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Abstract

Granularity is an integral feature of temporal data. For instance, a person’s age is commonly given to the
granularity ofyearsand the time of their next airline flight to the granularity ofminutes. A granularity
creates a discrete image, in terms ofgranules, of a (possibly continuous) time-line. We present a formal
model for granularity in temporal operations that is integrated with temporal indeterminacy, or “don’t
know when” information. We also minimally extend the syntax and semantics of SQL-92 to support
mixed granularities. This support rests on two operations,scaleand cast, that move times between
granularities, e.g., from days to months. We demonstrate that our solution is practical by showing
how granularities can be specified in a modular fashion, and by outlining a time- and space-efficient
implementation. The implementation uses several optimization strategies to mitigate the expense of
accommodating multiple granularities.

[Keywords: calendar, granularity, indeterminacy, SQL-92, temporal database, TSQL2]

1 Introduction

There is one feature common to all temporal data:temporal granularity. Temporal granularity is the unit
of measure for a temporal datum.1 For instance, birth dates are typically measured in or known to the
granularity of days and train schedules to that of minutes.

Granularities incorporate the cultural, legal, and even business orientation of the user to define the
time values that are of interest. Many different granularities exist and no granularity is inherently “better”
than another; the value of a particular granularity is wholly determined by the population that uses it.
For example, an employee time card can be regarded as a granularity which measures time in eight hour
increments and is only defined for five days of each week. It is essential that users be able to define their
own granularities; any fixed system of granularities, such as those supported by SQL from the Gregorian
calendar, will not meet the needs of all users.

The mixing of temporal data at different, user-defined granularities in a single database will become
common when databases can fully support this mixing. This paper offers a practical design for that support.
We see the following as the seven main contributions of this paper.

First, various semantics have been proposed for temporal operations that have operands at different gran-
ularities [Adiba et al. 1985, Clifford & Rao 1987, Lorentzos 1992, Melton & Simon 1993, Montanari et al. 1992,
Sarda 1993, Wang et al. 1995, Wiederhold et al. 1991]. For instance, in a comparison operation between a
time known to the granularity of days and one known to the granularity of hours, the comparison could be
performed at days, or it could be done at hours, or an error could be reported. In this paper we propose two
simple operations that can be utilized to supportall of the previous semantics for temporal operations.

Second, we describe an architecture the permits the rapid development and integration of granularities.
In our approach a user specifies a granularity declaratively, as a mapping from another granularity. One
benefit of this approach is that it supports the modular definition of collections of related granularities, which
we callcalendars. Only one granularity in each calendar must be related directly either to a granularity in
some other calendar or to the underlying time-line. So calendars can be developed largely in isolation, yet
can be rapidly integrated in a multi-calendar database management system (DBMS).

Third, to convert an instant in one granularity to a different granularity, the DBMS must be able to
construct a function from one to the other. For example, to convert a time known to the granularity of
Gregorian days to the same time expressed in the granularity of Chinese lunar months, the DBMS must be
able to convert days to lunar months. It is unlikely that a user will provide a function that converts directly

1In this paper the term ‘granularity’ will be used in place of the longer phrase ‘temporal granularity.’ Our focus is on time and
granularity in other domains such as space will not be directly addressed.

1



between days and lunar months; instead the function must be dynamically constructed from other user-
supplied functions. In this paper we describe in detail how user-supplied functions provided via calendars
are used during query processing to perform a desired conversion.

Fourth, we suggest that an important, implementation concept is the identification of “regular” conver-
sions. For example, in the Gregorian calendar, the granularity of weeks is regular with respect to days in
the sense that each week is composed of seven consecutive days. In contrast, months is “irregular” with
respect to days since each month in a year has a different number of days and February sometimes includes
an additional leap day (February 29). In general, regular conversions are more efficient that irregular ones.
We present a query evaluation strategy that is sensitive to the different conversion costs.

Fifth, we recognize thatindeterminacy, or “don’t know when” information, is a companion to granular-
ity. Temporal granularity and indeterminacy are two sides of the same coin, in that a (determinate) time at a
given granularity is indeterminate at all finer granularities. For example, a birthdate of July 1, 1998 indicates
that the person was bornsometimeduring the indicated day, but the precise minute is unknown. Indetermi-
nacy also arises naturally in many conversions, e.g., when converting a birthday, given to the granularity of
days, to the granularity of minutes.

Sixth, to further underscore the practical focus of this paper, we extend the syntax and semantics of
SQL-92 with support for mixed granularities. The bulk of this proposal has been adopted into TSQL2, a
temporal extension of SQL-92 [Snodgrass et al. 1995], constructs from which are now being considered for
inclusion into the SQL3 standard [Snodgrass et al. 1996].

Finally, while support for mixed granularities is a highly desirable database feature, previous research
has focused on theoretical concerns and has largely ignored performance. In this paper we quantify the cost
of storing and querying data at different granularities. We show that times at differing granularities can be
stored efficiently and that optimization strategies can be used to mitigate the expense of temporal operations
at mixed granularities.

In summary, our approach is based on a realistic model of time, is fully integrated with SQL-92 syntax,
supports several semantics for temporal operations on operands at differing granularities, and admits an
efficient implementation.

The paper is organized as follows. We first give an example that illustrates mixed granularities. We
then introduce our model of time. A granularity in this model is a segmentation of the time-line. Next we
present a theory for the semantics of temporal operations on operands at different granularities. We show
how to model a wide variety of semantics. We then extend the syntax and semantics of SQL-92 to permit the
definition of temporal values at various granularities. We also extend the semantics of temporal operations to
handle operands at differing granularities. This query language support rests on two operations that convert
temporal values from one granularity to another. Next we describe the implementation, in particular, how
to determine the mapping between granularities, and how to efficiently apply this mapping. Finally, we
summarize related work and our work.

2 Motivation

Consider the airline flight database depicted in Figure 1. The database consists of two relations:Flight Departures
andVacations. TheFlight Departuresrelation stores information about airplane flight departures. The flight
departure time is recorded in the granularity of minutes.2 TheVacationsrelation stores information about
vacations, specifically, the days that make up a vacation. The temporal information inVacationsis ostensi-
bly stored to the granularity of days, with each tuple recording a “period” of days rather than just a single
day. The vacations listed inVacationsinclude traditional American holidays such as Labor Day, Christmas,

2In this paper we do not considerperiodic time, such as a flight departing at the same time each day [Niezette & Stevenne 1992,
Terenziani 1997]. Our approach could be extended to encompass such situations.

2



Flight Departures Vacations
Flight# At Time

53 ’1997-11-20 14:38’
200 ’1997-11-27 14:34’
653 ’1997-11-27 12:38’
658 ’1997-11-30 10:03’

Vacation From Time To Time

’Labor Day’ ’1997-09-01’ ’1997-09-03’
’Thanksgiving’ ’1997-11-24’ ’1997-11-28’
’Christmas’ ’1997-12-24’ ’1997-12-26’

Figure 1: A flight database

and Thanksgiving. The Thanksgiving vacation is a four day weekend beginning on the fourth Thursday in
November.

A user, interested in flying home for Thanksgiving, queries this database to determine which flights leave
during the Thanksgiving vacation. In SQL-92, this query might be formulated as follows [Melton & Simon 1993].

SELECT *
FROM Vacations, Flight_Departures
WHERE Vacation = ’Thanksgiving’ AND

Flight_Departures.At Time OVERLAPS (Vacations.From Time, Vacations.To Time);

In this query, the user utilizes the temporal intersection operator,OVERLAPS, to determine which flights
leave during the Thanksgiving vacation. The times participating in theOVERLAPSare at different granu-
larities; flight times are in the granularity of minutes whereas vacation times are in the granularity of days.
The SQL-92 query processor is unable to handle the mixed granularities—it would return a syntax error,
stating that the two arguments toOVERLAPSare of incomparable types. (Vacations.From Time and
Vacations.To Time are of theDATEtype;Flight Departures.At Time is of theTIMESTAMP
type.)

The intent of the query is to select those flights that depart during the Thanksgiving vacation. To make
progress in answering the query, the query processor needs information about the relationship between
minutes and days. For example, it might know that each minute is contained in some day. With this extra
information the query processor can “scale” or convert the granularity of flight departure times from minutes
to days, allowing theOVERLAPSto determine which flights leave during the Thanksgiving vacation.

The missing part of the puzzle is not that minutes can be related to days, rather, what is missing is the
design of themechanismthat relates times in these two different granularities. Currently, users must manu-
ally provide this mechanism. For example, the user could create a conversion table to map minutes to days,
a fragment of which is shown in Figure 2, and rewrite the query to utilize the table as follows [Inmon 1996].

SELECT *
FROM Vacations, Flight_Departures, minutes in days AS C
WHERE Vacation = ’Thanksgiving’ AND

C.Day OVERLAPS (Vacations.From Time, Vacations.To Time) AND
Flight_Departures.At Time = C.Minute;

For temporal granularities the “user does it all” solution has several disadvantages. First, queries that
make explicit use of conversion tables are more difficult for users to formulate, and consequently increase
the likelihood of an incorrect query (e.g., suppose the user forgets the final conjunct; the query would be
run to completion, but produce an incorrect result). Second, there is little the query optimizer can do to
optimize the granularity conversions since it is unaware that those conversions are occurring; we discuss
relevant optimizations in Section 8.6. Third, some of the conversion tables will be quite large. For example
a table to convert seconds to days over the range 1970 to 2000 A.D. would have over a billion tuples. It
would be better if most conversions were implemented by a (short) program fragment rather than a table.
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minutes in days
Minute Value Day Value

: : : : : :

’1997-01-01 00:00’ ’1997-01-00’
’1997-01-01 00:01’ ’1997-01-01’
: : : : : :

’1997-11-27 14:34’ ’1997-11-27’
’1997-11-27 14:35’ ’1997-11-27’
: : : : : :

’1997-12-31 11:59’ ’1997-12-31’
: : : : : :

Figure 2: A conversion table between minutes and days

Finally, the user must predefine every possible conversion either as a table or a view. So forN granularities,
N2

�N tables must be predefined, and when the user desires a new granularity, the user must create2 �N

new conversions. In this paper we present a strategy whereby a minimal set of conversions is specified, with
the rest automatically constructed as needed during query evaluation. This strategy supports the addition of
a new granularity via the specification of a conversion from some existing granularity.

For these reasons we believe a better design is to build support for temporal granularity directly into
a DBMS. In the rest of this paper, we describe how a DBMS can be engineered to automatically and
efficiently construct relationships between granularities, such as days and minutes. We also explain how
to get the query evaluator to perform theOVERLAPSin the granularity of days or in minutes. Finally, we
quantify the cost of storing times in different granularities and the additional overhead on querying such
times.

3 Model of Time

Time has a standard geometric metaphor. In this metaphor, time itself is a line; a point on the time-line
is called atime point; the time between two time points is known as atime period (period for short);
and a length, or unanchored segment, of the time-line is termed aninterval. (We use SQL-92 terminol-
ogy [Melton 1992] for basic temporal concepts, consistent with the terminology proposed by the temporal
database community [Jensen & Dyreson 1998]. We also utilize the terminology proposed for granularities
[Bettini et al. 1998], as well as the general model of time described there.)

3.1 The Time Domain

The time domain is the set of time points used to define and interpret time-related concepts. Formally, a
time domainis a totally ordered setT of time points with the ordering relation ‘�’.

Typically one chooses a model of time from the following: thecontinuous model, in which time is
viewed as being isomorphic to the real numbers, with each real number corresponding to a time point, the
dense model, in which time is viewed as being isomorphic to the rationals, or thediscrete model, in which
time is viewed as being isomorphic to the integers [Clifford & Rao 1987, Montanari et al. 1992]. Science
and metaphysics have yet to determine which model best fits reality; good arguments can be made for each
model (e.g., some quantum theories view time as ultimately quantized or discrete [Anderson 1982]). We
abstain from choosing amongst these three models. In our model, time can be either continuous, dense, or
discrete. However, we adopt a discrete “view” of time, which we describe below.
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time domain

-3 -2 -1 0 1 2 3 4day granules

Figure 3: The time-line at a granularity of days

3.2 A Discrete Image of Time

In this section we summarize the relevant terminology and general framework for granularity presented
elsewhere [Bettini et al. 1998].

Portions of the time domain are “grouped” into aggregations calledgranules[Wiederhold et al. 1991].
Specifically, a granule is a (not necessarily contiguous) subset of the time domain. Agranularity is a
mappingG from the integers to granules such that

1. if i < j andG(i) andG(j) are non-empty then each element ofG(i) is less than every element of
G(j),

2. if i < k < j andG(i) andG(j) are non-empty thenG(k) is non-empty, and

3. G(0), theorigin of G, is non-empty.

The first requirement implies that granules within a granularity are non-overlapping and totally ordered,
with the ordering inherited from the integers. The second insures that the set of integers mapping to non-
empty granules is contiguous. The third is mainly for convenience (see Section 8.2).

A granularity may cover only a subset of the time domain. There may be times that are less than those
in any granule, or that are greater than those of any granule. Theextentof a granularity is the set of time
points from the earliest to the latest time points in any granule of that granularity. Within the extent of a
granularity, there may be holes, time points that are not in the granularity. Theimageof a granularity is the
union of the granules of the granularity. The image can be contiguous, or might have holes. If the image of
a granularity is contiguous, it is equal to that granularity’s extent. Finally, for each granule,G(i), i is known
as theindexof the granule.

For example, the granularity of Gregorian days creates a discrete image of days. Its origin can be fixed
at January 1, 1 A.D. Each day is a sequence of about 86400 seconds (some days have additional leap
seconds). The set of indexes for the days in 1997 A.D. isf728293; 728294; : : : ; 728658g. Figure 3 shows
a portion of the time-line grouped into granules belonging to the granularity of days. The figure depicts
a continuous time domain partitioned into day granules. Each granule is a segment of the time-line. The
granule’s index is shown above each segment.

Granularities are related in the sense that the granules in one granularity may be further aggregated
to form larger granules belonging to acoarsergranularity. For example, as every Gregorian year is an
aggregation of 365 or 366 Gregorian days, it follows that years is a coarser granularity than days. Similarly,
Gregorian days may be considered to be afiner granularity than Gregorian years. (Thefiner-thanrelation
employed here is also called thegroups-intorelation [Bettini et al. 1998].)

Let G andH designate two granularities.H is said to becoarser thanG (H D G) andG is said
to befiner thanH (G E H) if for each granuleh 2 H, there exists a set of granulesS � G such that
h =

S
g2S g. If G is finer or coarser thanH, then the two granularities are said to becomparable3.

For example, in the Gregorian calendar, years is a coarser granularity than months since every year is
composed of a sequence of months. Conversely, days is a finer granularity than months since every month

3This notion is more general than that found in the SQL-92 standard, which effectively states that two values are mutually
comparable only if they are of the same granularity [Melton 1992, p. 24]. We examine how values of different granularities can
participate in SQL operations in Section 4.
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is composed of a sequence of days. But months are neither finer nor coarser than weeks since some months
are not exactly composed of a sequence of weeks.

3.3 Textual Representation

In addition to the (integer) index, each granule is associated with a textual representation, a string, used for
input and output, which is called thelabel. The label can be mapped to the index for input, and the index
can later be mapped to this label for output. This mapping can be quite complicated, involving different
languages and character sets [Soo et al. 1992].

For expository purposes in this paper we will use the textual representations of the SQL-92 language
to denote granules, often subscripted by the name of the granularity. For SQLDATEs, at a granularity
of days, the label consists of a four-digit year, followed by a two-digit month, followed by a two-digit
day, separated with single hyphens. For example, the set of days in the Gregorian year 1997 A.D. is
f1997-01-01days ;1997-01-02days ; : : : ;1997-12-31daysg.

3.4 Instants

An eventoccurs at a particular time point inT [Jensen & Dyreson 1998]. In general, the database cannot
know this precise time, both because the measurement of the time is imprecise at the resolution of the time
domain [Clifford & Rao 1987], and because the database cannot accurately represent an arbitrary element
of the time domain (e.g., whenT is continuous).

For example, assume that a wristwatch reports that the current time is 3:45:23 P.M. This means that it
is (was) sometime during that second,but it is unknown exactly when.The wristwatch can only measure to
the accuracy of granules in the granularity of second; individual time points cannot be measured, they are
“too small.” In this sense, our model of time is faithful to “real-world” temporal measurements.

We choose to model the time point at which an event occurs by aninstant timestampor just instant. An
instant is a sequence of granules, called thesupport, together with an optional probability distribution on the
support. The support indicates the possible granules during which the event occurs while the distribution
records the probability that the event occurs during a particular granule. The support extends from alower
supportgranule,l, to anupper supportgranule,u in a granularity,G, and is designated using the following
notation:

l � u � fg 2 G j l � g � ug:

It is possible that the lower and upper supports are the same, indicating that the event occurs during a sin-
gle granule. In this case, the instant is called adeterminateinstant. Otherwise, it is called anindeterminate
instant.

While it is important to recognize that instants are specified only to the precision of a particular gran-
ularity, it is equally important to choose the correct granularity. Sometimes, for reasons of linguistic con-
venience, humans often under-specify a time, that is, a time is given in a very coarse granularity when the
time that it signifies is actually known at a very fine granularity. For example, a cruise ship schedule may
state that the ship will leave at 3 P.M. The time of the ship departure is given in the granularity of hours,
but “3 P.M.” is probably accurate to a much finer granularity. Indeed, to correctly model the departure time
of this particular cruise ship we might choose a granularity of minutes.

On the other hand, we may not know the exact granule in a given granularity during which an event
occurs. For example, we may know that a plane left sometime on 1997-06-12, but, at the granularity of
minutes, we do not know the specific minute during which that plane departed.

Granularity and indeterminacy are two sides of the same coin. A general maxim is that a determinate
instant is indeterminate with respect toall strictly finer granularities. In other words, for any determinate
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instant,g 2 G, and any finer granularityH, there exists an indeterminate instantlH � uH such that
g = lH � uH . For instance, suppose that we record that a plane took off on 1997-06-12days . This is a
determinate instant at the granularity of days; we know the exact day that the plane departed. At the granu-
larity of minutes, the departure time is indeterminate since we did not record the exact minute that the plane
departed. We only know that it left sometime during 1997-06-12 00:00minutes � 1997-06-12 23:59minutes .

Conversely, an indeterminate instant is determinate with respect tosomecoarser granularity. In other
words, for any indeterminate instantl � u, there exists a determinate instanth in some coarser granularity
H, such thatl � u � h. For example, suppose we record, at the granularity of hours, that a flight departs
sometime between 2 P.M. and 4 P.M. on 1997-06-12. At the granularity of days, months, and years, the
flight departs wholly within a single granule: 1997-06-12days , 1997-06months , and 1997years , respectively.

It is important to reiterate that a granule isnot a time point. It is a subset of the time domain that
contains the time point at which an event occurs. We model this time point, which is often not knowable
nor measurable, with a granule, which is measurable.

3.5 Periods and Intervals

A period is a contiguous subset of the time domain. Aperiod of granularityG, encoded with the indexes of
a pair of granulesg1 andg2, is the set of granules inG betweeng1 andg2, under the constraint thatg1 � g2.
We assume that both the starting and terminating granules are in the same granularity.

An interval is a signed integral number of granules in some granularity, that is, an amount of time with
known length but no specific starting or ending instants. For example, the interval 6days is known to have a
duration of six days, but can refer to any block of six consecutive days. An interval can be either positive,
denoting forward motion in time, or negative, denoting backwards motion in time.

Periods and intervals can also be indeterminate. An indeterminate period is a period that has indetermi-
nate bounding instants. An indeterminate interval is an interval with a partially known duration; however,
we know that the interval is at least as long as the lower support and no longer than the upper support.

3.6 Summary of the Data Model

The theme for our model of time is that users manipulate a discrete image of a time-line that is itself possibly
continuous, dense, or discrete. The discrete image is a by-product of modeling temporal information at a
given granularity. A granularity is a grouping of the time domain; each group is called a granule. Granules
model durationless temporal values, that is, time points, that are located sometime during that particular
granule. Periods model temporal values with duration that span a range of the time domain. Intervals
model unanchored durations of the time domain. Indeterminate instants, periods, and intervals model par-
tially known temporal information. Granularity and indeterminacy are related issues. All instants (periods,
intervals) are indeterminate at finer granularities and determinate at some coarser granularities.

4 Granularity in Operations

The granularity of time values impacts the semantics of expressions involving those values. For instance,
what happens when we compare a granule at the granularity of a day to one at the granularity of a minute?
In this section we discuss support for granularity in temporal operations.

Several semantics have been proposed for temporal operations, such asOVERLAPS, involving operands
at differing granularities.

Mismatch Give a mismatched granularity error [Adiba et al. 1985].
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Left-operand semantics Perform the operation at the granularity of the first operand. This is reminiscent
of the assignment operator in many strongly typed languages, which casts the value of the right hand
side to the type of the left hand side.

Right-operand semanticsPerform the operation at the granularity of the second operand. This is reminis-
cent of some expressions in C++, e.g.,7/2.0 , which converts the value of the left hand side of the
division operator to the floating point type, because the right hand side is a floating point number.

Finer semantics Perform the operation to the finer granularity [Clifford & Rao 1987, Sarda 1993, Wiederhold et al. 1991].
If the two granularities are incomparable (neither is finer than the other), then perform the operation
to a granularity finer than both arguments.

Coarser semanticsPerform the operation to the coarser granularity [Barbic & Pernici 1985, Montanari et al. 1992].
For incomparable granularities, perform the operation to a granularity that is minimally coarser. This
approach avoids adding indeterminacy not already present, but is, in some sense, the most conserva-
tive possibility, as information at the finer granularity is discarded.

It turns out, for example, that SQL-92 adopts each of these in particular contexts, as discussed further
in Section 6.3.

In all of these semantics (save generating a mismatch error), the operands are first converted to the same
granularity, and then the operation is carried out, usually on the indexes of the granules, which are integers.

4.1 Conversions

We propose two operations to convert time values between granularities:scaleand cast. We focus on
instants in this discussion, but these functions can easily be extended to periods and intervals. The con-
version functionscale(g; H) takes a (possibly indeterminate) instantg = lG � uG in granularityG
and a granularityH and returns the smallest (possibly indeterminate) instanth = lH � uH such that
lG � uG � lH � uH , and returnsinvalid if no such instant exists. (Here, we specify the conversion
functions in terms of the granules themselves, rather than their indexes.) IfH E G orG E H, then the ‘�’
will in fact be an equality.

A scale operation that converts an instant from a coarser to a finer granularity usually produces an
indeterminate instant, even when applied to a determinate instant (wherelG = uG). For various reasons,
a user may not want an indeterminate result. Instead, a user might desire a result that is determinate when
applied to a determinate value, even though that result might not be strictly consistent with the input value.
To meet these user needs, we propose a new operation, calledcast, that allows one to “create” information.

The cast operation is similar to scale but produces a determinate instant when applied to a determinate
instant. The cast of a determinate instant is the lower support of the scale of the instant. For example, to
cast a determinate instant from a coarser to a finer granularity, cast first scales the instant, resulting in an
indeterminate instant. From that indeterminate instant, it returns the first granule, a determinate instant, as
the result. In effect, for any determinate instant, cast assumes that the modeled time point is contained in
the first granule at all finer granularities. When cast is applied to an indeterminate instant, it treats the lower
and upper supports consistently.

The conversion functioncast(g; H) returns the instanth = lH � uH inH such thatlh 2 min(scale(lG; H))

anduH 2 min(scale(uG; H)). Note that iflG = uG thenlH = uH , ensuring that a cast of a determinate
instant always produces a determinate instant.

The mapping functions can be combined as shown in the following examples.

scale(1997years ; days) = 1997-01-01days � 1997-12-31days
scale(scale(1997years ; days); months) = 1997-01months � 1997-12months
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cast(1997years ; days) = 1997-01-01days
cast(cast(1997years ; days); years) = 1997years
scale(cast(1997years ; days); months) = 1997-01months

Observe that some combinations of mappings result in the identity function on subsets of the time domain.
That is, the support of the input instant equals the support of the output instant. These sequences of mappings
are called “information-preserving” sequences, in the sense that they lose none of the original instant’s
precision.

We are now in a position to specify the various proposed semantics for binary instant operations over
different granularities. Letg 2 G andh 2 H be (determinate or indeterminate) instants at the indicated
granularities,� be a binary instant operation or predicate,F be a granularity that is finer than bothG and
H, andC be a granularity that is minimally coarser than bothG andH. We express the semantics in terms
of operators over single granularities.

Left-operand semantics

g � h = g � scale(h; G)

Right-operand semantics

g � h = scale(g; H) � h

Finer semantics

g � h =

8<
:

g � scale(h; G) if G is finer thanH
scale(g; H) � h if G is coarser thanH
scale(g; F ) � scale(h; F ) otherwise

Coarser semantics

g � h =

8<
:

scale(g; H) � h if G is finer thanH
g � scale(h; G) if G is coarser thanH
scale(g; C) � scale(h; C) otherwise

In any of the above semantics,castmay be used in place ofscale. The drawback of usingcast is that
the finer conversion function discards some temporal information. The binary operator may then return a
perhaps unexpected result (though one consistent with the semantics). For example, 1997-01months < 1997-
01-15days translates to three possible comparisons under the various semantics; one of which evaluates to
true.

� 1997-01-01days < 1997-01-15days = true
(castusing Right-operand or Finer semantics.)

� 1997-01months < 1997-01months = false
(castor scaleusing Left-operand or Coarser semantics.)

� 1997-01-01days � 1997-01-30days < 1997-01-15days = maybe4

(scaleusing Right-operand or Finer semantics.)

4Maybe is neither true nor false. The semantics of ‘<’ on indeterminate operands is described elsewhere
[Dyreson & Snodgrass 1998].
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4.2 Scaling Mass Functions

The probability mass function gives the probability that the instant is located within a given granule. Since
a scale operation (whether regular or not) modifies the size and number of granules in the support of the
distribution, the scale also changes the mass function. Each mass function is described, in the implemen-
tation, as a function on a domain[0; 1]. In scaling from a finer to a coarser granularity, the mass of each
fine granule is effectively added to the mass of all the other fine granules that belong to a given coarse
granule. For example, suppose an indeterminate instant with a seven day support (from Sunday through
Saturday) and auniform mass function is scaled to the granularity of weeks. In the resulting instant, the
probability that the instant is located during each day, a probability of1

7
, is accumulated to give the prob-

ability that the instant is located during the given week, a probability of1. In scaling from a coarser to a
finer granularity, the mass of each coarse granule is dispersed. (We show elsewhere that it is in practice
more efficient to shrink or stretch the mass during the comparison operation, rather than during the scale
operation [Dyreson & Snodgrass 1998].)

4.3 Scaling Intervals

To scale a period, the instants that start and end the period are scaled separately. Scaling intervals, however,
is slightly more complicated.

An interval is an unanchored duration. In our model of time it is encoded as a count of granules in some
granularity. The interpretation of an interval is that it is a duration thatnecessarilydisplaces any instant
by the represented number of granules. For example, an interval of 1days represents a duration that when
added to an instant at the granularity of days, will displace that instant by one day, e.g, 1997-12-30days +

1days =1997-12-31days .
We observe that an interval of 1days also represents a duration that when added to an instant at the

granularity of months, could displace that instant by 0 or 1 months. In the above example, the instant could
be moved from the month of December to the month of January. Note that the interval of 1days could also
displace an instant into the next year. Imagine taking an interval and placing it anywhere along a time-line
that is partitioned into granules. Depending upon where we place the interval, it will cross more or fewer
granules as shown in Figure 4. Even the smallest interval can cross at least one granule boundary.

A second observation is that some intervals span different numbers of finer granules. For example,
1months may represent anywhere from 28 to 31 days. 28 days will displace any instant in February into the
next month, but 31 days are sometimes needed to displace an instant in August into the next month.

For both of these reasons, scaling an interval may result in an indeterminate interval. An indeterminate
interval a � b in granularityG implies that the length of the interval is a number betweena and b of
granules inG. An indeterminate interval may result when scaling from coarser to finer or from finer to
coarser. Below, we give some examples to illustrate scaling an interval.

scale(1days ; years) = 0years � 1years

scale(1days ;months) = 0months � 1months

scale(1days ; days) = 1days

scale(1days ; hours) = 24hours

scale(1days ;minutes) = 1440minutes

scale(1months ; days) = 28 � 31days

The actual mechanics of scaling an interval is a variation of that for scaling an instant.
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A A

Figure 4: IntervalA can be placed within a single granule or spanning two granules.

5 Piecemeal Specification of Granularities

Each granularity,G, can always be specified by giving the functionG() that maps indexes to granules inG,
that is, to subsets of the time domain. For many granularities, however, it would be helpful if granularities
could be specified with respect to other granularities rather than to the underlying time domain. For exam-
ple, suppose the time domain is UTC seconds. Gregorian days, weeks, months, and years could be specified
in this time domain, but each specification would have to take into account complicated leap seconds adjust-
ments. An alternative, modular approach would be to specify days in terms of seconds, weeks and months
in terms of days, and years in terms of months. Since the purpose of the granularity specifications is to
support conversionsbetweengranularities, for many conversions knowing the granularity to the precision
of the underlying time domain is unnecessary.

In this section we advocate specifying granularities via mappings between pairs of granularities, rather
than specifying granularities directly via their index functions. From a sufficiently complete set of these
mappings, the system can deduce any required granularity information.

Elaborating on our approach, the user (or database administrator) specifies granularities by providing the
conversion functions (scaleandcast) between some pairs of granularities. This set of conversion functions
describes a directed graph called thegranularity graph. Each node in the graph represents a granularity. An
edge fromG to H indicates that the user has supplied a function to convert fromG to H. A granularity
graph for the granularities in the Gregorian calendar is shown in Figure 5. In the figure, all mappings have
been supplied in both directions between the indicated pairs of granularities.

To allow scales and casts between arbitrary granularities, we must place some restrictions on the gran-
ularity graph. First, the graph must contain a finest or bottom granularity, denoted?. The granules in?
are calledchronons[Jensen & Dyreson 1998]. Second, for every granularityG in G, there must exist a path
(G = G0; G1; : : : ; Gk = ?) from G to ? such thatGi D Gi+1 for all 0 � i < k. Finally, for every
granularityG in G, there must exist a path(? = G0; G1; : : : ; Gk = G) from? toG such thatGi E Gi+1

for all 0 � i < k.
We do not require the set of granularities in the graph to form a lattice with respect to the finer-than

relation. This typical assumption [Wang et al. 1995] is violated if two granularities in the calendar have
different extents and, thus, no unique least upper bound (LUB). In rarer cases, two granularities may not
have a unique greatest lower bound (GLB). For example, the following combination of granularities does
not have a unique GLB: solar days (the day starting at midnight), civil days (the day starting at noon),
hours, and Chinese calendar k’o (roughly ninety minute divisions of a day). Hours are finer than civil and
solar days as are k’o, but hours and k’o are unrelated. In either case, an “artificial” GLB or LUB could
be constructed and inserted into the graph to create a lattice. In our approach, we simply do not require
real-world granularities to fit neatly into a lattice. We do however assume the existence of a GLB within a
single granularity graph (? is finer than every granularity), for reasons discussed in Section 5.2.

Granularities in a granularity graph form acalendar[Soo et al. 1992]. A calendar is a software package
that has two primary functions. First it inputs and outputs temporal values as character strings, that is, the
labels of the values, by translating those labels to and from granularity indexes. We discuss this mapping in
Section 7. Second, a calendar provides all the functionality necessary to support granularities. In this section
we describe the necessary functionality in detail. We envision that some calendars would be provided by the
DBMS vendor (an example being the calendar supporting the legacy SQL-92 granularities such asDAY),
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Figure 5: A Gregorian calendar granularity graph.

others might be provided by the database users (i.e., the database administrator’s (DBA’s) staff, an example
being a calendar tied to the company’s fiscal year vagaries), and still others might be supplied by third-party
vendors (an example being the Astronomy calendar).

In this paper, we will use three calendars: the Gregorian calendar, a Business calendar, and an Astron-
omy calendar. We assume that the reader is already familiar with the Gregorian calendar (a variant of which
is included in SQL-92 [Melton 1992]). The Business calendar is a prototypical calendar for tax or payroll
applications. In the Business calendar, days are the same as in the Gregorian calendar, but the Business
calendar has a five day (work) week. The Business calendar year is divided into four quarters, Fall (start-
ing on the Gregorian date October 1), Winter (starting January 1), Spring (starting April 1), and Summer
(starting June 1). For tax purposes, the Business calendar year starts with the Fall quarter. The origin of the
Business calendar is Fall, 1990 (the founding of the corporation). The Astronomy calendar is very different
from the Business calendar. Those readers familiar with Julian5 or modified Julian dates will recognize the
Astronomy calendar. The Astronomy calendar year has 365.25 days. The origin of the Astronomy calendar
is noon on January 1, 4713 B.C., which is a synchronization point for various long-term celestial cycles.
The Gregorian calendar date June 24, 1994 is2449349astronomy days . The Astronomy calendar also has
centuries, which are precisely 36525 days long.

5.1 Building the Granularity Graph

There are many methods that could be used to build the granularity graph. Perhaps the easiest is to assume
that the graph is predefined; this is the approach adopted by the SQL-92 standard [Melton & Simon 1993].
We feel that such an assumption is unrealistic. Instead, we outline a method for building the graph using
a specification provided by the DBA. We note in passing that the MULTI CAL system [Soo et al. 1992] is a

5The Julian calendar we refer to here was developed in the sixteenth century by the French literary scholar Joseph Justus
Scaliger, and is distinct from the Julian calendar established by Julius Caesar in 45 B.C.E. [Dershowitz & Reingold 1997]
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Figure 6: A partial view of the decorated granularity graph in the Gregorian calendar

concrete realization of this approach to supporting multiple calendars in a conventional DBMS.
Each calendar has aspecification filewhich is parsed when the DBMS is configured by the DBA. Gran-

ularity descriptions are included in the specification file. A granularity is described as a further grouping
of some other granularity using either aregular mapping, that is, each granule in the coarser granularity is
composed of a fixed number of granules at the finer granularity (cf. Section 8.1), or as anirregular mapping,
which is necessarily more complicated. The specification file also declares the origin and extent of each
granularity.

The Gregorian calendar specification file describes the granularity of hours as a regular grouping of
minutes by asserting that there are exactly sixty minutes in every hour. In thedecorated granularity graph
(Figure 6), this information is represented by two edges: one from minutes to hours labeled ‘t div 60 ’ and
another from hours to minutes labeled ‘t�60 ’. The edge label ‘t div 60 ’ represents afunctionthat converts
minutes to hours. To convert minutes to hours, the time,t, is divided (integer division) by60. What may
be surprising to some readers is that a minute in the Gregorian calendar is not always 60 seconds. Due to
leap second adjustments, it be 59 or 61 seconds. Thus, the specification file states that an irregular mapping
exists between minutes and seconds. The calendar provides functions for all irregular mappings. Although
the secondsto minutes(t)function is simple (we describe elsewhere how to process Gregorian calendar
dates with leap seconds [Dyreson & Snodgrass 1994]), some irregular mappings may be quite complex.
Thedaysto months(t)mapping must accommodate months that have different numbers of days, as well as
leap years. Finally, for irregular mappings, the calendar also provides functions to convert intervals, e.g.,
interval minutesto seconds(i). Hence, a calendar is a specification file that enumerates the names of the
granularities and describes the mappings between them, and a collection of mapping functions, to be linked
with the DBMS.
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Figure 7: A multicalendar granularity graph.

5.2 Combining Calendars

If a user wishes to compare instants in granularities that are not within the same calendar then a larger
granularity graph containing the granularities from multiple calendars must be constructed. This is done by
adding mappings between granularities in the different calendars. Often the bottom granularity in one of the
calendars is finer than the bottom granularities in the other calendars. If this is the case, it is only necessary
to provide enough mappings to create a path from this finest bottom to and from each of the other bottoms.
This finest bottom then becomes the bottom of the large calendar. If such a granularity does not exist then
a new granularity, finer than all existing bottom granularities, must be constructed along with mappings
between it and the existing bottom granularities.

For example, it is easy to combine the Astronomy, Gregorian, and Business calendars. The bottom
granularity,?, of the Gregorian calendar is finer than the bottoms of the Astronomy and Business calen-
dars. Thus we need only provide mappings to create paths between? and astronomyday hundredths and
between? and businessdays. The former is accomplished by a simple regular mapping between seconds
and astronomyday hundredths; the latter, by a trivial mapping between days and businessdays. Additional
mappings may be specified to increase performance.

The granularity graph shown in Figure 7 was constructed by combining the Astronomy, Gregorian, and
Business calendars. Several additional mappings, e.g., astronomydays to hours, have also been defined.
Presumably, these provide improved performance for common conversions.
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5.3 Casts and Scales Via the Granularity Graph

The user may ask to convert from one granularity to another even when there is no direct mapping to perform
the particular conversion. In this case, we use the provided mappings between granularities to implement the
desired mapping. The DBMS finds a path in the granularity graph between the granularities and performs
the sequence of mappings along this path. The problem is that some compositions of mappings may not
result in a correct conversion.

For example, to convert astronomydays to months we may follow the path (astronomydays, hours,
days, months), or (astronomydays, astronomyyears, years, months), or (astronomydays, astronomyday tenths,
astronomyday hundredths, seconds, minutes, hours, days, months), etc. But scaling along the second path
will always result in an indeterminate instant (with a support of at least 12 months) even if the astron-
omy day being scaled is determinate. This is incorrect since a determinate astronomyday should scale to
a determinate month. In scaling from astronomydays to astronomyyears we lose information about the
original instant, resulting in a possibly incorrect final mapping. We need a method of identifying those paths
that always result in correct mappings: thecorrect paths(generally there are several).

A correct conversion path is a path(G = G0; G1; : : : ; Gk = H) in the granularity graphG such that
for all instantsl0 � u0 in G0, lk � uk = scale(l0 � u0; Gk) wherelk � uk is defined inductively by

li+1 � ui+1 = scale(li � ui; Gi+1)

for all i 2 f0 : : : k � 1g.
We wish to identify those paths fromG to H that are correct conversion paths. AV-path is a path

(G0; G1; : : : ; Gk) in the granularity graphG such thatG0 D G1 D � � � D Gp E Gp+1 E � � � E Gk

for somep 2 f0 : : : kg. Intuitively, a V-path goes from a granularityG0 to a finer granularityGp then up
to a coarser granularityGk. It is called a V-path since it appears in the shape of aV in a drawing of the
granularity graph where finer granularities are below coarser ones. Note, however, that “straight-line” paths
are also V-paths, withGp = G0 orGp = Gk.

Since there is a path in the granularity graph from the finest granularity? to every other granularityG
through successively coarser granularities and a path fromG to? through successively finer granularities,
there is at least one V-path between every pair of granularities (the one withGp = ?). There are often sev-
eral V-paths between two granularities. It turns out thatall V-paths betweenG andH are correct conversion
paths.

Lemma 5.1. Any V-path is a correct conversion path.

Proof. Let (G0; G1; : : : ; Gk) be a V-path andGp the finest granularity in the path. Letl0 � u0 be an instant
in granularityG0.

Let lj � uj be the instant inGj which is the result of the composition of mappings along the path
(G0; : : : ; Gj) applied tol0 � u0. We want to show thatlk � uk is the smallest instant in granularityGk

that contains the instantl0 � u0. In particular, we want to show thatlk containsmin l0 (the smallest time
point in l0) anduk containsmaxu0. We prove the above statement for the lower supportl0. A similar
argument establishes the result for the upper supportu0.

Each of the individual mappings is assumed to be correct. Thus, sinceGj+1 is finer thanGj for j < p,
lj+1 � lj and, in fact,min lj+1 = min lj . By induction,min lp = min l0.

Note that the support of the instant inG0 equals a union of granules in the finerGp. However, in scaling
from Gj to Gj+1 for p � j < k, from finer to coarser, we may find that some support granules inGj are
not contained inanygranule inGj+1. This means that some subset ofl0 � u0 is not in the image of the
granularityGj+1. If this is the case, the mapping fromGj to Gj+1 returnsinvalid and the composition as
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a whole also returnsinvalid for this path. This is correct. SinceGj+1 is finer thanGk, the same subset of
l0 � u0 that is not in the image ofGj+1 is not in the image ofGk. Thus, the scale ofl0 � u0 to Gk is
indeed invalid.

If all support granules inGj are in the image ofGj+1 for all p � j < k then, in particular,lj � lj+1.
By induction,lp � lk, andmin l0 = min lp 2 lk which shows that the lower support is correct.

It is possible that paths other than V-paths are correct. For instance, the user may specify a function
that converts directly from granularityG to granularityH even thoughG andH are not comparable. This
simple case of a single-edge path is easy to detect and, by assumption, is correct. We consider these paths
when calculating correct conversion paths between granularities. We do not consider other paths fromG to
H (W-paths, etc.) that are not, in general, correct, though in special cases may provide correct conversion.

6 Accommodating Mixed Granularities in SQL

To this point, we have focussed on the formal underpinnings of granularities and on how to effectively spec-
ify a collection of granularities. In this section, we propose a concrete query language syntax and semantics
to support mixed granularities. Implementation is discussed in the next section. The proposed support for
mixed granularities is based on the SQL-92 language standard [Melton 1992, Melton & Simon 1993].

We first propose a syntax for specifying the granularity of temporal values. The fact that there are
values at different granularities impacts the semantics of temporal operations. We propose two granularity
conversion operations and show how these operations can be used to implement any desired semantics. The
operations utilize user- and DBA-supplied granularities.

6.1 Column Definitions

In SQL-92, theCREATE TABLEstatement defines relation schemas. Columns (attributes) of determinate
instants (DATE, TIME andTIMESTAMP), or interval values (INTERVAL) can be defined; some appear in
the following example statements.

CREATE TABLE Vacations (Name CHAR[30], From Time DATE, To Time DATE);
CREATE TABLE Flight_Departures (FlightNum INTEGER, At Time TIMESTAMP);

Lacking from these column definitions, however, is a general way to specify the granularity in the presence
of user-defined granularities (SQL-92 provides only a fixed set of granularities: year, month, day, hour,
minute, second, and fractions of a second). We propose to allow the user to specify an extent and granularity
in a column definition. Conceptually, the extent is how much time is represented, specifically, how far
from the granularity origin a column value can possibly be. For example, to define instants known to the
granularity of a second that are within 100 years of the granularity origin, we propose to use the following
syntax, which is a slight extension of that already included in SQL-92 forINTERVALs.

TIMESTAMP (’100’ YEAR) TO SECOND

The specified granularities (YEARandSECOND) are defined in a user-supplied calendar. The interval literal
in the column definition (in this case,’100’ ) is parsed by the calendar (calendar scoping rules are described
elsewhere [Snodgrass et al. 1995]). The default granularity isSECOND. The default extent is’9999’
YEAR.

The following equivalent declarations specify an instant that can represent times within thirty-six billion
years (back to the big bang, and forward as many years) of the granularity origin to the granularity of a
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microsecond (the ‘(6) ’ specifies a fractional precision of10�6). For the first type to be accepted, there
needs to be a granularity (MICROSECOND) declared by the user (or in the default calendar).6

TIMESTAMP (’36000000000’ YEAR) TO MICROSECOND
TIMESTAMP (’36000000000’ YEAR) TO SECOND(6)

The syntax for column definitions is similar to SQL-92’s datetime definition and provides a great deal
of flexibility [Melton & Simon 1993]. Like SQL-92, we assume that a column definition establishes a data-
type that is the same for every value in that column, e.g., in a column of integer type, every value is an
integer (or a null value). All values in a column are stored to the same granularity. In our example database,
all flight times are stored to the granularity of a minute, rather than some being stored to finer granularities,
such as a second or millisecond. Individual times known to coarser granularities (e.g., a day) can be stored
by making the indeterminacy explicit (e.g., the flight leaves between the first and last minutes during that
day). Also, the granularity of a value can be stored with the schema rather than in the value itself. This
results in a smaller encoding.

6.2 Temporal Literals

Instant, period, and interval literals are syntactically delimited by single quotation marks,’ � � � ’ . A calendar
(either the default Gregorian calendar or one provided by the user) translates whatever comes between the
delimiters into an instant, period, or interval value [Soo et al. 1992]. We assume that the calendar also
decides the granularity of that value, unless the granularity is explicitly specified with the literal.

6.3 Granularity in Operations

As discussed in Section 4, support for mixed granularity operations rests on the ability to translate instants
between granularities.

SQL-92 adopts the following semantics, in each indicated context.

Mismatch Give a mismatched granularity error. In SQL-92, this semantics is employed by all variants
of comparison between temporal values (e.g.,=, <) [Melton 1992, Subclause 8.2, Syntax Rule 2,
p. 169],BETWEEN[Melton 1992, SC 8.3, SR 3, p. 172],IN [Melton 1992, SC 8.4, SR 4, p. 173],
ANY, ALL andSOME[Melton 1992, SC 8.7, SR 2, p. 180], andOVERLAPS[Melton 1992, SC 8.11,
SR 2, p. 186].

Left-operand semantics Perform the operation at the granularity of the first operand. In SQL-92, this
semantics is employed byhdatetimei + hintervali andhdatetimei - hintervali [Melton 1992, SC 6.14,
SR 3, p. 132].

Right-operand semanticsPerform the operation at the granularity of the second operand. In SQL-92, this
semantics is employed byhintervali + hdatetimei [Melton 1992, SC 6.14, SR 3, p. 132], retaining
the symmetry of ‘+’ in the presence of multiple granularities, sincehdatetimei + hintervali has an
identical semantics ashintervali + hdatetimei: the operation is performed to and the result is given in
the granularity ofhdatetimei.

Finer semantics Perform the operation to the finer granularity. In SQL-92, this semantics is employed
by hintervali + hintervali and hintervali - hintervali [Melton 1992, SC 6.15, SR 3c, p. 135]. This

6One can also succinctly express a column’s granularity and extent (as a power of 10 of that granularity). For example,
TIMESTAMP SECOND (6,0) specifies an underlying granularity ofSECOND(via a fractional precision of10�0 = 1), and an
extent of106 seconds. A similar syntax can be used to define a period or interval column.
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approach retains the symmetry of ‘+’ on intervals. SQL-92 does not support indeterminacy; it (some-
what arbitrarily) uses the first granule in the support.

To support these semantics, we add two operations, parallelingscaleandcast, that convert temporal
values. The syntax of these new operations is as follows: (We note in passing that SQL-92 already includes
aCASToperation; our proposal is a slight extension of this existing construct.)

SCALE( hoperandi AS hgranularityi )
CAST( hoperandi AS hgranularityi )

The first argument to each is an operand. A temporal operand can either be a literal, a column variable, or
an expression. If the operand is a literal, the granularity of that literal is given by the calendar that parses the
literal. If the operand is a column variable, the granularity of that variable is given by the column definition
(specified in the schema). Finally, if the operand is an expression, the granularity of the operand is the
granularity of the result of that expression, determined during semantic analysis. The second argument is
the target granularity. For example,

SCALE(Flight_Departures.At Time AS DAY)

scales the instants in theAt Time column of theFlight_Departures table from minutes to days.
As discussed in Section 4, SQL-92 does not permit comparison operators to be applied to values of dif-

ferent granularities. For other operations, SQL-92 uses, inconsistently, left operand semantics, right operand
semantics, and finer semantics. However, a user who desires a different temporal semantics can explicitly
insert scale or cast operations. User-specified granularity conversions supersede the implicit conversion
operations indicated by the SQL-92 semantics.

When SQL-92 needs to implicitly convert to a different granularity (e.g., forhdatetimei + hintervali,
which uses left operand semantics), the default is to useCAST. The default translation operations may be
globally overridden by aSETstatement. To change the default operation from cast to scale, one would use
the following.

SET SCALE AS DEFAULT;

6.4 Processing the Example Query

We use the SQL constructs proposed here to process the example query given in Section 2. First, the query
is rewritten to the following query, which effects the coarser operand semantics (as mentioned above, SQL
returns an error for the original query).

SELECT *
FROM Vacations, Flight_Departures
WHERE Vacation = ’Thanksgiving’ AND

SCALE(Flight_Departures.At Time AS DAY) OVERLAPS
(Vacations.From_Time,Vacations.To_Time);

The scaled dates of flight# 200 and of flight# 653 overlap the period of November 24 through November 28,
so only these two tuples appear in the answer.

In summary, with these extensions the original SQL-92 semantics is retained, both for the predefined
SQL-92 granularities and for user-defined granularities, while allowing the user to define a specific seman-
tics for an expression via appropriately placedCASTandSCALEoperations, and extending the semantics
to support temporal indeterminacy.
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7 Timestamp Encoding

We now describe representations for each of the three basic modeling entities: instants, periods, and inter-
vals. We focus on the determinate formats in this paper; the indeterminate representations are presented
elsewhere [Dyreson & Snodgrass 1998].

An instant timestamp specifies a granule containing the time of an occurrence. The SQL-92 instant
timestamp, specifically, theTIMESTAMPformat, is a record that has separate fields for the year, month,
day, hour, minute, second, and “fractional seconds” of an instant [Melton 1992]. The format can store an
instant known to these granularities only; it cannot store an instant known to the granularity of, say, weeks,
or to a non-Gregorian granularity such as astronomyday tenths. Furthermore, common operations on such
a representation are inefficient [Dyreson & Snodgrass 1993]. To add an interval to an instant, each field
must be added separately with carries performed between the fields.

We propose replacing theDATE, TIME, andTIMESTAMPformats with a simpler format. The format
has two fields: aflagsfield and anindexfield. The flags field is three bits in size, and is used to differ-
entiate determinate instants from indeterminate instants and special values such asbeginningand forever
[Snodgrass et al. 1995]. The index field stores the granule index, a signed integer value, which is a count,
in granules, of the distance from the granularity origin to the instant. Since all values in a column have the
same granularity, the granularity is stored with the schema rather than stored with the value, thus eliminating
the need for a field to store the name of the granularity.

It is possible for the granules (as subsets of the time domain) in two granularities to be identical, but to
be associated with different indexes in the two granularities, if granularities are allowed to have different
origins. 23business days might not be the same granule as23days ; instead it might be728316days (assuming
that the Gregorian day origin is January 1, 1 C.E. and the Business day origin is January 1, 1994 C.E.).

Such congruent granularities can be used to limit the size of timestamps. A user who wants to store
times in the current decade to the granularity of a second can use a one word format by using a granularity,
congruent with seconds, but with an origin at the current decade boundary. The extent is then only ten years,
which can be stored in a one-word timestamp. By relocating the origin via congruent granularities, the user
can use one word timestamps for most applications.

A period may be encoded by its delimiting timestamps, and an interval may be encoded as simply a
count (positive or negative) of granules. This approach finesses an awkward distinction in SQL-92 between
year-monthintervals andday-timeintervals [Melton & Simon 1993]. This distinction arose because SQL-
92 intervals contain a range of fields (e.g., year, month, day). So year-month intervals can contain only a
year value, only a month value, or both, and a day-time interval can contain only day, hour, minute, and
second values. Because we don’t know how many days there are in a month, an interval of “3 years, 4
months, and 5 days” is ill-defined, and is thus disallowed in SQL-97. Month and day fields cannot be
co-resident in an SQL-92 interval.

In our approach, an interval is always an integral number of granules in a specified granularity. Because
the non-regularity of days in month is dealt with in the conversions (see Section 6.3), rather than in the
values, there is no longer any need to make this distinction between two classes of intervals.

8 Evaluating Cast and Scale

There are two problems that arise in performing a cast or scale operation: determining an efficient (correct)
conversion path in the granularity graph between the source and the destination granularity (generally done
during semantic analysis of the query), and performing the cast or scale on a particular instant. We first
identify a class of efficient mappings. We then discuss algorithms that find the cheapest correct path, and
finally present how to use these paths effectively.
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8.1 Regular Mappings

In some cases, the conversion between granularitiesG andH (G E H) is particularly simple. Suppose
each granule inH contains the same number of granules ofG. For example, every week contains 7 days,
or every business week contains 5 days. Furthermore, suppose this uniformity isperiodic. If day a starts a
new (business) week then every7th day after daya also starts a new (business) week. This relation between
granularities permits a simple conversion betweenG andH that we call aregular mapping. (If there is a
regular mapping fromG toH, with G E H, thenG groups periodically intoH [Bettini et al. 1998].)

Before describing the conditions for the existence of a regular mapping in detail, it may help to consider
Figure 8. This figure shows a portion of three granularities:D (days),W (weeks), andB (business weeks).
The granuleD(i) (theith granule inD) is contained in the granuleW (b i�22

7
c). In the granularityB, D(i)

is contained inB(b i�30
7
c) if (i � 30) mod 7 < 5, otherwise it isinvalid. In both cases, the conversion is

accomplished by a subtraction and an integer division that rounds down.
In converting from coarser to finer,W (i) equals the instantD(7i+22) � D(7i+28) whileB(i) equals

D(7i+30) � D(7i+34). Again these are simple functions involving a single addition and multiplication.
The key to these conversions is knowing theperiod size ofH in G (7 for weeks in days and business

weeks in days), thegroup size ofH in G (7 for weeks in days and 5 for business weeks in days), and the
anchor ofH in G (the index of the granule inG containing the first instant of the origin inH, 22 for weeks
in days and 30 for business weeks in days).

For granularitiesG andH, if there exist integersp (period size ofH in G), s (group size ofH in G),
anda (anchor ofH in G) such that for alli 2 Z,

H(i) =

p�i+a+s�1[
j=p�i+a

G(j);

then there exists aregular mappingbetweenG andH. Note that the definition impliesG E H. The actual
mappings betweenG andH are then:

scale(iG; H) = cast(iG;H) =

�
b
i�a
p
c : if (i� a) mod p < s

invalid : otherwise

cast(lG � uG;H) = cast(lG;H) � cast(uG; H)

scale(lG � uG;H) = scale(lG; H) � scale(uG;H)

cast(iH ; G) = p � i+ a

scale(iH ; G) = p � i+ a � p � i+ a+ s� 1 = cast(iH ; G) � cast(iH ; G) + s� 1

cast(lH � uH ; G) = cast(lH ; G) � cast(uH ; G)

scale(lH � uH ; G) = cast(lH ; G) � cast(uH ; G) + s� 1 :

As described, regular mappings requireG andH to share the same extent. A slight generalization of
these definitions to account for granularities with different extents is possible. Essentially,invalid must be
returned if the input granule is not inextent(G) \ extent(H).

8.2 Computing the Anchor

A regular mapping betweenG andH (G E H) requires the three parametersp, s, anda. These parameters
are specific to the pairfG;Hg. Hence, the calendar specification includes thep, s, anda parameters for all
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Figure 8: Regular mapping between granularities.

pairs of granularities connected by a regular mapping. However, it turns out that it is possible to derive thea

parameter (the anchor ofG in H) from the origin of each granularity. This origin is specified by providing
the index of a granule in another granularity that starts at the same time as the origin. Allowing granularities
to have individual origins, as opposed to requiring all granularities to share the same origin, also permits a
smaller encoding, as was discussed in Section 7. Typically, the origin of the bottom granularity in a calendar
is implicit.

For example, the user may specify the origin of the weeks granularity in terms of hours. To convert
between days and weeks requires the anchor of weeks in days. So the origin of weeks (an index in the
granularity of hours) must be converted to days, and so on.

This computation of the anchor for each pair of granularities is not guaranteed to terminate, even for
simple granularity graphs. Consider the graph in Figure 9. We wish to cast an instant in hours to the
granularity of minutes. For this, a regular mapping, we need the anchor of hours in minutes. To compute
that, we need the anchor of days in minutes. For that, we need the anchor of days in hours, and the anchor
of hours in minutes, which is what we started attempting to determine.

The question then is: What constraint(s) must be placed on the origin specification to ensure that the
anchor can be computed for every regular mapping? It turns out that specifying the origin in any strictly
finer granularity is sufficient.

Theorem 8.1. If each origin of a granularityH is specified in a strictly finer granularityF (F C H), then
the calculation of the anchor for any pair of granularities will terminate.

Proof. To convert betweenG andH (G E H) requires the anchor ofH inG. If instead the user supplied the
anchor ofH in F , then the supplied anchor (in granularityF ) must be converted toG. This new conversion
involves a pair of granularitiesfF;Gg whose “coarseness” is less than the coarseness of the original pair
fG;Hg (sinceF C H andG E H). Thus the number of conversions involved in obtaining the anchor of
H in G is finite.

The conversions that are performed to calculate the anchor ofH in G are simplecastoperations. Note
that each conversion involves a mapping along the finer-than path fromH throughG to chronons. While
the anchor ofG in H is relevant only for regular mappings, it is still possible for the computation of that
parameter to utilize irregular mappings.

8.3 Adding Mapping Costs to the Granularity Graph

There are usually many correct conversion paths in the granularity graph between any pair of granularities.
To help determine the mostefficientcorrect path, each edge in the granularity graph is annotated with the
costof the mapping. An initial approach, which requires no effort on the part of the specifier, is to associate
a weight of one to regular mappings and a large weight to irregular mappings, since applying an irregular
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Figure 9: A problematic granularity graph

mapping requires at least an expensive function call and return. A more refined weighting scheme might
use timings from sample runs of the functions to determine their relative execution time.

8.4 Determining an Efficient Path

We present two algorithms for determining efficient V-paths. The first algorithm takes as input the finer-
than relationE, the weighted granularity graphG, and two granularitiesG andH. It outputs a shortest
V-path fromG to H. The second algorithm takes as input the finer-than relationE and the weighted
granularity graphG. It outputs shortest V-paths inG for all pairs of granularities. As we will see, the
all-paths algorithm is significantly slower than the single-path algorithm, which must nonetheless be called
repeatedly if mappings between many pairs of granularities are desired.

These algorithms return only V-paths. An independent procedure checks for a direct mapping fromG

toH in the cases whenG andH are incomparable.

8.4.1 Single-Pair Shortest V-Path

The single-pair shortest V-path algorithm performs two single-source shortest path computations, one from
G in the graphGD and one fromH in the graphGRE . The graphsGD andGRE have the same vertex set asG
but the edges ofGD aref(X; Y )j(X; Y ) 2 G andX D Y g, while the edges ofGRE aref(Y;X)j(X; Y ) 2

G andX E Y g (here, ‘R’ denotes “reversed”).
A shortest V-path fromG to H is the concatenation of a shortest path fromG to X in GD with the

reversal of a shortest path fromH toX in GRE . The definitions ofGD andGRE make any such concatenation
a V-path inG. Choosing theX that minimizes the length of this concatenated path gives the shortest V-path
fromG toH.

The running time of this algorithm is twice that of the single-source shortest path algorithm plusO(V )

to minimize overX whereV is the number of vertices inG. We may assume thatGD andGRE are acyclic;
the only cycles in these graphs involve granularities that are congruent and may be treated as a single gran-
ularity for the purposes of these shortest path calculations. Note thatG may have cycles of non-isomorphic
granularities, butGD andGRE do not. A single-source shortest path computation in a directed acyclic graph
can be done in timeO(V + E) whereE is the number of edges inG. Thus the total running time of the
single-pair shortest V-path algorithm isO(V +E).

8.4.2 All-Pairs Shortest V-Path

The all-pairs shortest V-path calculation uses a dynamic programming approach. Distinctly number the
granularities from1 to V whereV is the total number of granularities inG. The numbering should have the
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Distinctly number the granularities from1 to V such that if granularity numbera is strictly finer
than granularity numberb thena < b. (Topological sort on theE relation.)
let Icost(a; b) =1 for 1 � a < b � V

let Icost(a; a) = 0 for 1 � a � V

for d = 1 to V � 1

for b = 1 to V � d

a = b+ d;
Icost(a; b) = minx2F (a)w(a; x) + Icost(x; b)

for s = 2 to 2V

for b = 1 to V
a = s� b;
if 1 � a � V

Vcost(a; b) = min
�

Icost(a; b); Icost(b; a);minx2F (a)w(a; x) + Vcost(x; b)
	

Figure 10: Algorithm to calculateIcost andV cost

property that if granularity numbera is strictly finer than granularity numberb thena < b. We will refer to
granularities by number for the remainder of this section.

Let F (a) = fxj(a; x) 2 G andx � ag be the set of granularities adjacent froma and finer thana. Let
w(a; b) be the cost of the edge froma to b in G, that is, the relative time to convert a granule ina to a granule
in b (or vice versa). Define the cost of a direct path froma to b as

Icost(a; b) =

�
1 if a < b

minx2F (a) w(a; x) + Icost(x; b) otherwise

and the cost of a V-path froma to b as

Vcost(a; b) = min

�
Icost(a; b); Icost(b; a); min

x2F (a)
w(a; x) + Vcost(x; b)

�
:

The algorithm to calculate the two tablesIcostandVcostis shown in Figure 10.
Notice in the case of theIcost table, we start withIcost(a; a) = 0 on the main diagonal, then fill in

Icost(a; b) wherea � b = 1, then fill in Icost(a; b) wherea � b = 2, etc. To calculateIcost(a; b) where
a� b = d, we only needIcost(x; b) for x < a. Sincex < a, x� b < d and, because of the order in which
we fill the table,Icost(x; b) has already been calculated (ifx � b is negative thenIcost(x; b) = 1). This
implies thatIcost(a; b) is well-defined.

In the case of theVcosttable, we cannot follow the same order. Rather, we fill in theVcosttable in
order of increasingsumof a andb. We knowVcost(1; 1) = 0. To calculateVcost(a; b) wherea+ b = s, we
only needVcost(x; b) wherex+ b < s which has already been calculated. This implies thatVcost(a; b) is
well-defined.

The cost to fill in the tables isO(V 2) plus the time to do the two minimizations. Each edge(a; x)

appears at mostV times in each minimization, since a particular granularitya appears at mostV times
within each loop. Thus the running time isO(V 2 + V E) = O(V E) whereE is the number of edges inG
and is at leastV � 1.

8.4.3 Choosing the Method

To compare these algorithms, we implemented both, as well as some variants, and used the ATOM tool
[Srivastava & Eustace 1994] to measure the number of cycles spent in computing an optimal path [Lin 1997].
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We ran a series of test on a multicalendar granularity graph similar to that shown in Figure 7, with 18 gran-
ularities and 20 edges, over randomly selected pairs of granularities. Each test was repeated 50 times.

As might be expected, the single-pair shortest V-path algorithm, at 16,684 cycles, was faster, by almost
a factor of ten, than the all-pairs dynamic programming approach, at 156,555 cycles. However, at current
processor speeds, even the slower algorithm is quite practical: on a DEC 2000/233 workstation (with an
Alpha 21064 processor), the slower algorithm on this graph takes less than a millisecond to compute all
paths.

The algorithm was shown above to be quadratic in the number of granularities. In a database setting,
this is not an issue, even if the granularities number in the hundreds. Path selection is done during query
analysis, not queryevaluation. And the all-pairs algorithm can be run when the database is configured by
the DBA, or each a user (or DBA) defines a new granularity. A second or two to compute all paths will not
be noticeable.

Where the path computation time may make a difference is when multiple granularities are used in
an application. Adding this computation to each invocation of the application is less desirable. In that
situation, the dynamic programming approach can be modified to do just enough searching to find the best
path between two specified granularities, with future requests using the intermediate paths computed as a
side-effect [Lin 1997]. The first call requires about a third of the time of the all-pairs computation, with
subsequent calls taking even less. If only a few granularities are used by the program, this approach is best;
if many granularities are used, there is little difference.

8.5 Evaluating the Path

After the most efficient conversion path has been determined, it must be evaluated. To evaluate a cast, the
V-path is traversed, applying each mapping in turn. Regular mappings utilize thep, s anda parameters
as discussed in Section 8.1; irregular mappings invoke user-supplied functions. Integers (granule indexes)
are passed to and returned by these functions. The conversion completes wheninvalid is returned by a
mapping, or when the final mapping returns a result.

To evaluate a cast on an indeterminate value, the cast is applied to both supports. If the lower and upper
supports of the result are identical, then the result is determinate.

Section 8.1 also showed how to evaluate a scale over a regular mapping, in terms of thep, s anda
parameters; this turns out to require one or more casts and some arithmetic. In the general case, while a scale
over an irregular mapping on an indeterminate value can be implemented with two scales on determinate
values:

scale(l � u;G) = ll � uu

wherell � lu = scale(l; G) andul � uu = scale(u;G). It may be preferable in terms of efficiency
to supply two scale functions for each irregular mapping, one taking a determinate value and the other an
indeterminate value.

8.6 Query Optimization

The impact of granularity on query optimization can be observed in the running example query. In that query
theWHEREclause has an overlap between a flight departure instant, given in minutes, and a vacation period,
given in days. In Section 6.4 it was shown that to perform the overlap using coarser operand semantics, the
flight departure time is first scaled from minutes to days, and only then compared with the vacation time.
But this is not the only way to effect coarser operand semantics. An alternative, semantically-equivalent
query is given below.
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SELECT *
FROM Vacations, Flight_Departures
WHERE Vacation = ’Thanksgiving’ AND

Flight_Departures.At Time OVERLAPS
(CAST(Vacations.From_Time AS MINUTE),

CAST((Vacations.To_Time + INTERVAL ’1’ DAY) AS MINUTE)
- INTERVAL ’1’ MINUTE);

This alternative might be preferred if an index existed for the flight departure times, but not for the vacation
times. Other semantically-equivalent alternatives exist, such as converting both operands to a granularity
that does not appear at all in the original query, as illustrated below.

SELECT *
FROM Vacations, Flight_Departures
WHERE Vacation = ’Thanksgiving’ AND

CAST(Flight_Departures.At Time AS SECOND) OVERLAPS
(CAST(Vacations.From_Time AS SECOND),

CAST((Vacations.To_Time + INTERVAL ’1’ DAY) AS SECOND)
- INTERVAL ’1’ SECOND);

This alternative might be preferred if the query were nested inside a largerSELECTand further, extensive
comparisons were to be made of both times at the granularity of seconds.

8.7 Global optimizations

The goal of global query optimization is to determine which semantically-equivalent alternative is the cheap-
est to evaluate. In general, there are a large number of alternatives. For instance, a query involvingnOVER-
LAP operations in a system that supportsm granularities hasO(mn) alternatives. However, some simple
heuristics can substantially reduce the size of the search space.

First, times that are indexed, hashed, or clustered should not be converted. A query should take ad-
vantage of these performance-enhancing data structures. If such times were converted, it may well be the
case that the data structure becomes less effective. Second, only alternatives that involve conversions to
granularities actually present in the original query should be explored. So, for instance, converting flight
departure and vacation times to Chinese lunar months would be unlikely to lead to an optimized query. Fi-
nally, all else being equal, a scale or cast from a coarser to a finer granularity is preferred over the opposite
conversion. This “local” optimization technique is presented in detail below.

8.8 Local optimizations

Local optimizations can be applied to improve the speed of a single conversion between a pair of granulari-
ties.

The conversion operations are performed in the “inner-loop” of query processing, potentially done many
times during a query. Each regular mapping costs (possibly) one addition and one “expensive” suboperation.
The expensive suboperation is a division for a regular mapping from a finer to a coarser granularity. On
some machines (e.g., Sun-4s) division is micro-coded as repeated subtraction, typically costing much more
than addition or multiplication. For a regular mapping from a coarser to a finer granularity the expensive
suboperation is a multiplication. For an irregular mapping, it is a C function invocation, which probably
uses (at least) a division or a multiplication. In this section, we present four optimization strategies that are
designed to minimize the cost of the “expensive suboperation.”
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The first optimization is analgebraic simplificationof composed casts. For certain compositions (e.g.,
of regular mappings with equivalent origins, such as scaling from minutes to days) an expensive suboper-
ation (a division or multiplication) can be eliminated. For example, to cast from minutes to days, we can
algebraically simplify(t div 60) div 24 to t div 1440.

The second optimization exploits the fact that on many machines multiplication is much cheaper than
division. This optimization applies only to temporal comparisons, but we anticipate that comparisons will
be the most common kind of temporal operation. All comparisons, includingOVERLAPS, are expressed
as formulas involving theBeforerelation (the< relation on integers) and logical connectives [Allen 1983].
Consider evaluatingg Beforeh whereg 2 G andh 2 H are determinate instants. IfG E H theng Before
h if and only if scale(g; H) Beforeh if and only if g Before scale(h;G). So a temporal comparison with a
scale on one operand can be transformed into a comparison with a scale on the other operand. Thisprogram
transformationtrades a scale from a finer to a coarser granularity (a division) for a scale from a coarser to a
finer granularity (a multiplication). The query processor can choose the cheaper operation (in this case the
coarser to finer operation), but must factor into the decision how many times the operation is executed. If
g andh are column variables and there are far fewer distinct values ing’s column, then the transformation
will not improve performance since many more scales ofh will be performed than scales ofg.

A third optimization is to introduce adirect link into the granularity graph for a highly optimized map-
ping function. For example, if the database implementor knows that casting years to seconds will be a
common operation, a direct link with the name of the optimized mapping function can be inserting into
the granularity graph during its construction. In casting years to seconds, the run-time engine will use this
direct link rather than the composition of years to months, months to days, days to hours, hours to minutes,
and minutes to seconds, which costs three regular and two irregular mappings in total. Elsewhere, we show
that casting years to seconds, even in the presence of leap days, requires only eight microseconds on a Sun-4
IPC [Dyreson & Snodgrass 1993].

The final optimization is to use alazy cachingstrategy to avoid recomputing previously cast times. The
caching strategy is based on the observation that times in a column are often clustered rather than distributed
uniformly over the entire time-line (random sampling could be used to detect the clustering). Consequently,
there are probably many cases where several instants at the finer granularity cast to the same instant at the
coarser granularity. For example, instants in a column of employee birth dates will be clustered between
1938 and 1978 (most employees are between twenty and sixty years old). Consider a query in which these
birth dates, stored to the granularity of days, are compared to a column at the granularity of years (e.g.,
in computing a bar graph of employee ages). In a large corporation, it is probably the case that several
employees were born in the same year. To avoid recomputing the cast of years to days (introduced by
a previously discussed optimization), we can cache previously computed casts using a small array. As
another example, we saw in the previous section that scaling indeterminate values can be expressed as a
pair of scales on determinate values, potentially increasing the cache hit probability. The viability of the
caching strategy is a trade-off between the cost of building and maintaining the cache and the cost of cache
misses.

To quantify the actual cost of supporting queries on mixed granularities, we programmed the ex-
ample query, under a variety of optimization strategies, as a series of calls in the MULTI CAL system
[Soo et al. 1992]. The call sequences are shown in Figure 11. The variablesf , v.from , andv.to are
the column variables for theFlight_Departures.At Time , Vacations.From_Time , andVa-
cations.To_Time , respectively. Theunpack operations parse the timestamp flags to distinguish de-
terminate from indeterminate and special instants. We ignored the “Thanksgiving” selection and coded the
OVERLAPSas a conjunction ofBeforeoperations with no short circuit evaluation. The first sequence (from
left to right) is an overlap with no support for mixed granularities. Testing this sequence will give us a
base cost against which we can compare the cost of modeling and using information at mixed granular-
ities. The second sequence scales minutes to days, using the algebraic optimization. We also tested the
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f The same-granularity sequenceg
unpack_event(f);
unpack_period(v);
c1 := Before(v.from,f);
c2 := Before(f,v.to);
if (c1 and c2) then

includef ,v in result

f The algebraic optimizationg
unpack_event(f);
f := f div 1440;
unpack_period(v);
c1 := Before(v.from,f);
c2 := Before(f,v.to);
if (c1 and c2) then

includef ,v in result

f The program transformationg
unpack_event(f);
unpack_period(v);
v.from := v.from � 1440;
v.to := (v.to �1440) +1439;
c1 := Before(v.from,f);
c2 := Before(f,v.to);
if (c1 and c2) then

includef ,v in result

Figure 11: MULTI CAL calls for example queries

unoptimized sequence; that code is not shown. The third sequence combines the algebraic simplification
with the program transformation that trades a scale down to minutes for a cast up to days. Here the overlap
is manipulated intoBeforeon the lower support ofscale(v:from;minutes) and on the upper support of
scale(v:to;minutes).

We compiled all four tests using the GNU C compiler, version 2.4.5, with compiler optimizations fully
enabled. We then ran the tests several million times on a dedicated Sun-4 IPC (a twelve “mips” machine).
The results we obtained are as follows. Each predicate evaluation took approximately10 microseconds with
no granularity conversion,48 microseconds with one unoptimized scale,27 microseconds with algebraic
optimization, and14 microseconds with algebraic optimization and program transformation. While these
differences may not seem important, the microseconds quickly add up. If we assume that theVacationsand
Flight Departuresrelations have a modest number of tuples, 50 and 5000, respectively, then the total cost
of theOVERLAPSwould be 2.5 seconds with no granularity conversion, 12 seconds with one unoptimized
scale, 7 seconds with algebraic optimization, and only 3 seconds with algebraic optimization and program
transformation.

These results show that modeling times at different granularities does carry a cost; for the example query
it adds an overhead of between 40% and 380%. The results also show that the optimizations significantly
improve performance. Note, however, that there are many other components to query evaluation, such
as disk reads and writes; the additional cost of granularity conversions over the entire query execution
will be relatively slight. Also note that a user who does not want the extra modeling capability of mixed
granularities can simply specify that all columns have an identical granularity, thereby incurring no added
cost.

9 Related Work

Our work can be viewed as an extension of Anderson’s pioneering research on a model of time [Anderson 1982].
Anderson pointed out the need to model times at multiple granularities. Clifford and Rao further developed
Anderson’s framework by adding a “granularity chain” (a complete ordering of granularities) and “finer”
granularity conversions between times [Clifford & Rao 1987]. Wiederhold, Jajodia, and Litwin made Clif-
ford and Rao’s theoretical work more concrete by proposing a specific semantics for temporal comparisons
at mixed granularities [Wiederhold et al. 1991]. Their proposed semantics is similar to the finer granularity
semantics mentioned in this paper. Recently, Wang, Jajodia, and Subrahmanian generalized the “granularity
chain” to a lattice and proposed semantics for moving times “up” and “down” the lattice [Wang et al. 1995].
The specific requirements given here for granularities (total ordering of granules, ordering of granules con-
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sistent with ordering of their indexes, contiguity of granule index in a granularity, existence of an origin for
each granularity, and existence of a bottom granularity) are similar to those specified for time units. Unlike
time units, though, our approach permits non-contiguous granules and negative granule indexes. Also, our
granularities are not required to form a lattice under the finer-than relation or to share a common origin,
thus permitting a more space efficient representation.

Wang et al. also proposedtemporal modulesandextended temporal modulesthat provide access to tem-
poral relations via windowing functions, each in terms of a different time unit [Wang 1995, Wang et al. 1995].
As such, they consider how to map data defined over one granularity (e.g., annual salary) into data over
another granularity (e.g., monthly salary). The present paper does not address data conversion, though
our approach might well apply to granularity mappings performed during data conversion. Finally, their
calculus-based federated query language allows comparisons between instants of different time units. How-
ever, only finer granularity semantics, at the granularity?, is employed, with explicit cast or scale operations
not permitted.

The present paper elaborates on the theoretical framework of [Bettini et al. 1998] by showing how val-
ues in particular time units (i.e., granularities) can be converted to other time units semi-automatically via
user-provided conversion functions.

Barbic and Pernici discuss relative, absolute, periodic, and imprecise times at different Gregorian gran-
ularities for office information systems in the context of constraint triggers [Barbic & Pernici 1985]. They
recommend converting operands to the coarsest granularity during a temporal (comparison) operation to
avoid creating information. Barbic and Pernici also advocate a “signed integer” timestamp format which
is the gist of our format. Montanari et. al. investigate a slightly different problem, that of extending the
granularity chain to cover macro-events, i.e., events with duration [Montanari et al. 1992]. We consider
only instantaneous events (instants) in this paper. They also propose finer and coarser granularity conver-
sions (effectively a scale via a regular mapping only); the issue of indeterminacy in finer conversions is not
explicitly addressed.

Terenziani’s temporal formalism [Terenziani 1997] is an adaptation of that proposed earlier [Leban et al. 1986]
in which a granularity is defined as a set of intervals over the (discrete) set of Reference Time points (e.g.,
days). Leban et al., Terenziani, and [Chandra et al. 1994] all include notations for deriving new granulari-
ties (sometimes confusingly called calendars) from other granularities (e.g., first Mondays in April). One
could envision an extension to our approach whereby regular mappings could be specified in such terms,
elaborating on the more restrictive sense adopted in the present paper.

None of the above papers address the integration of granularities from multiple calendars into SQL; they
also lack indeterminacy and impose a single semantics for comparison operations, typically finer granularity
semantics. (To be fair, these papers weren’t attempting to solve these particular problems; their foci was
on other aspects of granularity.) In contrast, we treat all instants as indeterminate. When two instants
located in the same hour are scaled to a finer granularity, two similar indeterminate instants result. But each
indeterminate instant retains the semantics of the original instant in that it records that the instant is located
sometime during the hour (with the upper and lower supports expressed in the finer granularity). We also
support several different semantics for every kind of temporal operation (not just comparison operations).
It is our position that indeterminacy is necessary to support finer granularity conversions and to correctly
model instants. Further an important difference between our work and all of the above presentations is that
we focus also on practical issues. We are interested in engineering a database to support mixed granularities
and so we designed mechanisms to effect this support, attempting to simplify as much as possible the task
of the calendar specifiers.

The practical focus of this paper on implementation is shared by Lorentzos who advocated a scheme
for storing and querying non-metric data types [Lorentzos 1992]. The SQL-92 timestamp format is one ex-
ample of a non-metric data type; it has separate fields for years, months, days, hours, minutes, and seconds.
Lorentzos allows only coarser conversions in a granularity “chain.” These conversions consist of remov-
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ing various fields, e.g., scaling from months to years removes the months field. Although the granularity
conversion operation (between fields that are in the non-metric data type) is fast, we previously empiri-
cally determined that the execution cost of other, more common, temporal operations severely increases, as
does the space cost [Dyreson & Snodgrass 1994]. Hence, we advocate that timestamp formats have as few
separate internal fields as possible.

Goralwalla et al. also use a tuple of integers to denote an instant [Goralwalla et al. 1996, Goralwalla et al. 1997].
This provides an increase in expressive power for intervals (for example, “one month and five days” must
be mapped to a number of days (from 33 to 36) or an indeterminate interval33 � 36 in our model), but not
for instants or periods. They also support calendars, in a similar way as defined here, but restrict calendars
to contain granularities for which a total order is defined. They support regular mappings, and obtain some
of the generality of irregular mappings through a variety of calendric functions. These are especially effec-
tive for converting intervals to different granularities, though at an increase in complexity for the calendar
specifier. And as with the other approaches, conversion of instants are effected by converting to the finest
granularity, which they term “global real time,” which is a dense model, represented with floating point
numbers. In contrast, in our model we go only as far down the hierarchy as is needed, and always deal with
integers. Finally, these papers also support temporal indeterminacy, but via a set of times rather than a lower
and an upper support; they do not support an associated probability function. We argue that indeterminacy
and granularity are intimately related, serving as different perspectives of a single phenomenon.

Finally, Gauthier has advice on how to implement calendars in Ada, taking into account important
details such as very precise compile-time type checking [Gauthier 1995].

10 Summary

This paper demonstrates that granularity and indeterminacy are related features of temporal data. Granu-
larity is the unit of measure for a temporal datum while indeterminacy represents partial information about
finer units of measure. For example, an instant known to the granularity of an hour has an hour-long support.
For this instant, we only know the hour during which it is located, we cannot ascertain, with certainty, the
minute during which it is located. Such is the nature of “real-world” temporal data.

In this paper, we use a common model of a granularity as a segmentation of the time-line. Granularities
are related in that some granularities are finer or coarser with respect to others. The conversion functions,
scaleandcast, move times between granularities. The scale operation does not create information; rather
it exploits the relationship between granularity and indeterminacy to refine the information content of a
temporal value. A determinate instant, stored at a particular granularity, becomes indeterminate when scaled
to a finer granularity. Support for indeterminacy permits conversions between granularities which some
have considered incomparable, such as weeks and months. Judicious use of scale and cast can implement
a variety of semantics for temporal operations. We examine various semantics and show that they can be
effected by inserting cast or scale operations.

The conventional way to specify a granularity is to provide an invertible function that maps an index to a
granule, which is a subset of the time domain. We propose that granularities instead be specified via regular
or irregular mappings between granularities. Regular mappings are specified with three parameters; irregu-
lar mappings are associated with arbitrary functions which may be invoked by the DBMS. This specification
is easier to define than the original approach: most mappings are regular, whereas most index-to-granule
functions are complex. Efficiency is also gained, in that a conversion from one granularity to another need
only go through a common, finer granularity, rather than all the way down to the time domain and back up.
Our approach also supports modular specification of granularities, via calendars, which collect together a
set of granularities and their associated mappings.

Finally, we explore the cost of our framework. We present four optimizations that can be easily applied
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during semantic analysis and show that for the example query these optimizations reduce the predicate
evaluation overhead to a reasonable level.

Our conclusion is that full database support for temporal granularities is not only a desirable goal, but,
by using a realistic design that addresses theoretical concerns, language extensions, and implementation
details, is an attainable one.
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