Name isA0

D]]^
t[Bith date] 2 A[[Attribute Bith date isA0

D]]^
t[Sal] 2 A[[Attribute Sal isA0

D]]g

In the above description, we have not yet determined the value domains of the attributes. The attribute
ID is specified as non-temporal with data typeint . This means that we do not want to capture the changes of
this attribute over time. The semantics is therefore modeled as an constant belonging to the set of integers,
i.e., the value domain of this attribute is the set of integers, including the undefined value.

A[[Attribute ID is of type int]] = D[[DATA]](int) = Z[f?g

TheBirth date of an employee never changes, so this attribute is also described as non-temporal, but
here we use the data typestring . The value is therefore modeled as a constant sentence defined over some
alphabet, i.e., the value domain is some alphabet, again including the undefined value.

A[[Attribute Bith date is of type string]] = D[[DATA]](string) = A � [f?g

We will not explain in detail the semantics of the attributeName, but proceed to the attributeSal .
This attribute is a temporal attribute with data typereal , that is, we want to record how the values of this
attribute change over time. This means that the value domain of this attribute must be a function from some
time domain to a value domain. The temporal aspects to be captured for this attribute are valid time and
transaction time.

A[[Attribute Sal is of type real with (VT ; temporal element ; day); (TT ; temporal element ; day)]] =
T [[(VT ; temporal element ; day)]]� T [[(TT ; temporal element ; day)]] ! D[[DATA]](real) =

D
day

V T �D
day

TT ! R� [f?g

The resulting, full semantics of the entity typeEmployee is presented next.

26

E [[Entity Type Employee : : :]] =

fEmployeeg � ft j t 2 FUN ^ dom(t) = fs ; ID ;Name;Bith date ;Salg ^ t[s] 2 D
Employee

S ^

t[ID] 2 Z[f?g ^ t[Name] 2 A � [f?g ^ t[Bith date] 2 A � [f?g^

t[Sal] 2 D
day

V T �D
day

TT ! R [f?gg

The key constraint of an entity set is a set of predicates, the entity set has to satisfy. In the textual
representation, all constraints are separate constructs, so we first have to check if the entity type mentioned
in the constraint construct exists at all. We also have to check that the set of attributes mentioned in the
constraint really are attributes of the entity type. Next, we define the predicate that ensures that the values
of the key attributes are unique for the entity set. The key constraint on Employee is described next.

C[[ID is key ofEmployee]] =
inSch(Employee ; ScD) ^ ID 2 attOf (Entity Type Employee hasAD)^
8ti; tj 2 E [[Entity Type Employee hasAD]](ti[ID] = tj [ID]) ti[s] = tj [s])

A relationship type in a TIMEER diagram defines a relationship set. Its semantics is therefore a set
of relationships. The relationship type Belongsto describes relationships among entities from the entity
types Employee and Department. We use the surrogates of the participating entities to identify which
entities participate in which relationship(s). As for entities, we can regard each relationship in a set of
relationships as an element of a Cartesian product over a set of attributes. The attributes of a relationship
are the attributes of the relationship type and a surrogate attribute for each participating entity type. To
identify the participating entity types, we use the auxiliary functionparOf (IS) that takes an involvement
specification as input and returns a set (or if the relationship type involves the same entity type more than
once, a multiset) of entity type names. The semantics of the relationship type Belongsto is given next.

R[[Relationship TypeBelongs to hasAD involvesIS]] =
fBelongs tog � ft j t 2 FUN ^ dom(t) =

S
Ei2parOf (IS)

sEi [fJoin dategV
Ei2parOf (IS)

t[sEi] 2 I[[Ei]] ^

t[Join date] 2 A[[Attribute Join date isA0
D]]g =

fBelongs tog � ft j t 2 FUN ^ dom(t) = fsEmployee; sDepartment; Join dateg^

t[sEmployee] 2 D
Employee

S ^ t[sDepartment] 2 D
Department

S ^

t[Join date] 2 A � [f?gg

Snapshot participation constraints are like key constraints and define predicates that relationship sets
have to satisfy. Again, since the participation constraints are separate constructs in the textual representation,
we have to ensure that the entity type and the relationship type mentioned in each constraint exist. To count
the number of relationships, an entity participate in, we use the auxiliary functioncnt(e;E ;R[[RD]]) that
takes an entity, an entity type, and a relationship set as input and returns the number of relations in the
relationship set, the entitye participates in.

C[[Snapshot participation ofEmployee in Belongs to is (1 ; 1)]] =
inSch(Employee; ScD) ^ inSch(Belongs to; ScD)^

Employee 2 parOf (Relationship TypeBelongs to hasAD involvesIS) ^ 8ej 2 D
Employee

S

(min � cnt(ej ;Employee ;R[[Relationship TypeBelongs to hasAD involvesIS]]) � max)

The full semantics of the TIMEER model follow. First, we define the semantic domains. Second, we
define the auxiliary functions to be used in the semantic functions. Finally, we define the semantic functions.

27

Semantic Domains

DS [f?g — The set of surrogates
DE
S � DS — The set of surrogates assigned toE 2 [[E TYPE]]

DR
S � DS — The set of surrogates assigned toR 2 [[R TYPE]]

DLS = ([gD
g
LS) [f?g — The set of lifespan domains

DV T = ([gD
g
V T) [f?g — The set of valid time domains

DTT = ([gD
g
TT) [f?g — The set of transaction time domains

D[[DATA]] — The set of basic domains

Auxiliary Functions

The functionattOf takes as input an entity type declarations and returns the list of attributes names of the
entity type.

attOf (Entity Type E hasAD) = attOf (Entity Type E with TS hasAD) =

attOf (SubclassE1 of E2 hasAD) = attOf (SubclassE1 of E2 with TS hasAD) =

attOf (AD)

attOf (AD1
;AD2

) = attOf (AD1
) [attOf (AD2

)

attOf (Attribute A isA0

D) = A

The functionparAtt takes the name of an entity type as argument and returns the names of attributes of
the entity type and its ancestor(s), if the entity type is declared as a subclass.

parAtt(E) =

8<
:

attOf (Entity Type E : : :) if Entity Type E : : : 2 ED

attOf (SubclassE1 of E2 : : :) [parAtt(E2) if SubclassE1 of E2 : : : 2 ED

? otherwise

The functionparOf takes a relationship type declaration as argument and returns the entity types that
participate in the relationship type.

parOf (Relationship TypeR hasAD involvesIS) =
parOf (Relationship TypeR with TS hasAD involvesIS) = parOf (IS)

parOf (IS1 ; IS2) = parOf (IS1) [parOf (IS2)

parOf (E) = ffEgg

parOf (E(identifies)) = ffEgg

The functiontempSpec takes either an entity type declaration or a relationship type declaration as
argument. If the declaration is non-temporal, it returns the empty set; and if the declaration is temporal, the
specification of the required temporal support is returned.

tempSpec(E) =

8>>>><
>>>>:

TS if Entity Type E with TS hasAD 2 ED

; if Entity Type E hasAD 2 ED

TS � tempSpec(E2) if SubclassE1 of E2 with TS hasAD 2 ED

; � tempSpec(E2) if SubclassE1 of hasAD 2 ED

? otherwise

tempSpec(R) =

8<
:

TS if Relationship TypeR with TS hasAD involvesIS 2 RD

; if Relationship TypeR hasAD involvesIS 2 RD

? otherwise

28

The functionownerOf takes as arguments the name of a weak entity type and an identifying relationship
type declaration and returns the list of entity type names of the owners of the weak entity type.

ownerOf (E;Relationship TypeR with TS hasAD involvesIS) =

ownerOf (E;Relationship TypeR hasAD involvesIS) =

�
parOf (IS)�E if E(identifies)2 IS
; otherwise

The predicateinSch takes as arguments either an entity type name or a relationship type name, as well
as a schema declaration. The predicate returnstrue if the entity type or the relationship type is declared in
the schema and isfalse otherwise.

inSch(E; ScD) = inSch(E;ED;RD; ICD) =

inSch(E;ED) =

8<
:

true if Entity Type E with TS hasAD 2 ED

true if Entity Type E hasAD 2 ED

false otherwise

inSch(R; ScD) = inSch(R;ED;RD; ICC) =

inSch(R;RD) =

8<
:

true if Relationship TypeR with TS hasAD involvesIS 2 RD

true if Relationship TypeR hasAD involvesIS 2 RD

false otherwise

The functioncnt takes an entity, an entity type, and a relationship set as inputs and returns the number
of relations in the relationship set, the entitye participates in.

cnt(e; E; ft1; : : : ; tng) =

8<
:

0 if n = 0

cnt(e; E; ft1; : : : ; tn�1g) if n � 1 ^ tn[sE] 6= e

cnt(e; E; ft1; : : : ; tn�1g) + 1 if n � 1 ^ tn[sE] = e

Semantic Functions

I : E TYPE ! DE
S

T : T SPEC ! DV T [DTT [DLS

A : ATT �DATA� T SPEC ! D[[DATA]] [F (2D[[DATA]]) [(T [[TS]] ! D[[DATA]])[

(T [[TS]] ! F (2D[[DATA]]))
E : E TYPE � T SPEC �A DECL! A + �DS �A[[AD]] [A + � (DS � T [[TS]])�A[[AD]]
R : R TYPE � I SPEC � T SPEC �A DECL!

A + � (DS � I[[IS]]� T [[TS]])�A[[AD]] [A + � (I[[IS]]� T [[TS]])�A[[AD]] [
A + � I[[IS]]�A[[AD]]

C : ICD ! PRED

S : ScD ! S[[ScD]]

I[[IS1 ; IS2]] = I[[IS1]]� I[[IS2]]

I[[E]] =

�
DE
S if E 2 E TY PE

? otherwise

T [[with TS1 ;TS2]] = T [[TS1]]� T [[TS2]]
T [[(dim; instant ; g)]] = D

g

dim

T [[(dim; temporal element ; g)]] = 2D
g

dim

29

A[[AD1
;AD2

]] = A[[AD1
]]�A[[AD2

]]
A[[Attribute A isA0

D]] = A[[A0
D]]

A[[of type d]] = D[[DATA]](d)
A[[of type d with TS]] = T [[TS]] ! D[[DATA]](d)
A[[composite(AD)]] = A[[AD]]
A[[composite(AD) with TS]] = T [[TS]] ! A[[AD]]

A[[Multivalued of type d]] = F (2[[DATA]](d))

A[[Multivalued of type d with TS]] = T [[TS]] ! F (2[[DATA]](d))

E [[ED1
;ED2

]] = E [[ED1
]]] E [[ED2

]]
E [[Entity Type E hasAD]] =

fEg � ft j t 2 FUN ^ dom(t) = fs; attOf (AD)g ^ t[s] 2 DSV
Ai2attOf (AD) t[Ai] 2 A[[Attribute Ai isA0

D]]g

E [[Entity Type E with TS hasAD]] =
fEg � ft j t 2 FUN ^ dom(t) = fs; attOf (AD)g ^ t[s] 2 T [[TS]] ! DSV

Ai2attOf (AD) t[Ai] 2 A[[Attribute Ai isA0
D]]g

E [[Weak Entity Type E hasAD]] =
fEg � ft j t 2 FUN ^ dom(t) = f

S
Ei2ownerOf (E;RD) sEi ; attOf (AD)g

V
Ei2ownerOf (E;RD) t[sEi] 2 I[[Ei]]V

Ai2attOf (AD) t[Ai] 2 A[[Attribute Ai isA0
D]]g

E [[Weak Entity Type E with TS hasAD]] =
fEg � ft j t 2 FUN ^ dom(t) = f

S
Ei2ownerOf (E;RD) sEi ; attOf (AD)gV

Ei2ownerOf (E;RD) t[sEi] 2 T [[TS]] ! I[[Ei]]
V
Ai2attOf (AD) t[Ai] 2 A[[Attribute Ai isA0

D]]g

E [[SubclassE1 of E2 hasAD]] =

fE1g � ft j t 2 FUN ^ dom(t) = fsE2
; parAtt(E2); attOf (AD)g ^ t[sE2

] 2 T [[tempSpec(E2)]] ! DE2

SV
Ai2parAtt(E2)

t[Ai] 2 A[[Attribute Ai isA0
D]]V

Ai2attOf (AD) t[Ai] 2 A[[Attribute Ai isA0
D]]g

E [[SubclassE1 of E2 with TS hasAD]] =
fE1g � ft j t 2 FUN ^ dom(t) = fsE2

; parAtt(E2); attOf (AD)g^

t[sE2
] 2 T [[tempSpec(E2)]]� T [[TS]] ! DE2

S

V
Ai2parAtt(E2)

t[Ai] 2 A[[Attribute Ai isA0
D]]V

Ai2attOf (AD) t[Ai] 2 A[[Attribute Ai isA0
D]]g

R[[RD1
;RD2

]] = [[RD1
]]] [[RD2

]]
R[[Relationship TypeR hasAD involvesIS]] =

fRg � ft j t 2 FUN ^ dom(t) = f
S
Ei2parOf (IS)

sEi ; attOf (AD)g
V
Ei2parOf (IS)

t[sEi] 2 I[[Ei]]V
Ai2attOf (AD) t[Ai] 2 A[[Attribute Ai isA0

D]]g

R[[Relationship TypeR with TS hasAD involvesIS]] =

fRg �

8>>>>>>><
>>>>>>>:

ft j t 2 FUN ^ dom(t) = f
S
Ei2parOf (IS)

sEi ; attOf (AD)gV
Ei2parOf (IS)

t[sEi] 2 T [[TS]] ! I[[Ei]]V
Ai2attOf (AD) t[Ai] 2 A[[Attribute Ai isA0

D]]g if T [[TS]] 62 D
g

LS

ft j t 2 FUN ^ dom(t) = fsR;
S
Ei2parOf (IS)

sEi ; attOf (AD)g^

t[sR] 2 T [[TS]] ! DR
S

V
Ei2parOf (IS)

t[sEi] 2 T [[TS]] ! I[[Ei]]V
Ai2attOf (AD) t[Ai] 2 A[[Attribute Ai isA0

D]]g otherwise

30

C[[ICD1
; ICD2

]] = C[[ICD1
]] ^ C[[ICD2

]]

C[[B is key ofE]] = inSch(E; ScD) ^ ((B � attOf (Entity Type E hasAD)^
8ti; tj 2 E [[Entity Type E hasAD]](ti[B] = tj [B]) ti[s] = tj [s]))_
(B � attOf (Entity Type E with TS hasAD) ^ 8ti; tj 2 E [[Entity Type E with TS hasAD]]
(T [[TS]] ! ti[B] = T [[TS]] ! tj [B]) T [[TS]] ! ti[s] = T [[TS]] ! tj [s])))

C[[B is partial key of E]] = inSch(E; ScD) ^ ((B � attOf (Weak Entity Type E hasAD)^
8ti; tj 2 E [[Weak Entity Type E hasAD]](

S
El2ownerOf (E) ti[sEl] =

S
El2ownerOf (E) tj [sEl]^

ti[B] = tj [B]) ti = tj))_
(B � attOf (Weak Entity Type E with TS hasAD)^

8ti; tj 2 E [[Weak Entity Type E with TS hasAD]]
(T [[TS]] !

S
El2ownerOf (E) ti[sEl] = T [[TS]] !

S
El2ownerOf (E) tj [sEl]^

T [[TS]] ! ti[B] = T [[TS]] ! tj [B]) T [[TS]] ! ti = T [[TS]] ! tj)))

C[[Participation of IS with respect toE is disjoint ; total]] = inSch(E)
V
Ei2IS

inSch(Ei)^
8cl 2 DLS 8c

t 2 DTT (8t 2
S
Ei2IS

E [[SubclassEi of E : : :]]9t0 2 E [[: : :E : : :]](t[sEi] = t0[sE])^
8t 2 E [[: : :E : : :]]9t0 2 E [[SubclassEi of E : : :]](t[sE] = t0[sEi])^
8Ei; Ej 2 IS@t1 2 E [[SubclassEi of E : : :]]t2 2 E [[SubclassEj of E : : :]](i 6= j ^ t1[sEi] = t2[sEj]))

C[[Participation of IS with respect toE is disjoint ; partial]] = inSch(E)
V
Ei2IS

inSch(Ei)^

8cl 2 DLS 8c
t 2 DTT (8t 2

S
Ei2IS

E [[SubclassEi of E : : :]]9t0 2 E [[: : :E : : :]](t[sEi] = t0[sE])^
8Ei; Ej 2 IS@t1 2 E [[SubclassEi of E : : :]]t2 2 E [[SubclassEj of E : : :]](i 6= j ^ t1[sEi] = t2[sEj]))

C[[Participation of IS with respect toE is overlapping ; total]] = inSch(E)
V
Ei2IS

inSch(Ei)^

8cl 2 DLS 8c
t 2 DTT (8t 2

S
Ei2IS

E [[SubclassEi of E : : :]]9t0 2 E [[: : :E : : :]](t[sEi] = t0[sE])^
8t 2 E [[: : :E : : :]]9t0 2 E [[SubclassEi of E : : :]](t[sE] = t0[sEi]))

C[[Participation of IS with respect toE is overlapping ; partial]] = inSch(E)
V
Ei2IS

inSch(Ei)^

8cl 2 DLS 8c
t 2 DTT (8t 2

S
Ei2IS

E [[SubclassEi of E : : :]]9t0 2 E [[: : :E : : :]](t[sEi] = t0[sE]))

C[[Snapshot participation ofE in R is (min;max)]] = inSch(E; ScD) ^ inSch(R;ScD)^
(E 2 parOf (Relationship TypeR with TS hasAD involvesIS)_

2 parOf (Relationship TypeR hasAD involvesIS))^
(8ej 2 DE

S (min � cnt(ej ; E;R[[Relationship TypeR hasAD involvesIS]]) � max))_
(8c 2 T [[tempSpec(R)]] 8ej 2 DE

S

(min � cnt(ej ; E;R[[Relationship TypeR with TS hasAD involvesIS]]) � max))

C[[Lifespan participation of E in R is [min;max]]] = inSch(E; ScD) ^ inSch(R;ScD)^
E 2 (parOf (Relationship TypeR with TS hasAD involvesIS)^
8ej 2 DE

S (min � cnt(ej ; E;R[[Relationship TypeR with TS hasAD involvesIS]]) � max))

S[[ScD]] = S[[ED ;RD ; ICD]]

S[[ED ;RD ; ICD]] = E [[ED]]]R[[RD]]] C[[ICD]]

31

