
Mapping Temporal ER Diagrams to Relational
Schemas

Heidi Gregersen, Leo Mark, and Christian S. Jensen

December 4, 1998

TR-39

A TIMECENTER Technical Report

Title Mapping Temporal ER Diagrams to Relational Schemas

Copyright c 1998 Heidi Gregersen, Leo Mark, and Christian S. Jensen.
All rights reserved.

Author(s) Heidi Gregersen, Leo Mark, and Christian S. Jensen

Publication History December 1998. A TIMECENTER Technical Report

TIMECENTERParticipants

Aalborg University, Denmark
Christian S. Jensen (codirector), Michael H. B¨ohlen, Renato Busatto, Curtis E. Dyreson,
Heidi Gregersen, Dieter Pfoser, SimonasŠaltenis, Janne Skyt, Giedrius Slivinskas,
Kristian Torp

University of Arizona, USA
Richard T. Snodgrass (codirector), Kongki Moon, Sudha Ram

Individual participants
Anindya Datta, Georgia Institute of Technology, USA
Kwang W. Nam, Chungbuk National University, Korea
Mario A. Nascimento, State University of Campinas and EMBRAPA, Brazil
Keun H. Ryu, Chungbuk National University, Korea
Michael D. Soo, University of South Florida, USA
Andreas Steiner, TimeConsult, Switzerland
Vassilis Tsotras, University of California, Riverside, USA
Jef Wijsen, Vrije Universiteit Brussel, Belgium

For additional information, see The TIMECENTER Homepage:
URL: <http://www.cs.auc.dk/research/DBS/tdb/TimeCenter/>

Any software made available viaTIMECENTER is provided “as is” and without any express or implied war-
ranties, including, without limitation, the implied warranty of merchantability and fitness for a particular pur-
pose.

The TIMECENTER icon on the cover combines two “arrows.” These “arrows” are letters in the so-calledRune
alphabet used one millennium ago by the Vikings, as well as by their precedessors and successors. The Rune
alphabet (second phase) has 16 letters, all of which have angular shapes and lack horizontal lines because
the primary storage medium was wood. Runes may also be found on jewelry, tools, and weapons and were
perceived by many as having magic, hidden powers.

The two Rune arrows in the icon denote “T” and “C,” respectively.

Abstract
Many database applications manage information that varies over time, and most of the database schemas for
these applications were designed using one of the several versions of the Entity-Relationship (ER) model.
In the research community as well as in industry, it is common knowledge that temporal aspects of data
are pervasive and important to the applications, but are also difficult to capture using the ER model. The
research community has developed temporal ER models, in an attempt to provide modeling constructs that
more naturally and elegantly support capturing the temporal aspects. Specifically, the temporal models
provide enhanced support for capturing aspects such as lifespans, valid time, and transaction time of data.

Because commercial database management systems support neither the ER model nor any temporal ER
model as a model for data manipulation—but rather support various versions of the relational model for
this purpose—we provide a two-step transformation from temporal ER diagrams, with built-in support for
lifespans and valid and transaction time, to relational schemas. The first step of the algorithm translates a
temporal ER diagram into relations in a surrogate-based relational target model; and the second step further
translates this relational schema into a schema in a lexically-based relational target model.

1 Introduction

A wide range of prominent, existing database applications manage time-varying information. These include
financial applications such as portfolio management, accounting, and banking; record-keeping applications,
including personnel, medical-record, and inventory; and travel applications such as airline, train, and hotel
reservations and schedule management.

In the database community temporal aspects of information have been discussed over the years. In this
paper, we will focus on four distinct types of temporal aspects that are candidates for being stored in a database,
namelyvalid time, lifespan, transaction time, anduser-defined time[11].

The notion ofvalid timeapplies to facts: the valid time of a fact is the time when the fact is true in the mini-
world. All facts have a valid time, but the valid time may or may not be captured explicitly in the database.
As an example, consider an Employee entity “E1” with a Department attribute. A valid time of “June 1996”
associated with the value “Shipping” represents the fact that “E1 is in Shipping” is valid during June 1996.
When valid time is captured in the database for an attribute such as Department, the database is capable of
recording the varying Department values for the Employee entities. If it is not captured, the database will only
record one (the current) Department value for each Employee entity.

The lifespanof an entity captures the existence time of the entity: the time during which it exists in the
modeled mini-world. If lifespans of entities are supported, this means that the model has built-in support for
capturing, in the database, the times when entities exist. The lifespan of a entity “E” may be seen as the valid
time of the related fact, “E exists.” However, we choose to consider lifespans as a separate aspect, since the
recording of lifespans of entities is essential for many applications. If relationships are regarded as having
existence in their own right, the concept of lifespan is also applicable to relationships, with the same meaning
as for entities.

Thetransaction timeof a database fact is the time when the fact is current in the database. As is the case for
lifespans the transaction time of a factF may be seen as the valid time of a related fact, namely the fact, “F is
current in the database,” but again we have chosen to record transaction time as a separate aspect. Unlike valid
time, transaction time may be associated with any structure stored in a database, not only with facts. Thus, all
structures stored in a database have a transaction-time aspect. Note that the transaction time does not provide
information about the existence time or the valid time of the structure it is associated with, and that it, like all
the above-mentioned temporal aspects, has a duration.

User-defined timeis supported when time-valued domains for attributes are available in the data model.
These are then employed for giving temporal semantics—not captured in the data model, but only externally, in
the application code and by the database designer—to the ER diagrams. For Employee entities, such attributes
could record birth dates, hiring dates, etc.

1

One of the temporally extended ER models developed in the research community is the Time Extended ER
model, TIMEER [9]. This model extends the ER model with annotations for specifying the temporal aspects
that need to be captured in the underlying data base, and it is the only model that explicitly supports lifespans,
valid time, and transaction time. For this reason, we have chosen the TIMEER model as input to the mapping
algorithms presented in this paper.

Several algorithms to construct relational schemas from conceptual schemas already exist, e.g., for the ER
model [1, 18] and the Extended ER model [7]. These algorithms serve as models for the algorithm presented in
this paper, but do not address temporal aspects, the focus of the present paper. More interestingly, four mappings
from temporally extended ER models to the relational model have been previously proposed [8, 13, 14, 17].
We consider each algorithm in turn, discussing their specification and their limitations.

The RAKE model [8] provides shorthand notations for indicating valid-time support for attributes and re-
lationship types and lifespan support for entity types. The description of the accompanying mapping algorithm
consists of very short informal explanations, accompanied by an example for each of the shorthand notations.
The algorithm does not consider transaction time and its combination with other temporal aspects, and it does
not consider temporal integrity constraints, neither informally nor formally.

The MOTAR model [14] supports valid time and provides new modeling constructs for specifying tempo-
ral attributes (periodic and aperiodic) and relationship types. The mapping algorithm is well designed, and its
description is somewhat comprehensive. The algorithm produces a relational schema that is at least in third nor-
mal form, given a well-designed argument ER diagram. But like the previous mapping, this mapping considers
neither transaction time nor any temporal integrity constraints.

The TempEER model [13] supports both valid time and transaction time. Its mapping algorithm is divided
into two steps: First, the mapping algorithm for the TempEER model [7] is reused, slightly rewritten, though,
to create relations. Second, all the relations are extended with timestamp attributes to capture the lifespan of
the objects stored in the relations. A constraint that limits the lifespans of relationships to be included in the
lifespan of the participating entities as well as a constraint that limits the lifespan of an entity in a subclass
to be included in the lifespan of the related entity in the superclass are explained, but not formally defined.
In contrast, this paper formally defines a comprehensive set of 31 constraints that enforce the ER-specified
time-related semantics in the relational context. TempEER’s mapping does accommodate transaction time, but
only a single time point, rather than a pair, is used for capturing the transaction-time duration of a tuple. This
simplifies the mapping, but also seems to be a somewhat restrictive solution.

Finally, the ERT model [17] supports valid time and has an associated step-wise, precisely formulated
mapping algorithm. The algorithm is well-designed and aims to produce third normal form relational database
schemas for well-designed argument ERT diagrams. The precise formulation of the steps is a very strong
point of this algorithm. This algorithm, however, does not consider transaction time, and temporal integrity
constraints.

The present paper’s new contributions are several. It precisely and systematically articulates how temporal
ER diagrams in the TIMEER model are mapped to a relational platform. This mapping accounts for all the
temporal aspects addressed by the existing dozen of temporal ER models, namely valid and transaction time and
lifespans, in addition to all their meaningful combinations. The mapping is accompanied by a comprehensive
set of precisely defined constraints that are necessary to enforce, on a relational platform, the semantics of valid
and transaction time and lifespans captured in temporal ER diagrams.

The mapping consists of two steps. In Step I, we map the TIMEER model to a surrogate-based relational
target model. In Step II, we map this model to a lexically-based relational target model. The mappings are
based on ideas presented in [3, 7]. We use the interval tuple-timestamp scheme to record all the supported
temporal aspects of data.

There are two reasons for first mapping the TIMEER model to the surrogate-based relational target model.
First, the semantics of the surrogate-based relational target model is closer to the semantics of the TIMEER
model. Second, we believe that future relational models will provide support for surrogate domains as well

2

as temporal domains. Thus, Step I of our mapping meets future needs. Step II of our combined mapping
guarantees that our mapping meets today’s needs.

This paper is structured as follows. In Section 2, we define the three models used in this paper. In Section 3,
we present the mapping from the TIMEER model to the surrogate-based relational target model. In Section 4,
the mapping from this model to the lexically-based relational target model is presented. Finally, in Section 5 a
summary and future research directions are presented.

2 Argument and Target Models

In this section we present the three models used in this paper. First, we present the conceptual model TIMEER
that is the argument to the first step of the mapping algorithm. Second, we define the surrogate-based relational
model that is the target model of the first step and the argument model to the second step of the mapping
algorithm. Finally, we define the lexically-based relational model, that is the target model of the second step.

2.1 TIMEER

Since its publication, the ER model [2] has had various notations and semantics. It has been extended in order
to capture superclass/subclass relationships and complex entity types, to name a but few extensions, and is then
known as “the” EER model. The EER model presented by Elmasri and Navathe [7] is chosen as the outset for
TIMEER. The reader is assumed to be familiar with that model.

The modeling constructs of the TIMEER model are presented next. The TIMEER model, including its
formal semantics, is described in detail in [9]. The model has implicit temporal support, but the EER constructs
and their semantics are retained, i.e., notation and semantics areadded to the EER model to arrive at the
TIMEER model. It extends the EER model to better capture, where indicated, temporal aspects of entities,
relationships, superclasses/subclasses, and attributes. Figure 1 presents a TIMEER diagram of a company
database. We will explain and refer to this diagram throughout this section.

Join_date

Salary BT

Belongs_to

ID

Name

Birth_date

hours/week

Works_for
VT

Name

 for
Responsible

Number

Profit BT

Manages
Manager

Rank
App_date Type

Project

ID

Budget BT

Income

Expences

Dependent

Dep_of

Relationship

Employee LT

(1,1)
(1,N)

(1,1)

(1,1)

(1,N)

Department TT

(1,1)

Location VT

(1,1)

[1,N]

(1,1)

(0,N)

[1,N]
(1,N)

Name

Figure 1: TIMEER Diagram of a company Database

3

Regular Entity Types

An entity type is represented graphically by a rectangle. Since all entities have an existence time and a transac-
tion time aspect, it must be decided for each entity type in a TIMEER diagram whether or not to capture these
temporal aspects of the entities in the database. Entity types that capture at least one temporal aspect are termed
temporal.

If the lifespan or the transaction time of the entity type is captured, this is indicated by placing a LS or a
TT, respectively, in the upper-right corner of the rectangle. If both the lifespan and the transaction time are
captured, an LT is placed as before.

In Figure 1, we capture both the lifespan and the transaction time of the entity type Employee.

Weak Entity Types

A weak entity type is represented by a double rectangle. Weak entity types represent entities that are existence
dependent on entities of other entity types and that cannot by themselves be uniquely identified. A weak entity
type must therefore be related via an identifying relationship type (represented by a double diamond) to one or
more regular entity types that are the owners of the weak entity type. Weak entity types may capture the same
temporal aspects as regular entity types, and their temporal support are independent of the temporal support
specified for the owner entity types.

In Figure 1, the entity type Dependent is weak and owned by the entity type Employee.

Attributes

Entities are characterized by their attributes. A single-valued attribute is represented by an oval, a multi-valued
attribute is represented by a double oval, and a composite attribute is represented by an oval connected directly
to the components of the composite attribute.

Every attribute has a valid-time and a transaction-time aspect. For each attribute the database designer must
therefor decide to capture these aspects or not.

If the valid time is captured, a VT is placed to the right in the oval; if transaction time is captured, a TT is
used. If both valid time and transaction time are captured, a BT (BiTemporal) is placed to the right in the oval.
The components of a temporal composite attribute inherit the temporal specification of the composite attribute.

Both temporal and non-temporal entity types can have temporal and non-temporal attributes.
In Figure 1, we model that we want to capture the valid time and the transaction time of the Salary of an

Employee.
It is required that the the database designer specifies a key for each entity type in the diagram. To indicate

that a set of attributes represents the key of an entity type, the attribute names of the involved attributes are
underlined. Key attributes of an entity type can be specified as temporal or non-temporal. Simple and composite
attributes may be specified as key attribute.

Key attributes can be specified as temporal since the semantics of the TIMEER model ensures that all
attribute types are snapshot reducible [15]. This ensures, for example, that a single-valued attribute, at any point
in time, is single-valued. Thus, combining snapshot reducibility [15] of attribute types with the application of
the conventional key constraint, we have that a key attribute uniquely identifies an entity at any single point in
time.

Relationship Types

A relationship type is represented by a diamond. For each relationship type it has to be decided by the database
designer whether or not to capture the temporal aspects of the relationships of the relationship type. If some
temporal aspect is captured for a relationship type we term it temporal; otherwise, it is termed non-temporal.

4

Relationships can be seen from two very different points of view. We can perceive relationships among
entities as attributes of the participating entities, or we can perceive relationships as things that exist in their
own right. It is possible to adopt either point of view in TIMEER.

If the relationship is considered as an attribute, it must be specified whether to capture valid time, transaction
time, or both. If valid time or transaction time is captured, this is indicated by placing a VT or a TT in the lower
corner of the diamond. If both valid time and transaction time are captured, a BT is placed in the lower corner.
The attribute view is the default view of a relationship, that is, a non-temporal relationship and a temporal
relationship type supporting transaction time only is considered an attribute of the participating entities.

For each relationship type perceived as a thing that exists on its own right, it must be specified whether to
capture the lifespan, or both transaction time and the lifespan. If the lifespan is captured this is indicated by an
LS. If both lifespan and transaction time are captured, an LT is used.

In Figure 1, we model that we want to capture the valid time of the relationship Worksfor between Em-
ployee and Project.

Snapshot Participation Constrains

The snapshot participation constraint of entity typeE with respect to relationship typeR is represented by
placingmin andmax in parentheses next to the line connecting entity typeE with relationship typeR. The
meaning of this is that at any point in time, each entitye of the entity typeE will participate in at leastmin and
at mostmax relationshipsr of R.

In Figure 1, the snapshot participation constraint of type Employee with respect to the relationship type
Works for is (1,1).

Lifespan Participation Constraint

The snapshot participation constraint described above constrains the participation of the entities at any given
point in time. However, it is also useful to be able to constrain the participation of an entity in a relationship
over the existence time of the entity.

The lifespan participation constraint of entity typeE with respect to relationship typeR is represented by
placingmin andmax in square brackets next to the line connecting entity typeE with relationship typeR.
The meaning of the lifespan participation constraint is that over all of time, each entitye of the entity typeE
will participate in at leastmin and at mostmax relationshipsr of R.

In Figure 1, the lifespan participation constraint of type Employee with respect to the relationship type
Works for is [1,N].

Superclasses and Subclasses

The TIMEER model offers support for specifying superclass/subclass relations. The syntax is as in the EER
model.

A subclass inherits the attributes and the temporal support of its superclass. Is is not possible to change
the temporal support of the inherited attributes, but it is possible to add attributes and to further expand the
inherited temporal support of the class itself, i.e., if the inherited temporal support of a subclass is lifespan then
the temporal support can be expanded to also include transaction time.

2.2 Definition of the Surrogate-Based Relational Target Model

The surrogate-based relational target model is inspired by Codd’s RM/T model [3] and Snodgrass’ Tuple
Timestamp Scheme [15].

5

Domain of Attributes

In addition to the lexical domains,DD = fD
1
;D

2
; : : :;Dng, supported by the standard relational model,

the surrogate-based relational target model supports a domain of surrogates [10] called theE-domain, and
three time domains, namely the lifespan domain,DLS , the valid-time domain,DV T , and the transaction-time
domain,DTT . A description of the time domains is given shortly. Surrogates are system-generated unique
internal identifiers. Their values cannot be seen by and cannot be modified by the users of the model. Lifespan,
valid-time, and transaction-time timestamps are represented aschronon[11] (defined later).

Attributes defined over theE-domainare calledE-attributes, and attributes defined over time domains are
called time attributes. The names of the time attributes are LSs, LSe, VTs, VTe, TTs, and TTe, where subscript
s ande indicates start and end, respectively. The time attributes used to record existence time and valid time for
attributes/relationships have values that are subject to user control, whereas the time attributes used to record
transactions time are under system control and therefore cannot be changed by the users. The names of the
attributes defined over the lexical domains come from the setDA = fA

1
; A

2
; : : :; Ang.

The database community generally agree that a discrete model of time is adequate, and we will adopt this
view. Thereal time line is described by the baseline clock (BLC) [5], which provides the semantics of the
timestamps. This time line is bounded in both ends, by the “Big Bang” as the lower bound and the “Big
Crunch” as the upper bound. The model of time we use is thus a totally ordered, finite set ofchronons, which
is isomorphic to a finite subset of the natural numbers [6]. This may be seen as dividing the real time line into
indivisible segments of equal size. A real-world time instant is expected to be much smaller than a chronon and
is represented in the model by the chronon during which it occurs [6]. We will usec to denote chronons. The
size of the chronons, called the granularity [4], can be specified explicitly.

For all the supported time dimensions, we adopt the above-mentioned model of time. For each dimension,
there is several domains of times. Each domain for a time dimension is given byD

granule
dimension, where the size

of the chronons defining the time domain is given bygranule. For the valid-time and the lifespan domains,
some chronons are expected to be in the future and some chronons are expected to be in the past. The chronon
cnow denotes the chronon representing the current real-time instant, andUC (“until changed”) is a special
transaction-time marker. If a tuple in a relation recording transaction time has the valueUC of its transaction-
time endstamp this means that the tuple is current in the database.

A time interval is defined as the set of time instants between two instants. A time interval is represented by
a sequence of consecutive chronons, represented in turn by a starting and an ending chronon. On the above-
mentioned time domains, we thus define intervals[ci; cj]

granule whereci is the starting chronon,cj is the termi-
nating chronon, and the size of the chronons isgranule. We let[ci; cj]

granule
vt ; [ci; cj]

granule
tt ; and[ci; cj]

granule
ls

denote intervals over the valid-time, transaction-time, and the lifespan domains, respectively.
We also define temporal elements [11] over time domains. A temporal element is a finite union of intervals

and is denoted byIgranule = [ci; cj]
granule[� � � [[ck; cl]

granule. Since any time domainDgranule
dimension is discrete

and finite, we can define a temporal element over this time domain as an element of the set2D
granule

dimension . We let
I
granule
vt ; I

granule
tt ; andIgranulels denote temporal elements over the valid-time, transaction-time, and the lifespan

domains, respectively.

Relations

The surrogate-based relational target model has two types of relations,E-relationsand A-relations. An E-
relation has a singleE-attributedefined over theE-domainand, depending on the temporal support specified
for the corresponding entity type in the TIMEER diagram, a number of time attributes. The set of tuples in
anE-relationconstitutes the existence list for the entity type. A surrogate value is never reused for a different
object. For easier recognition, the names of E-attributes end with the character “ø”, and the names of E-relations
are the names of the entity types they represents. When the temporal support specified for a relationship type

6

includes lifespan, this indicates that relationships of the type are considered to exist in their own right like
entities. Consequently, E-relations represent such relationship types as well.

An A-relation represents attributes of entities. It has anE-attribute which references the E-relation rep-
resenting the entity type for which it represents attributes. Single-valued, composite, as well as multi-valued
attributes are represented in A-relations. Depending on the temporal support specified for an attribute, its rep-
resenting A-relation also has a number of time attributes.

The relations below illustrate the E-relations and A-relations of this model. The E-relationEmployeerepre-
sents the entity typeEmployeefrom Figure 1, for which support for lifespan and transaction time are specified.
The relation has two tuples representing one employee, and the granularity of the chronons isday. The tuples
also indicate how we assume relations are updated. Specifically, we assume that a tuple is storing maximal
transaction-time intervals so that each transaction-time chronon in the interval is associated with the same
lifespan or valid-time interval. The A-relationEmployeeSalaryrepresents the temporal attributeSalaryfrom
Figure 1. The temporal support for this attribute includes valid time and transaction time.

Employee Employee Salary

employeeø TTs TTe LSs LSe
e1 1 8 10 15
e1 9 UC 5 20

employeeø Salary TTs TTe VTs VTe
e1 7K 1 14 10 15
e1 7K 15 UC 5 20

Keys and Constraints

In a lexically-based data model, a primary key normally serves two roles: it is a lexical identifier, and it models
existence. In a surrogate-based data model, lexical identification and existence are separated. We ... to use the
term primary key exclusively to indicate existence, and consequently only E-relations have primary keys; using
the term primary key in an A-relation makes no sense because an A-relation does not model existence, other
than the existence of the corresponding attributes of the entity type. The unique identifier of an A-relation is
simply termed a key.

The Entity Integrity Constraint and the Referential Integrity Constraint from the RM/T model hold on any
time-slice [11], that is, at any point in time or in any state. The Entity Integrity Constraint states that null-values
are not allowed inE-relations. The Referential Integrity Constraint states that all surrogates referenced from an
A-relationmust exist in the correspondingE-relation.

The semantics of time attributes that we extend the relational model with are not built into the relational
model, and are thus treated as regular (time-valued) attributes. They are used to record time intervals in the
database. That is, we timestamp with pairs of time attributes, a start timestamp representing the starting chronon
and an end timestamp representing the terminating chronon. We enforce the semantics of the temporal aspects,
e.g., valid time, through the definition of a number of constraints on the database. However, as pointed out, these
constraints are not enforced “automatically” by the data model, but must be enforced by explicit specifications
(e.g., using assertions).

2.3 Definition of The Lexically-based Relational Target Model

The lexically-based relational target model is the relational model extended with timestamp attributes. Times-
tamp attributes are, as in the previously defined target model, used to capture the specified temporal support for
the modeling constructs of the TIMEER model. The model of time and time domains for the time attributes
used in this target model are as defined in Section 2.2.

7

3 Mapping From the TimeER Model to the Surrogate-based Relational Target
Model

In this section we present the mapping of the TIMEER model to the surrogate-based relational target model,
defined in Section 2.2. First, the mapping of entity types is presented. Second, the mapping of attribute types
is presented. Third, the mapping of relationship types is presented. Finally, a set of temporal constraints that
apply to the relations created in the mapping is presented. We have chosen to separate the presentation of the
constraints from the presentation of the mappings in order no to disturb the reader’s intuition and understanding
of the mapping.

3.1 Mapping of Entity Types

First, the mapping of regular entity types is presented. Second, the mapping of weak entity types is presented.
Finally, the mapping of entity types that participate in superclass/subclass relationships is presented.

3.1.1 Regular Entity Types

We first present the mapping of non-temporal regular entity types and then the mapping of temporal regular
entity types.

A non-temporal entity type models that only a single state of each of the instances described by the entity
type is to be recorded in the database. Since neither the existence time nor the transaction time of the instances
of a non-temporal entity type are recorded in the database, we assume that an entity exists in the mini-world
at least during the time its representing instance is recorded in the database. For each non-temporal regular
entity type, an unary E-relation over the E-domain is created. The presence of a surrogate value in an E-relation
indicates that the corresponding entity exists in the mini-world.

A consequence of not specifying any temporal support for an entity type is that when we logically delete an
instance of the entity type from the database,all the information about that instance is logically deleted from
the database. This implies that we have to logically delete from the database all attribute values, temporal and
non-temporal, and the relationships, the instance participates in, temporal or non-temporal.

The difference between logical and physical deletion of information can be explained as follows. If infor-
mation is physically deleted from the database, this information is actually erased and thus can not be accessed
again. Logical deletion of information marks the information as deleted from the current state of the database,
but the informations is kept in the database and can therefore be accessed by transaction-time timeslice opera-
tions. Logical and physical deletion are equivalent when no transaction time is recorded.

If the entity type has been specified as temporal then the user wants to store in the database either the exis-
tence time (lifespan) of the instances, the transaction time of the instances, or both. The lifespan of an instance
records the time the corresponding real-world entity exists in the mini-world, and the timestamp recording the
lifespan must be associated with the surrogate. If the user has specified transaction-time support for an entity
type, the user wants to record the time during which the instance was current in the database. Again, the times-
tamp representing the transaction time of the instance must be associated with the surrogate. The E-relation for
a temporal entity type is therefore expanded with time domains, two for the lifespan and/or two for transaction
time.

When we expand the E-relation with timestamp attributes, we have to consider whether or not the E-
attribute still uniquely identifies instances of the E-relation. If the temporal support for the entity type is lifespan
only, this means that we explicitly store information about when an entity exists in the mini-world. We allow
modifications of these timestamp attributes, but we do, of course, not allow modification of the E-attribute.
However, since we allow an entity to be reborn in the database, e.g., a company rehires an employee, an E-
attribute value can be associated with several pairs of timestamp attributes. This implies that the E-attribute does

8

not uniquely identify the instances of the E-relation. The primary key of the E-relation is therefore expanded to
include the timestamp attribute overlined in Figure 2 (a).

If the temporal support of the entity type is transaction time only, this means that we explicitly store in-
formation about when an instance is inserted into and logically deleted from the E-relation. We do not allow
modifications of the timestamp attributes, since this is a transaction-time relation, but the same entity can be
inserted and logically deleted from the database several times. This again implies that the E-attribute does not
uniquely identify the instances of the E-relations, and the primary key of the E-relation must be expanded to
include the timestamp attribute overlined in Figure 2 (b).

If the temporal support is both lifespan and transaction time, this means that we explicitly store information
about when an entity exists in the mini-world and when this information was inserted into and logically deleted
from the E-relation. Since we allow modification of the timestamp attributes for the lifespan and we never
physically delete instances of the E-relation (it is a transaction-time relation), we can have multiple instances
storing different lifespans for the entity. This implies that we have to expand the primary key of the E-relation
with the timestamp attributes overlined in Figure 2 (c).

In subsequent diagrams, we will use the abbreviation in Figure 2 for entity types. In the diagrams, the
temporal support will be indicated by an asterix and the (consequent) timestamp attributes in the relations with
a T. So, for example, if the asterix denotes LS then the T in the relations denotes LSs and LSe.

(a) � = LS T = LSs LSe

(b) � = TT T = TTs TTe

(c) � = LT T = TTs TTe LSs LSe

Figure 2: Abbreviation Used for Temporal Support for E-Relations

3.1.2 Mapping of Weak Entity Types

We consider temporal and non-temporal weak entity types in turn.
Weak entity types model entities from the mini-world that are existence dependent on entities of one or

more other entity types and cannot by themselves be uniquely identified by lexical information. An identi-
fying relationship type identifies the owner(s) of the weak entity type. Even though weak entity types model
entities that are existence dependent on other entities and cannot be uniquely identified by themselves, they do
exist. Therefore, an E-relation is created for each weak entity type in the diagram, i.e., the mappings of weak
entity types and regular entity types are exactly the same. Constraints limiting the existence of instances in
an E-relation representing a weak entity type to be dependent of the existence of instances in the E-relations
representing the owners entity types are presented in Section 3.5.3.

The mapping of an identifying relationship type that associates the weak entity type with its owner will be
given in Sections 3.3 and 3.4.

3.1.3 Mapping of Entity Types Participating in Superclass/Subclass Relationship Types

The syntax of the superclass/subclass relationship types in TIMEER is similar to the syntax in the EER model,
and the mapping we present resembles the mapping from the EER model to the relational model presented in
[7].

The semantics of the TIMEER model state that a subclassS of superclassC inherits all the properties
described forC, including the temporal support. It is possible to extend, but not reduce, the temporal support
of a subclass.

9

As in the EER model, it must be indicated if the superclass/subclass relationship type is total or optional,
and if it is overlapping or is disjoint, i.e., there is a total of four combinations of participation constraints for
superclass/subclass relationship types:�

total
optional

�
�

�
overlap
disjoint

�

In [7], four different options for mapping superclass/subclass relationship types are presented. Depending
on the application at hand, one mapping will perform better than the others. We consider only the two options
that reflect the semantics of superclass/subclass relationships the best. In the case where an entity type is both a
subclass and a superclass, it is assumed that each superclass/subclass relationship type is considered separately
in top-down order.

The first option will work for all combinations of participation constraints for superclass/subclass relation-
ship types, while the second only works well if the participation constraint is both total and disjoint. Temporal
constraints on the constructs in the surrogate-based relational target model resulting from the mapping are
presented in Section 3.5.3.

Option 1

If the participation in the superclass/subclass relationship type is optional, then it is possible to have an instance
of the superclass that is not an instance of any of the subclasses. It must be ensured that all such instances are
represented.

For each entity type in the superclass/subclass relationship type, we create an E-relation as the Cartesian
product over the E-domain and, if the entity types are specified as temporal, the time domains. The name of the
E-attribute in an E-relation created for a subclass is the same as the name of the E-attribute of its superclass.

Example 3.1 The TIMEER diagram in Figure 3 describes a mini-world of employees. The entity typeEm-
ployeehas subclassesSecretary, Technician, andEngineer. The relations created as a result of the mapping
are shown below the diagram. The attributes that are overlined in the relations indicate the primary keys of the
relations, while attributes that are underlined constitute keys of the relations. The attributes that the user may
have specified as a key for an entity type in the diagram are indicated by the symbol “u.k.” (“pt.k.” for weak
entity types) in a relation. Foreign keys of relations are indicated by the symbol “f.k.” following the attribute
names. 2

Option 2

If the participation in the superclass/subclass relationship type is total and disjoint then every instance of the
superclass is an instance of one and only one subclass. For each subclass only, we create an E-relation as the
Cartesian product over the E-domain and, if the entity types are specified as temporal, the time domains.

Example 3.2 The TIMEER diagram in Figure 4 describes a mini-world of Employees. 2

Even though it is not possible to specify a superclass/subclass relationship type as temporal, there is implicit
temporal support for superclass/subclass relationships. The temporal information about the relationship itself
can be deduced from the temporal information recorded by the involved entity types.

3.2 Attributes of Entity Types

In this subsection the mapping of the attributes of entity types is presented. With a few exceptions, the mapping
of attributes of relationship types is the same and will be presented in Sections 3.3 and 3.4.

10

Salary

ID Name

Birth_date

Level Type

Employee

Secretary Technician Engineer

d

Words/minute

Employee Employee ID Name Birth date Salary

employeeø employeeø f.k. ID u.k. Name Birth date Salary

Secretary Secretary Words=minute

employeeø employeeø f.k. Words/minute

Technician Technician Level

employeeø employeeø f.k. Level

Engineer Engineer Type

employeeø employeeø f.k. Type

Figure 3: Mapping of Superclass/Subclass Relationships With Disjoint and Optional Participation Involving
only Non-Temporal Entity Types

3.2.1 Non-Temporal Attribute Types

In this case, the variation of the attribute values over time is not recorded. The mapping in this case is similar
to the mapping described in [7], with the exception that our target model is surrogate-based. An A-relation
is created as the Cartesian product over the E-domain and the domains of all the non-temporal single-valued
and non-temporal composite attributes of the entity type. The E-attribute is the key of the A-relation. The
E-attribute is also a foreign key referencing the E-relation for the entity type, the attributes are associated with.
Attributes the user might have specified as a lexical key in the diagram constitute a lexical key in the A-relation.
For each multivalued attribute, a new A-relation is created over the E-domain and the domain of the multivalued
attribute. The key of this A-relation is the E-attribute and the attribute value in combination.

The reason why we choose to represent all the simple non-temporal attributes of an entity type in one A-
relation is that such an A-relation is likely to form a maximal non-BCNF violating unit if the diagram is well
designed. Additional decomposition could certainly be done, but would lead to unnecessary fragmentation
(over-normalization). The reason for the creation of a separate A-relation for each multivalued attribute is that
the same entity may be associated with several values in the A-relation representing the multi-valued attribute
and that these values together form the set of values for the multivalued attribute of the entity.

11

Salary Employee

Secretary Technician Engineer

d

ID Name

Birth_date

Level TypeWords/minute

Secretary Secretary ID Name Birth date Salary Words=minute

employeeø employeeø f.k. ID u.k. Name Birth date Salary Words/minute

Technician Technician ID Name Birth date Salary Level

employeeø employeeø f.k. ID u.k. Name Birth date Salary Level

Engineer Engineer ID Name Birth date Salary Type

employeeø employeeø f.k. ID u.k. Name Birth date Salary Type

Figure 4: Mapping of Superclass/Subclass Relationships With Disjoint and Total Participation Involving only
Non-Temporal Entity Types

Example 3.3 The TIMEER diagram in Figure 5 describes a mini-world of employees. The entity typeEm-
ployeehas attributesID, Name, Birthdate, Salary, andChildren. The mapping of this diagram results in the
relations illustrated below the diagram. We create an E-relation namedEmployee, an A-relation
EmployeeID NameBirth date Salaryand an A-relationEmployeeChildren. 2

3.2.2 Temporal Attribute Types

We create an A-relation for each temporal attribute of an entity type. The design of the A-relations is dependent
on the type of attribute and the type of temporal support specified for the attribute. In general, the key of
the A-relation is the E-attribute concatenated with one or more of the timestamp attributes, depending on the
specified temporal support. We will be using the abbreviation schema shown in Figure 6 for describing which
timestamp attributes to include in an A-relation for the temporal support of an attribute indicated by an asterix
in the diagrams. In Figure 6 we have underlined the time attributes that are to be concatenated to the E-attribute
to constitute the key of A-relations representing temporal attributes.

Temporal Single-Valued Attribute

In the case where a temporal attribute is single-valued, we know from the semantics of the TIMEER model
that at any point in time, this attribute will have at most one atomic value. Depending on the temporal support
specified for the attribute, the following may be stored in the database: the times an attribute value is valid in the

12

Employee

ID Name Birth_date

ChildrenSalary

Employee Employee ID Name Birth date Salary

employeeø employeeø f.k. ID u.k. Name Birth date Salary

Employee Children

employeeø f.k. Child name

Figure 5: Mapping of Non-Temporal Entity Type With No Temporal Attributes

(a) � = VT T = VTs VTe

(b) � = TT T = TTs TTe

(c) � = BT T = TTs TTe VTs VTe

Figure 6: The Abbreviation Scheme Used for Temporal Support for A-Relations

mini-world, indicated by valid-time support; the times an attribute value is recorded in the database, indicated
by transaction-time support; or both times, indicated by bitemporal support. For each temporal single-valued
attribute of an entity type, a separate A-relation is created as the Cartesian product over the E-domain, the
domain of the attribute, and the time domains.

The choice of creating a separate A-relation for each temporal single valued attribute is based on the fact
that nothing in the TIMEER diagram indicates, even if the temporal support is identical, that two different
temporal attributes follow the same update pattern. This choice ensures that attribute values are not is repeated
in the database, and unnecessary redundancy is avoided.

Example 3.4 The diagram in Figure 7 results in the relations illustrated below the diagram. We create an E-
relation namedEmployee, an A-relation namedEmployeeID NameBirth datefor the non-temporal attributes,
and an A-relation namedEmployeeSalary for the temporal attribute. Depending on the temporal support
specified for the attribute, one of three different A-relations may result from the substitution of the abbreviation
“T” in the A-relation by the timestamp attributes introduced in Figure 6. 2

Temporal Composite Attribute

When a temporal attribute is composite, it is assumed that the components change synchronously, since the
composite is considered to be one element. Also, it is assumed that the temporal support is the same for all its
components since the temporal support for a composite has to be specified for the composite rather than for the
components. This implies that all the components of the composite should be mapped into the same A-relation.
For each temporal composite attribute of an entity type, an A-relation is created as the Cartesian product over
the E-domain, the domains of the components of the composite attribute, and the temporal domains. The key
of the A-relation is the E-attribute concatenated with one or more of the timestamp attributes, depending on the
specified temporal support (see Figure 6).

Example 3.5 The mapping of the diagram in Figure 8 results in the relations illustrated below the diagram.2

13

Employee

ID Name Birth_date

Salary *

Employee Employee ID Name Birth date

employeeø employeeø f.k. ID u.k. Name Birth date

Employee Salary

employeeø f.k. Salary T

Figure 7: Mapping of Non-Temporal Entity Type With a Temporal Single-Valued Attribute

Employee

ID Name Birth_date

City

Street

Address *

Employee Employee ID Name Birth date

employeeø employeeø f.k. ID u.k. Name Birth date

Employee Address

employeeø f.k. Street City T

Figure 8: Mapping of Non-Temporal Entity Types With Temporal Composite Attributes

14

Temporal Multivalued Attribute

If a temporal attribute is multivalued then its set of values changes over time, and this variation is recorded
in the database. This implies that the changing set of values is timestamped in the database as the temporal
multivalued attribute changes its value.

For each temporal multivalued attribute of an entity type, a new A-relation is created as the Cartesian
product over the E-domain, the domain of the attribute, and the appropriate time domains. The key of the
A-relation is the concatenation of the E-attribute, the multivalued attribute, and one or more of the timestamp
attributes, depending on the specified temporal support. The constraints enforcing the complicated meaning of
the above are presented in Section 3.5.1.

Example 3.6 In the diagram in Figure 9, the entity typeDepartmenthas non-temporal attributesID andName,
and temporal multivalued attributeLocation. This diagram results in the relations illustrated next to the diagram.
We create an E-relationDepartment, an A-relationDepartmentID Namefor the non-temporal attributes, and
an A-relationDepartmentLocationfor the temporal multivalued attribute. 2

ID Name

Location *
Department

Department Department ID Name

departmentø departmentø f.k. ID u.k. Name

Department Location

departmentø f.k. Location T

Figure 9: Mapping of Non-Temporal Entity type With a Temporal Multivalued Attribute

3.3 Non-Temporal Relationship Types

In this section, we describe the mappings of non-temporal binary relationship types and n-ary relationship
types. In TIMEER a non-temporal relationship type is perceived as an attribute of the participating entity types,
see Section 2.1. When relationship types are considered attributes of the participating entity types, they are
then represented like other attributes of the entities, i.e., in A-relations. Relationship types are represented in
A-relations through the use of E-attributes as foreign keys.

3.3.1 Non-Temporal Binary Relationship Types

A binary non-temporal relationship type is considered to be a non-temporal attribute of the participating entity
types. This view is similar to the view taken in the EER model, and we reuse the ideas from the transformation
algorithm from the EER model to the relational model. Specifically, we do not always create a new A-relation
to represent the relationship type, but in most cases extend one of the A-relations that already record the non-
temporal attributes of the participating entity types. When to extend which A-relation or when to create a new
A-relation is determined by the snapshot participation constraints specified for the entity types in the diagram.

In Table 1, let A and B be the two entity types participating in a non-temporal binary relationship type. The
table displays the 16 possible, qualitatively different, combinations of snapshot participation constraints that
can be specified for the involved entity types. For each combination, it is described when to extend an existing
A-relation and when to create a new A-relation. Furthermore, it is described which of the participating entity
types is the better candidate for having its A-relation expanded with the E-attribute of the other participating
entity type as a foreign key. If the relationship type is an identifying relationship type then the E-attribute of the

15

owner entity type is further marked with an “ow.” in order to indicate the owners of a weak entity type, in the
A-relation representing the relationship type.

B

(1,1) (0,1) (0,N) (1,N)
(1,1) A or B A A A

A (0,1) B A or B A A
(0,N) B B New relation New relation
(1,N) B B New relation New relation

Table 1: Mapping Non-Temporal Binary Relationship Types

In the case where we extend an already existing A-relation and the non-temporal relationship type has
non-temporal attributes, we further extend the chosen A-relation to include the non-temporal attributes of the
relationship type.

If a new A-relation has to be created then it is created as the Cartesian product over the E-domains of the
participating entity types, and the domains of the non-temporal attributes, if any, of the relationship type. The
key of the new A-relation is the E-attributes concatenated.

In the case where the relationship type has temporal attributes, we proceed as already described in Sec-
tion 3.2.2. The key of the A-relation is the concatenation of the E-attributes and one or more of the timestamp
attributes, depending on the specified temporal support.

Example 3.7 In the diagram in Figure 10, entity typeEmployeehas non-temporal attributesE ID andE Name.
Entity typeProjecthas non-temporal attributesP ID andP Name. The temporal, weak entity typeDependent
has non-temporal attributesD Nameand Sex. The non-temporal relationship typeWorksfor describes that
information about which employees work for which projects is stored in the database. The non-temporal identi-
fying relationship typeDependentof captures which dependent is dependent on which employee. The mapping
to the relational model is as described by the relations below the diagrams. Since the snapshot participation
constraint forEmployeeis (1,1) and the snapshot participations constraint forProject is (1,N), we expand the
A-relation representing the non-temporal attributes forEmployeewith the E-attribute ofProject. 2

3.3.2 Non-Temporal n-ary Relationship Types

If the number of participating entity types in a relationship type isn wheren � 3 then we always create an
A-relation as the Cartesian product over the surrogate domains of the participating entity types. If the snapshot
participation constraint is (0,1) or (1,1) for one or more of the participating entity types then the E-attribute
of one of these is chosen as key for the A-relation; otherwise, the key of the A-relation is the E-attributes
concatenated. If the relationship type is an identifying relationship type then the E-attribute of the owner entity
type is further marked with an “ow.” in the relations.

If the relationship type has non-temporal attributes, the above-mentioned A-relation is extended with the
domains of these attributes. In the case where the relationship type has temporal attributes, we again proceed as
described in Section 3.2.2. The key of the A-relation is then the concatenation of all or some of the E-attributes
and one or more of the timestamp attributes, depending on the specified temporal support.

3.4 Temporal Relationship Types

In the TIMEER model, a temporal relationship type can be considered either to be an attribute of the partici-
pating entity types or to be something that exists in its own right. In the case where the temporal support for

16

ProjectWorks_forEmployee

E_ID E_Name P_ID P_Name

(1,1) (1,N)

Dependents_of

Sex

D_Name
(0,N) (1,1)

Dependent *

Employee Employee EID EName

employeeø employeeø f.k. E ID u.k. E Name projectø f.k.

Project Project PID PName

projectø projetø f.k. P ID u.k. P Name

Dependent Dependent DName Sex

dependentø T dependentø f.k. D Namept.k. Sex employeeø f.k., ow.

Figure 10: Mapping of Two Non-Temporal Relationship Types

the relationship type is specified to capture valid time, transaction time, or both, it is considered an attribute. If,
on the other hand, the temporal support for the relationship type is specified to include existence time only, or
transaction time and existence time, it is considered to exist in its own right.

3.4.1 Temporal Binary Relationship Types, Attribute View

In this section we describe the case where the relationship type is considered an attribute of the participating
entity types and is itself temporal, i.e, the relationship type is considered a temporal attribute. We create an
A-relation as the Cartesian product over the E-domains of the participating entity types and the appropriate
time domains. The key of the A-relation can be determined from the snapshot participation constraints and the
temporal support specified for the relationship type. In Table 2, it is described which of the E-attributes should
be part of the key, concatenated with timestamp attributes as specified in Figure 6. If the relationship type is an
identifying relationship type then the E-attribute of the owner entity type is further marked with an “ow.” in the
relations.

B

(1,1) (0,1) (0,N) (1,N)
(1,1) aø or bø aø aø aø

A (0,1) bø aø or bø aø aø
(0,N) bø bø aø + bø aø + bø
(1,N) bø bø aø + bø aø + bø

Table 2: Keys For A-Relations Representing Temporal Relationship Types Perceived as Attributes

The mapping of the attributes of temporal relationship types is almost identical to the mapping of attributes
of entity types described in Section 3.2 (temporal and non-temporal). There are two differences: first, the E-
attributes of both the participating entity types appears in the resulting A-relation; second, the E-attributes that

17

is to be part of the keys is again determined by the snapshot participation constraint, and the temporal support
of the attribute is temporal, for the participating entity types, that is, the chose of E-attributes that should be part
of the key is as described above.

Example 3.8 The diagram in Figure 11 records information about theID andNamefor EmployeeandProject.
We also register information about which employeesWorksfor which project and how this relationship varies
over time. The mapping to the relational model is as described by the relations shown below the diagram. As
earlier the T in the A-relation should be replaced by the proper timestamp attributes following the scheme for
temporal attributes (Figure 6). 2

ProjectEmployee

E_ID E_Name P_ID P_Name

(1,1) (1,N)
Works_for *

Employee Employee EID EName

employeeø employeeø f.k. E ID u.k. E Name

Project Project PID PName

projectø projetø f.k. P ID u.k. P Name

Works for

employeeø f.k. projetø f.k. T

Figure 11: Mapping of Temporal Relationship Types Involving Two Non-Temporal Entity Types

3.4.2 Temporal Binary Relationship Types, Existence View

If we consider a relationship as a thing that exists in its own right, we have to assign surrogates to its instances.
We therefore create an E-relation as the Cartesian product over the surrogate domain and the time domains
specified for the relationship type. The primary key of the E-relation is the E-attribute concatenated with the
timestamp attributes, overlined in Figure 2.

In this case, the participating entity types of the relationship type can be seen as attributes of the relationship
type. Therefore an A-relation is created as the Cartesian product over the surrogate domain of the relationship
type and the surrogate domains of the participating entity types. The key of the relation is the E-attribute rep-
resenting the relationship type. If the relationship type has non-temporal attributes, the A-relation is expanded
with the domains of the non-temporal attributes. If the relationship type is an identifying relationship type then
the E-attribute of the owner entity type is further marked with an “ow.” in the relations.

If the relationship type has temporal attributes, an A-relation is created for each temporal attribute as the
Cartesian product over the surrogate domain, the attributes domain, and the time domains. The key of the
A-relation is the E-attribute concatenated with the proper timestamp attributes.

Example 3.9 Given the diagram in Figure 12, the mapping to the relational model is as described by the
relations below the figure. The T in the E-relation should be replaced by the proper timestamp attributes
following the scheme for E-relations (see Figure 2) with the restriction that the temporal support must include
lifespan. 2

18

Project
(X,Y) (Z,V)

Employee

E_ID E_Name P_ID P_Name

Works_for *

Employee Employee EID EName

employeeø employeeø f.k. E ID u.k. E Name

Project Project PID PName

projectø projectø f.k. P ID u.k. P Name

Works for Works for Employee Project

works forø T works forø f.k. employeeø f.k. projectø f.k.

Figure 12: Mapping of a Temporal Relationship Type Supporting Lifespan Involving Two Non-Temporal Entity
types

3.4.3 Temporal n-ary Relationship Types

If a temporal relationship type is n-ary and the temporal support indicates that the relationship type is considered
to be an attribute of the participating entity types, i.e., valid time, transaction time, or bitemporal, then an A-
relation is created as the Cartesian product over the surrogate domains of the participating entity types and
the time domains. The choice of key for the A-relation is depending on the temporal support specified for
the relationship type and the snapshot participation constraints specified for the participating entity type. The
choice of which domains of the E-attribute(s) that is to be part of the key concatenated with the proper timestamp
attributes is described in Section 3.3.2. If the relationship type is an identifying relationship type then the E-
attribute of the owner entity type is further marked with an “ow.” in the relations.

If the relationship type has non-temporal attributes, a new A-relation is created as the Cartesian product
over the surrogate domains of the participating entity types and the domains of all the non-temporal attributes.
The key of the relation is the same set of E-attributes chosen for the A-relation representing the relationship.

If the relationship type has temporal attributes then for each temporal attribute an A-relation is created as
the Cartesian product over the surrogate domains of the participating entity types, the domain of the attribute,
and the time domains. Depending on the temporal support specified for the attribute, the key of the A-relation
is again the same set of E-attributes chosen for the A-relation representing the relationship concatenated with
the proper timestamp attributes.

If the temporal support of the relationship type includes lifespan, indicating that the relationship type is
considered as something that exists in its own right then we proceed as described in Sections 3.4.2.

3.5 Temporal Constraints

In the previous sections the mapping from the conceptual TIMEER model to the surrogate-based relational
target model was presented without specifying the many constraints that apply to the relations created by the
mapping. This section presents all the temporal constraints that apply to these relations. Since the surrogate-
based relational target model does not automatically enforce these constraints, they must be enforced explicitly
using, e.g, assertions. Constraints that are non-temporal are inherited from the surrogate-based relational target
model.

19

3.5.1 Within A-Relations

The following temporal constraints apply to A-relation recording temporal information. Constraints 3.1 – 3.3
apply to A-relations representing simple attributes and to temporal relationship types perceived as attributes.
They do not apply to A-relations representing temporal multivalued attributes. Constraints applying to those
A-relations will be described later in this section.

It must be enforced that the information recorded by the A-relations is snapshot reducible [15], i.e., snap-
shots of the database described using the temporal ER diagram constructs are the same as those described by
the corresponding snapshot ER diagram where all temporal constructs are replaced by their snapshot coun-
terparts. As an example of snapshot reducibility, a temporal single-valued attribute is snapshot reducible to a
(snapshot) single-valued attribute if the temporal single-valued attribute is single valued at each point in time.
For A-relations recording valid time only, no two tuples of the A-relation containing the same E-attribute, or
the same set of E-attributes, can have overlapping valid-time intervals.

Constraint 3.1 (Snapshot Reducibility of Valid-Time A-Relations) LetK denote the set of E-attributes con-
tained in A-relationR recording valid time only; then

8r
1
; r

2
2 R(r

1
:K = r

2
:K) [r

1
:V Ts; r1:V Te] \ [r

2
:V Ts; r2:V Te] = ;)

This constraint is necessary to ensure that no valid-time timeslice on the A-relation will return more than one
value for the attribute.

If the temporal information recorded is transaction time only then a snapshot reducibility constraint for
transaction time is enforced if the transaction-time start timestamp of a tuple in an A-relation is the time of the
insertion of the tuple into the database and the transaction-time end timestamp is the time of the logical deletion
of the tuple from the database. Since, as time passes, the transaction time increases no two tuples in the relation
with the same value for the E-attribute, or the same set of E-attributes, have overlapping transactions-time
intervals.

Constraint 3.2 (Snapshot Reducibility of Transaction-Time A-Relations) LetK denote the set of E-attributes
contained in A-relationR recording transaction time only; then

8r
1
; r

2
2 R(r

1
:K = r

2
:K) [r

1
:TTs; r1:TTe] \ [r

2
:TTs; r2:TTe] = ;)

Bitemporal A-relations must also be snapshot reducible. This means that no two tuples associated with
the same E-attribute, or set of E-attributes, current at a given transactions-time point (the intersection of the
transaction-time intervals is non-empty) have overlapping valid-time intervals.

Constraint 3.3 (Snapshot Reducibility of Bitemporal A-Relations) LetK denote the set of E-attributes con-
tained in A-relationR, recording both valid time and transaction time; then

8r
1
; r

2
2 R((r

1
:K = r

2
:K ^ [r

1
:TTs; r1:TTe] \ [r

2
:TTs; r2:TTe] 6= ;)

) [r
1
:V Ts; r1:V Te] \ [r

2
:V Ts; r2:V Te] = ;)

Example 3.10 This example presents a bitemporal A-relation that satisfies Constraint 3.3. We assume that the
current time is21. The relation records the salary history for employees in a company. If the valid-time end
timestamp of a tuple isNOW, this means that the attribute value recorded by the tuple remains valid until the
current time, see the fourth tuple. 2

employeeø Salary TTs TTe VTs VTe
e1 7K 1 14 10 15
e2 6K 10 18 10 14
e1 7K 15 UC 5 25
e2 8K 19 UC 15 NOW

20

Some A-relations represent temporal multivalued attributes of either entity types or relationship types. As
mentioned, the constraints defined above do not apply to these A-relations. The reason is that these record set
valued attributes and therefore sets of values changes over time. This implies that sets of values are timestamped
in the database whenever a temporal multivalued attribute changes its value. We must therefore require, for
these A-relations, that the tuples that belong to the same value set record the same temporal information. In
order to ensure this, we define aValue Setand redefine the constraints 3.1 through 3.3, replacing them with
constraints 3.4 through 3.6. These constraints apply to value sets in an A-relation instead of to individual
tuples.

Definition 3.1 (Value Set) LetR be an A-relation representing a temporal multivalued attribute M. LetK

denote the set of E-attributes and letT be the set of timestamp attributes contained inR. Let r
1

andr
2

be two
tuples inR. r

1
andr

2
belongs to the same value setS in R if and only if r

1
andr

2
have matching values of the

E-attributes and the timestamp attributes.

r
1
; r

2
2 R ^ r

1
:K = r

2
:K: ^ r

1
:T = r

2
:T , r

1
; r

2
2 S

Example 3.11 The following A-relation exemplifies both how we expect a multivalued attribute to be updated
and value sets. The A-relation records the dependent children of employees, modeled using a bitemporal multi-
valued attribute.

employeeø Dependchildren TTs TTe VTs VTe
e1 Jens 1982 1985 1982 1985S

1

e1 Jens 1986 1989 1986 1988S
2

e1 Ulla 1986 1989 1986 1988 S
2

e1 Jens 1990 UC 1989 NOW S
3

e1 Ulla 1990 UC 1989 NOW S
3

e1 Peter 1990 UC 1989 NOW S
3

2

To ensure the snapshot reducibility of temporal multivalued attributes supporting valid time only it must be
ensured that no two different value sets have overlapping valid-time timestamps.

Constraint 3.4 (Snapshot Reducibility of Valid-time Multivalued Attributes) LetR be an A-relation represent-
ing a multivalued attribute recording valid time only. LetK denote the set of E-attributes contained inR, and
let S

1
andS

2
be two value sets inR; then

8r
1
; r

2
2 R((r

1
2 S

1
^ r

2
2 S

2
^ S

1
6= S

2
^ r

1
:K = r

2
:K)

) [r
1
:V Ts; r1:V Te] \ [r

2
:V Ts; r2:V Te] = ;)

It must also be required that a multivalued attribute supporting transaction time only is snapshot reducible
by requiring that no two value set have overlapping transaction-time intervals.

Constraint 3.5 (Snapshot Reducibility of Transaction-time Multivalued Attributes) LetR be an A-relation
recording transaction time only and representing a multivalued attribute. LetK denote the set of E-attributes
contained inR, and letS

1
andS

2
be two value sets inR; then

8r
1
; r

2
2 R((r

1
2 S

1
^ r

2
2 S

2
^ S

1
6= S

2
^ r

1
:K = r

2
:K)

) [r
1
:TTs; r1:TTe] \ [r

2
:TTs; r2:TTe] = ;)

The following constraint ensures the snapshot reducibility of bitemporal multivalued attributes.

21

Constraint 3.6 (Snapshot Reducibility of Bitemporal Multivalued Attributes) LetR be an A-relation record-
ing valid time and transaction time representing a multivalued attribute. LetK denote the set of E-attributes
contained inR, and letS

1
andS

2
be two value sets inR; then

8r
1
; r

2
2 R((r

1
2 S

1
^ r

2
2 S

2
^ S

1
6= S

2
^ r

1
:K = r

2
:K ^ [r

1
:TTs; r1:TTe] \ [r

2
:TTs; r2:TTe] 6= ;)

) [r
1
:V Ts; r1:V Te] \ [r

2
:V Ts; r2[V Te] = ;))

3.5.2 Between A-Relations and E-Relations

In this section we present the temporal constraints that must hold between A-relations representing either tem-
poral attributes, temporal relationship types supporting valid time, transaction time, or both, and temporal
attributes of these relationship types and the E-relations that represent the involved entity types.

If the temporal information recorded by an A-relation includes transaction time, then the referential integrity
constraint must be redefined to require that at all time all current tuples of the A-relation must have a value for
the E-attribute(s) (f.k.) that is current in some E-relation(s). All tuples of non-temporal relations and relations
recording lifespan/valid time only are current, whereas possibly only a subset of the tuples in relations recording
transaction time only or both lifespan or valid time and transaction time are current (all the tuples that have
UC as transaction-time end timestamp). The above fact implies that we can apply the conventional referential
integrity constraint, unchanged, in the case where both the A-relation and the E-relation are either non-temporal
or record lifespan and valid time only, but that we have to redefine the the referential integrity constraint in all
other cases. The table below indicates which constraints apply depending on the temporal support of the A-
relation, (A), and E-relations, (E), respectively.

A

NONE or VT TT or BT
E NONE or LS Conventional Referential Integrity ConstraintConstraint 3.7

TT or LT Constraint 3.8 Constraint 3.9

The three temporal referential integrity constraints are formally defined as follows:

Constraint 3.7 (Temporal Referential Integrity Constraint 1) LetRi; i = 1; : : :; n, be the E-relationsnot
recording transaction time, referenced by A-relationR A recording transaction time; then

8Ri8r 2 R A(r:TTe = UC) (9s 2 Ri(s:Eø= r:Eø)))

Constraint 3.8 (Temporal Referential Integrity Constraint 2) LetRi; i = 1; : : :; n, be the E-relations, record-
ing transaction time referenced by A-relationR A not recording transaction time; then

8r 2 R A8Ri 9s(s:Eø= r:Eø^ s:TTe = UC)

Constraint 3.9 (Temporal Referential Integrity Constraint 3) LetRi; i = 1; : : :; n, be the E-relations recording
transaction time referenced by A-relationR A recording transaction time; then

8Ri8r 2 R A(r:TTe = UC) (9s 2 Ri(s:Eø= r:Eø^ s:TTe = UC)))

The redefinition of the referential integrity constraints are necessary since tuples from relations with transaction-
time timestamps are never physically deleted, only logically, whereas tuples of valid-time relations (if the tuples
was inserted by an error) and snapshot relations (relations without timestamp attributes) are physically deleted.
Also note the above defined constraints only ensures that a referenceable value of an E-attribute exists in the
E-relation. Constraints on the time intervals recorded by the tuples are defined next.

A set of temporal constraints must hold between time intervals recorded of the tuples in the A-relations and
the time intervals recorded of the tuples in the E-relation when the tuples have the same value of the E-attributes.

22

The purpose of the constraints is to ensure that attributes of, and relationships among, temporal entities cannot
be associated with time intervals for which the entities do not exist or are not registered in the database. There
are 16 different combinations of temporal support to consider and the table below indicates which constraint, if
any, applies to a specific combination of temporal support between an A-relation (columns) and an E-relation
(rows) referenced by the A-relation.

A

NONE VT TT BT
NONE Observation 3.1 Observation 3.1 Observation 3.1 Observation 3.1

LS Observation 3.2 Constraint 3.10 Observation 3.3 Constraint 3.12,
E Constraint 3.11 Observation 3.3

TT Observation 3.2 Observation 3.4 Constraint 3.13 Constraint 3.13
Observation 3.4

LT Observation 3.2 Constraint 3.14 Constraint 3.15 Constraint 3.16

Observation 3.1 If the tuples in an E-relation does not record any temporal information, no temporal con-
straints can be enforced on the temporal information, if any, recorded by the tuples in an A-relation referencing
the E-relation.

Observation 3.2 If the tuples in an A-relation does not record any temporal information, no temporal con-
straints can be enforced on the temporal information, if any, recorded by the tuples in an E-relation referenced
by the A-relation.

If the temporal support recorded by the tuples in an E-relation is lifespan only, and the temporal support
recorded by the tuples in an A-relation referencing the E-relation is valid time only then the valid-time interval
recorded by each tuple of the A-relation must be included in the lifespan interval recorded by the tuple in the
E-relation with the same value of the E-attribute. This is expressed by the following constraint.

Constraint 3.10 (Valid Time Inclusion) LetR be an A-relation recording valid time only, letS be an E-relation
referenced byR recording lifespan only; then

8r 2 R 9s 2 S(r:Eø= s:Eø^ [s:LSs; s:LSe] � [r:V Ts; r:V Te])

The above constraint ensures that the tuples in an A-relations representing temporal attributes only record
valid-time intervals that are included in the lifespan interval recorded by the tuple the E-relation with the same
value of the E-attribute. It also ensures that the valid-time intervals recorded by the tuples in a A-relation
representing a relationship type recording valid time are included in the non-empty intersection of the lifespan
intervals recorded by the participating temporal entities supporting lifespan only, since it must hold for each
E-relation referenced by the A-relation.

Example 3.12 The A-relationEmployeeSalary, recording the development in employee salaries, satisfies the
valid-time inclusion constraint (-3.10) with respect to the E-relationEmployee, recording the lifespans of the
employees. 2

Employee

employeeø LSs LSe
e1 5 20
e2 10 NOW

Employee Salary

employeeø Salary VTs VTe
e1 7K 5 10
e1 8K 10 20
e2 6K 10 14
e2 8K 15 NOW

23

Observation 3.3 If the temporal information recorded by the tuples in an E-relation is lifespan only and the
temporal information recorded by the tuples in an A-relation referencing the E-relation is transaction time only
it should not be enforced that the transaction-time intervals recorded by an tuple of the A-relation is included
in the lifespan interval recorded by the tuple in the E-relation with the same value of the E-attribute.

This should not be enforced because the user may have changed the lifespan interval of the tuple in the
E-relation after the time, the first tuple representing an attribute value was inserted in the A-relation, or even
after the current tuple in the A-relation, was inserted into the database. However, we have to require that all
current tuples in the A-relation reference tuples in the E-relation that are current, meaning that the current time
instant (cnow) is included in the lifespan recorded by the tuple referenced. This is expressed by the following
constraint.

Constraint 3.11 (Liveness Constraint) LetR be an A-relation recording transaction time only and letS be an
E-relation referenced byR and recording lifespan only; then

8r 2 R(r:TTe = UC) (9s 2 S(r:Eø= s:Eø^ cnow 2 [s:LSs; s:LSe])))

Example 3.13 To illustrate the liveness constraint (3.11), let the A-relationEmployeeSalaryrecord the trans-
action time of the salary values for the employees recorded in the E-relationEmployeetogether with their
lifespan. First, assume that the current time is17. Then it is possible for the third tuple in the A-relation to
haveUC as end timestamp. Second, assume that the current time now is21. Then the lifespan end timestamp
of employee e1 and the third tuple in the A-relation lead to a violation of the liveness constraint.

Employee

employeeø LSs LSe
e1 5 20
e2 10 NOW

Employee Salary

employeeø Salary TTs TTe
e1 7K 1 14
e2 6K 10 16
e1 7K 15 UC

e2 8K 17 UC

2

If the temporal information recorded by an E-relation is lifespan only and the temporal information recorded
by an A-relation referencing the E-relation is both valid and transaction time then the valid-time interval
recorded by a current tuple in the A-relation (representing a current attribute value or a current relationship)
must be included in the lifespan recorded by the tuple in the E-relation that has the same value of the E-attribute
and that has a lifespan including the current time instant.

Constraint 3.12 (Valid Time Inclusion, Liveness Constraint) LetR be an A-relation recording valid time and
transaction time and letS be an E-relation referenced byR and recording lifespan only; then

8r 2 R(r:TTe = UC) (9s 2 S(r:Eø = s:Eø^cnow 2 [s:LSs; s:LSe]^[s:LSs; s:LSe] � [r:V Ts; r:V Te])))

Observation 3.3 also applies to the transaction-time intervals recorded by the tuples in a bitemporal A-
relation referencing tuples in E-relations recording lifespan only.

If the temporal information recorded by an E-relation is transaction time only and the temporal information
recorded by A-relations referencing the E-relation includes transaction time then the transaction-time interval
recorded by a tuple in the A-relation must be included in the transaction-time interval recorded by the tuple in
the E-relations with the same value of the E-attribute, since the attribute value cannot have been inserted before
the insertion of the entity.

24

Constraint 3.13 (Transaction Time Inclusion) LetR be an A-relation recording transaction time only, or both
valid and transaction time, letS be an E-relation referenced byR recording transaction time only; then

8r 2 R 9s 2 S(r:Eø= s:Eø^ [s:TTs; s:TTe] � [r:TTs; r:TTe])

Observation 3.4 If the temporal information recorded by an E-relation is transaction time only and the tem-
poral information recorded by A-relations referencing the E-relation is valid time only or both valid time and
transaction time, it should not be enforced that the valid-time interval recorded by a tuple of the A-relation
is included in the transaction-time interval recorded by the tuple of the E-relation with the same value of the
E-attribute.

This should not be enforced because a tuple of the E-relation may have been inserted into the database long
time after the entity it represents began to exist in the modeled mini-world and the information recorded by
tuples of the A-relation were therefore valid before the insertion date.

If the temporal information recorded by an E-relation is both lifespan and transaction time and the temporal
information recorded by an A-relation referencing the E-relation is valid time only, then the valid-time interval
recorded by a tuple in the A-relation must be included in the lifespan interval recorded by current tuples in
the E-relation (the tuples in the E-relation with transaction-time end value UC) with the same value of the
E-attribute.

Constraint 3.14 (Valid Time Inclusion) LetR be an A-relation recording valid time only, letS be an E-relation
referenced byR recording both lifespan and transaction time; then

8r 2 R 9s 2 S(r:Eø= s:Eø^ s:TTe = UC ^ [s:LSs; s:LSe] � [r:V Ts; r:V Te])

If the temporal information recorded by an E-relation is both lifespan and transaction time and the temporal
information recorded by an A-relation referencing the E-relation is transaction time only then the transaction-
time interval recorded by a tuple in the A-relation must be included in the union of the transaction-time intervals
of all the tuples of the E-relation with the same value of the E-attribute.

Constraint 3.15 (Transaction Time Inclusion) LetR be an A-relation recording transaction time only, letS be
an E-relation referenced byR and recording both lifespan and transaction time; then

8r 2 R 9si 2 S; i = 1; : : :; n(r:Eø= si:Eø^ [r:TTs; r:TTe] �

n[
i=1

[si:TTs; si:TTe])

If the temporal information recorded by an E-relation is both existence time and transaction time and the
temporal information recorded by an A-relation referencing the E-relation is bitemporal, then the valid-time
interval recorded by a tuple in the A-relation must be included in the lifespan interval recorded by the tuple
in the E-relation with the same value of the E-attribute if they are current at the same transaction time point.
Furthermore, the transaction-time interval of the tuples in the A-relation must be included in the union of the
transaction-time intervals of all the tuples of the E-relation with the same value of the E-attribute.

Constraint 3.16 (Bitemporal Inclusion) LetR be an A-relation recording both valid and transaction time, let
S be an E-relation referenced byR recording both lifespan and transaction time; then

8r 2 R 9si 2 S; i = 1; : : :; n((r:Eø= si:Eø^ [r:TTs; r:TTe] �

n[
i=1

[si:TTs; si:TTe]) ^

([r:TTs; r:TTe] \ [si:TTs; si:TTe] 6= ;) [r:V Ts; r:V Te] � [si:LSs; si:LSe]))

25

Example 3.14 To exemplify the above constraint, letEmployeebe an E-relation recording both lifespan and
transaction time of employees, and letEmployeeSalarybe an A-relation recording the valid and transaction
time of the salaries of the employees. First, to see that the relations satisfy the first inclusion in the constraint, we
observe that the total transaction time interval of e1 is[1; UC] and that the total transaction-time interval of e2
is [10; UC]. It is now easy to verify that all the tuples in the A-relation referencing e1 and e2 have transaction-
time intervals that are included in the above intervals. Second, to verify that the relations also satisfy the second
inclusion in the constraint, note that the first tuple in the A-relation is current at the same time as both the first
and the second tuples of the E-relation; in both cases, the valid-time interval is included in the lifespan. Similar
checks may be applied to the rest of the tuples.

Employee

employeeø TTs TTe LSs LSe
e1 1 8 10 15
e1 9 UC 5 20
e2 10 UC 10 NOW

Employee Salary

employeeø Salary TTs TTe VTs VTe
e1 7K 1 14 10 15
e2 6K 10 18 10 14
e1 7K 15 UC 5 20
e2 8K 19 UC 15 NOW

2

3.5.3 Between E-Relations

In this section, we present the temporal constraints that must hold between an E-relation that represents a weak
entity type and the E-relations representing the owner(s), between temporal relationships supporting lifespan
and the E-relations representing the participating entity types, and between E-relations that represent subclasses
and subclasses.

For every current tuple of an E-relation representing a weak entity type, there must exist a reachable current
tuple in the E-relation representing the owner of the weak entity type. If a weak entity type has more than one
owner, this must be true for each one. A tuple in an E-relation is reachable if and only if it is possible, by
following the reference described by the foreign key in the relation representing the identifying relationship, to
identify a tuple in the E-relation representing the owner of a weak entity type. The same applies for tuples of
E-relations representing relationship types recording lifespan and the E-relations representing the participating
entity types. There are 16 different combinations of temporal support to consider, but we do not consider the
cases where one of the involved E-relations is non-temporal since the observations made in the previous section
also apply here. So, we can reduce the definitions of constraints to 9 cases; the table below indicates which
constraint applies to which combination of temporal support between the involved E-relations. The purpose
of the constraints is twofold. First, they are temporal existence dependency constraints and, second, they are
temporal inclusion constraints.

R

LS TT LT
LS Constraint 3.17 Observation 3.3, Constraint 3.19

Constraint 3.18
Si TT Observation 3.4 Constraint 3.20 Constraint 3.20

LT Constraint 3.21 Constraint 3.22 Constraint 3.23

Constraint 3.17 (Temporal Existence Dependency, Lifespan Inclusion) LetR be an E-relation recording lifes-
pan only, referencing via an intermediate relationK the E-relationsSi; i = 1; : : :; n, recording lifespan only;
then

8r 2 R 9k 2 K 8i9s 2 Si(r:Eø= k:Eø^ k:Eiø= s:Eiø^ [r:LSs; r:LSe] � [s:LSs; s:LSe])

26

Example 3.15 To better understand the temporal existence dependency constraints, consider the relations be-
low, which satisfy constraint 3.17 (the current time is21. The relations are marked with S, R, and K to indicate
which relation is which.

Employee (S)
employeeø LSs LSe

e1 3 10
e2 5 NOW

Dependent (R)
dependentø LSs LSe

d1 5 7
d2 6 10
d3 8 NOW

d4 8 15
Dependent DName Sex (K)
dependentø f.k. D Namept.k. Sex employeeø f.k., ow.

d1 Jens male e1
d2 Ulla female e1
d3 Pia female e2
d4 Peter male e2

2

Note that when Constraints 3.17 through 3.23 apply to E-relations representing superclass/subclass rela-
tionships then the intermediate relationK is equal to the E-relationR.

Constraint 3.18 (Temporal Existence Dependency, Liveness Constraint) LetR be an E-relation recording
transaction time only, referencing via an intermediate relationK the E-relationsSi; i = 1; : : :; n, recording
lifespan only; then
8r 2 R(r:TTe = UC) 9k 2 K 8i9s 2 Si(r:Eø= k:Eø^ k:Eiø= s:Eiø^ cnow 2 [s:LSs; s:LSe]))

Constraint 3.19 (Temporal Existence Dependency, Lifespan Inclusion) LetR be an E-relation recording both
lifespan and transaction time, referencing via an intermediate relationK the E-relationsSi; i = 1; : : :; n,
recording lifespan only; then

8r 2 R(r:TTe = UC) 9k 2 K 8i9s 2 Si(r:Eø= k:Eø^

k:Eiø= s:Eiø^ [r:LSs; r:LSe] � [s:LSs; s:LSe] ^ cnow 2 [s:LSs; s:LSe]))

Constraint 3.20 (Temporal Existence Dependency, Transaction Time Inclusion) LetR be an E-relation record-
ing transaction time only or both lifespan and transaction time, referencing via an intermediate relationK the
E-relationsSi; i = 1; : : :; n, recording transaction time only; then

8r 2 R 9k 2 K 8i9s 2 Si(r:Eø= k:Eø^ k:Eiø= s:Eiø^ [r:TTs; r:TTe] � [s:TTs; s:TTe])

Constraint 3.21 (Temporal Existence Dependency, Lifespan Inclusion) LetR be an E-relation recording lifes-
pan only, referencing via an intermediate relationK the E-relationsSi; i = 1; : : :; n, recording both lifespan
and transaction time; then
8r 2 R 9k 2 K 8i9s 2 Si(s:TTe = UC)

r:Eø= k:Eø^ k:Eiø= s:Eiø^ [r:LSs; r:LSe] � [s:LSs; s:LSe])

Constraint 3.22 (Temporal Existence dependency, Transaction Time Inclusion) LetR be an E-relation record-
ing transaction time only, referencing via an intermediate relationK the E-relationsSi; i = 1; : : :; n, recording
both lifespan and transaction time; then
8r 2 R 9k 2 K 8i9sj 2 Si; j = 1; : : :;m(r:Eø = k:Eø^ k:Eiø= s:Eiø

^ [r:TTs; r:TTe] �

m[
j=1

[sj:TTs; sj:TTe])

27

Constraint 3.23 (Temporal Existence Dependency, Lifespan and Transaction Time Inclusion) LetR be an E-
relation recording both lifespan and transaction time, referencing via an intermediate relationK the E-relations
Si; i = 1; : : :; n, recording both lifespan and transaction time; then
8r 2 R 9k 2 K 8i9sj 2 Si; j = 1; : : :;m

(r:Eø= k:Eø^ k:Eiø= s:Eiø^ [r:TTs; r:TTe] �

m[
j=1

[sj :TTs; sj :TTe] ^

([r:TTs; r:TTe] \ [sj :TTs; sj:TTe] 6= ;) [r:LSs; r:LSe] � [sj:LSs; sj :LSe]))

Example 3.16 This example aids in understanding constraint 3.23; will use the first tuple ofWorksfor for
illustration. Assume that the current time is 21. First we have to verify that the transaction time interval of w1
is included in the total transaction-time of e1 and p1. Second, we have to verify that lifespan intervals of w1 is
included in the lifespan intervals recorded for e1 and p1 if these are current at the same time. As can be seen,
tuple w1 satisfies the constraint.

Employee (S1)
employeeø TTs TTe LSs LSe

e1 1 8 5 15
e1 9 UC 5 25
e2 10 UC 10 NOW

Project (S2)
projectø TTs TTe LSs LSe

p1 2 12 2 11
p2 3 18 5 15
p3 15 UC 15 23
p4 19 UC 15 NOW

Works for (R)
works forø TTs TTe LSs LSe

w1 2 10 5 11
w2 9 15 10 15
w3 10 16 10 15
w4 15 UC 15 20
w5 19 UC 15 25

Works for Employee Project (K)
works forø f.k. employeeø f.k. projectø f.k.

w1 e1 p1
w2 e1 p2
w3 e2 p2
w4 e2 p3
w5 e1 p4

2

In addition to the above-mentioned constraints, some additional constraints apply between E-relations rep-
resenting superclasses and subclasses in superclass/subclass relationship types. We first cover the case where
Option 1 was chosen for the mapping. Constraints 3.24 through 3.27 are inclusion constraints, while Con-
straints 3.28 through 3.29 are disjointness constraints.

The table below describes which inclusion constraints apply between a superclass and its subclasses for
the different combinations of temporal support. The “X” indicates that a combination is not valid, due to the
constraints on the inheritance of temporal support.

28

Ri

None LS TT LT
None Conventional

inclusion
constraint

Conventional
inclusion
constraint

Constraint 3.24,
Constraint 3.25

Constraint 3.24,
Constraint 3.25

SuperclassR LS X Conventional
inclusion
constraint

X Constraint 3.24,
Constraint 3.25

TT X X Constraint 3.26,
Constraint 3.27

Constraint 3.26,
Constraint 3.27

LT X X X Constraint 3.26,
Constraint 3.27

Constraint 3.24 (Temporal Inclusion Dependency, Optional Participation) LetR be the E-relation represent-
ing entity typeE, which is non-temporal or supports lifespan only. LetR

1
; R

2
; : : :; Rn be the E-relations

representing its subclassesE
1
; E

2
; : : :; En supporting transaction time; then

8Ri8s 2 Ri(s:TTe = UC) 9r 2 R(s:Eø: = r:Eø))

Constraint 3.25 (Temporal Inclusion Dependency, Total Participation) LetR be the E-relation representing
entity typeE, which is non-temporal or supports lifespan only. LetR

1
; R

2
; : : :; Rn be the E-relations repre-

senting its subclassesE
1
; E

2
; : : :; En supporting transaction time. Then Constraint 3.24 and the following must

hold.

8r 2 R9s 2 Ri(s:Eø= r:Eø^ s:TTe = UC)

Constraint 3.26 (Temporal Inclusion Dependency, Optional Participation) LetR be the E-relation representing
entity typeE, which supports transaction time. LetR

1
; R

2
; : : :; Rn be the E-relations representing its subclasses

E
1
; E

2
; : : :; En supporting transaction time; then

8Ri 8s 2 Ri(s:TTe = UC) 9r 2 R(s:Eø= r:Eø^ r:TTe: = UC))

Constraint 3.27 (Temporal Inclusion Dependency, Total Participation) LetR be the E-relation representing
entity typeE, which supports transaction time. LetR

1
; R

2
; : : :; Rn be the E-relations representing its subclasses

E
1
; E

2
; : : :; En supporting transaction time. Then Constraint 3.26 and the following must hold.

8r 2 R(r:TTe = UC) 9Ri 9s 2 Ri(s:Eø= r:Eø^ s:TTe = UC))

The disjointness constraints for superclass/subclass relationship types follow. Depending on the temporal
support of the subclasses, different constraints apply. The table below describes which constraints apply to
which combination of temporal support between any two subclasses belonging to the same superclass/subclass
relationship type.

SubclassRi

None LS TT LT
None Conventional dis-

jointness constraint
Conventional dis-
jointness constraint

Constraint 3.28 Constraint 3.28

SubclassRj LS Conventional dis-
jointness constraint

Conventional dis-
jointness constraint

Constraint 3.28 Constraint 3.28

TT Constraint 3.28 Constraint 3.28 Constraint 3.29 Constraint 3.29
LT Constraint 3.28 Constraint 3.28 Constraint 3.29 Constraint 3.29

29

Constraint 3.28 (Temporal Disjoint Participation Constraint 1) LetR be the E-relation representing entity
typeE, the superclass of the entity typesE

1
; E

2
; : : :; En. LetR

1
; R

2
; : : :; Rn be the E-relations representing

the subclasses. For any two E-relationsRi; Rl; i 6= l, whereRi records transaction time andRl does not,
8sj 2 Ri; j = 1; : : :;m(sj :TTe: = UC) @r 2 Rj(sj:Eø= r:Eø))

Constraint 3.29 (Temporal Disjoint Participation Constraint 2) LetR be the E-relation representing entity
typeE, the superclass of the entity typesE

1
; E

2
; : : :; En. LetR

1
; R

2
; : : :; Rn be the E-relations representing

the subclasses. For any two E-relationsRi; Rl; i 6= l, both recording transaction time,
8sj 2 Ri; j = 1; : : :;m(sj :TTe: = UC) @r 2 Rj(sj :Eø= r:Eø^ r:TTe = UC))

We proceed to present the constraints that apply if Option 2 was chosen to map the superclass/subclass
relationship type, that is, the participation constraint for the relationship type was specified as total and dis-
joint. In this cases, there is no E-relation representing the superclass, but only E-relations representing the
subclasses. Thus, the set of constraints is reduced to include only disjointness constraints that ensure that any
tuple participating in the superclass/subclass relationship is represented in exactly one subclass.

Constraint 3.30 (Temporal Disjoint Participation Constraint 3) LetR
1
; R

2
; : : :; Rn, be the E-relations repre-

senting of the entity typesE
1
; E

2
; : : :; En which are subclasses in the superclass/subclass relationship type. For

any two E-relationsRi; Rl; i 6= l, whereRi records transaction time andRl does not, the following holds.
8sj 2 Ri; j = 1; : : :;m(sj:TTe = UC) @r 2 Rj(sj :Eø= r:Eø))

Constraint 3.31 (Temporal Disjoint Participation Constraint) LetR
1
; R

2
; : : :; Rn be the E-relations represent-

ing of the entity typesE
1
; E

2
; : : :; En, which are subclasses in the superclass/subclass relationship type. For

any two E-relationsRi; Rl; i 6= l, both recording transaction time, the following holds.
8sj 2 Ri; j = 1; : : :;m(sj :TTe: = UC) @r 2 Rj(sj :Eø= r:Eø^ r:TTe = UC))

4 Mapping From the Surrogate-Based Model to the Lexically-Based Model

In this section the mapping from the surrogate-based relational target model to the lexically-based relational
target model, defined in Section 2.3, is presented.

The input to this part of the algorithm is the E-relations and the A-relations that result from Step I. We do not
always know if an A-relation represents an attribute or a relationship type. Some A-relations represent both non-
temporal attributes and non-temporal relationship types. We also do not know whether an E-relation represents
an entity type or a relationship type (if the temporal support of the relationship type includes lifespan).

Since this target model does not have an E-domain, and therefore no E-attributes, a set of lexical attributes,
possibly concatenated with some timestamp attributes, must now serve as the existence lists and unique iden-
tifiers for the relations. In order to guarantee that we can replace all the non-lexical surrogate-based keys with
lexical keys, we need to make sure that every single entity occurrence as modeled by the TIMEER diagram is
uniquely lexically referenceable. The definition of the TIMEER model requires that every single entity type has
a unique lexical key [9]. This requirement is stronger than requiring unique lexical referencability, and we can
therefore replace all the E-attributes with the proper set of lexical attributes, i.e., the set of lexical attributes that
constitutes the user-defined lexical keys of the modeling constructs in the diagram. We have chosen to retain
the E-relation in the lexically-based model since they still model existence. The primary keys of these relations
will be the lexical keys concatenated with the proper set of timestamp attributes (the same sets as in the previous
section).

The attribute, or set of attributes, that has been defined by the user as the lexical key of a modeling construct
is contained in an A-relation representing this attribute. The attribute(s) is marked “u.k” (or “pt.k.” for weak
entity types). A part of the key of such an A-relation is the E-attribute, referencing as foreign key the E-relation

30

representing the modeling construct that the attributes is key of. The A-relations containing the lexical keys of
the diagram must therefore be identified first.

For each of the above identified A-relations, we must now identify all the relations that contain the E-
attributes that are a part of the key of the A-relation. This is done by first identifying all the E-relations
referenced by the A-relation. These E-relations include the E-relation representing the entity type of which the
attribute is the lexical key of and all the subclasses of this entity type, if any. Then, for each of the just identified
E-relations, we identify all the A-relations that include the E-attribute of the E-relation as foreign key. These
A-relations include A-relations that represents other attributes of the entity type; A-relations representing the
temporal relationships the entity type participate in; and A-relations representing attributes of the relationship,
the entity type participate in.

We now have a set of relations that include the same E-attribute. This E-attribute has to be replaced by the
set of lexical attributes that is specified as the key of the corresponding entity type. When we have replaced all
E-attributes we have to remove duplicate columns (the only place we have duplicate columns is in the A-relation
containing the attributes marked “u.k.” or “pt.k.”).

Example 4.1 This example illustrate Step II as explained until now. The first set of relations below is the
relations resulting from Step I, mapping the diagram in Figure 7. The second set of relations is the set of
relations resulting from Step II with the first set as input. The first relation that is identified is the A-relation
EmployeeID NameBirth date. Then the E-relationEmployeeand the A-relationEmployeeSalaryare iden-
tified. Now we replace all the occurrences ofemployeeøwith ID and remove the duplicate column ID in the
A-relationEmployeeID NameBirth date.

Employee Employee ID Name Birth date

Step I: employeeø employeeø f.k. ID u.k. Name Birth date

Employee Salary

employeeø f.k. Salary T

Employee Employee ID Name Birth date

Step II: ID ID u.k., f.k. Name Birth date

Employee Salary

ID u.k., f.k. Salary T
2

We have now imported the lexical key of all relations created to represent entity types and relationship types
considered attributes. Note that in the algorithm presented in Appendix C, there is a slight difference in the way
the lexical key import is performed for regular and weak entity types, but the overall principle as described
above is the same.

We must now import the lexical key of relationship types considered to exist in their own right. We utilize
the fact that the E-relations that represent these are now the only E-relations that still contain E-attributes.

For each of these E-relations, we identify all the relations referencing the E-relation. One of these relations
will contain the lexical key of all the involved entity types and the non-temporal attributes of the relationship
type, if any. The reason for this is that the lexical key of all the involved entity types were imported into it during
the first step of this key import procedure. This relation is characterized by not having timestamp attributes.
We therefore identify this relation among all the relations that reference the E-relation. The lexical key of the
relationship is the concatenation of all the foreign keys in this relation and must replace all occurrences of the
E-attributes in the E-relation and all the relations that reference the E-relation. We must remove the duplicate
columns from the A-relation representing the involvement.

31

Example 4.2 This example illustrates the last part of Step II. The first set of relations is the relations resulting
from Step I mapping the diagram in Figure 12 and the first part of Step II. The second set of relations is the
result after Step II.

Step I, Step II Employee Employee EID EName

(first part): E ID E ID u.k., f.k. E Name

Project Project PID PName

P ID P ID u.k., f.k. P Name

Works for Works for Employee Project

works forø T works forø f.k. E ID f.k. P IDf.k.

Step II Employee Employee EID EName

(second part): E ID E ID u.k., f.k. E Name

Project Project PID PName

P ID P ID u.k., f.k. P Name

Works for Works for Employee Project

E ID P ID T E ID f.k. P ID f.k.
2

The fact that we do not delete relations means that we can utilize all the constraints developed in Section 3.5.
The E-attributes mentioned in the constraints simply is the lexical key instead.

5 Summary and Future Research Direction

In this paper we have defined a two-step mapping algorithm from the TIMEER model to a lexically-based
relational target model. This algorithm describes how to map a conceptual model that supports lifespans,
transaction time, and valid time into relations in the relational model. Thus, the algorithm presented corrects
one of the major problems, we have encountered in the existing algorithms, namely that these at best consider
only valid time.

The first step maps a temporal ER diagram into relations in an intermediate, surrogate-based relational target
model. The purpose of this step is to create relations that preserve the semantics of the diagram transformed.
With the first step, we also meet future needs, since we believe that commercial database products in the future
will support surrogate-based relational data models. The second step replaces the surrogate attributes with the
lexical keys defined by the user in the temporal ER diagram. This step is necessary to meet today’s needs,
since no commercial DBMS currently supports a surrogate-based relational data model. We have defined a
set of temporal constraints that enforce the semantics of the temporal aspects of the application modeled by
the diagram. The constraints are defined for the surrogate-based target model only, but need only be slightly
rewritten to apply to the lexically-based target model.

This paper presents a mapping from the temporal ER model to two relational models that do not support
the semantics of the time domains. Another approach could be to develop an algorithm that has as its target one
of the many temporally extended relational models that have been defined over the last two decades [16]. Yet
another approach could be to map to the Bitemporal Conceptual Data Model [12], which is a design model, and
then utilize the mapping algorithms provided by this model to five different bitemporal relational data models.

32

As an alternative to mapping temporal ER diagrams into a schema of a different implementation platform,
another approach is to assume a system that implements the temporal ER model directly and develop a query
language for querying the temporal ER databases.

Acknowledgements

This work is supported in part by grants 9502695 and 9700780 from the Danish Technical Research Council
and grant 9701406 from the Danish Natural Science Research Council. The research was performed in part
while the first author visited Georgia Institute of Technology.

References

[1] M. A. Casanova and J. E. Amaral de Sa. Mapping Uninterpreted Schemes into Entity-Relationship Di-
agrams: Two Applications to Conceptual Schema Design.IBM Journal of Research and Development,
28(1):82–98, 1984.

[2] P. P-S. Chen. The Entity-Relationship Model – Toward a Unified View of Data.ACM Transactions on
Database Systems, 1(1):9–36, March 1976.

[3] E. F. Codd. Extending the Database Relational Model to Capture More Meaning.ACM Transactions
on Database Systems, 4(4):397, December 1979. Reprinted in M. Stonebraker, Readings in Database
Systems, Morgan Kaufmann, 1988.

[4] C. E. Dyreson and R. T. Snodgrass. Temporal granularity. In R. T. Snodgrass, editor,The TSQL2 Temporal
Query Language, Chapter 19, pages 347–383. Kluwer Academic Publishers, 1995.

[5] C. E. Dyreson and R. T. Snodgrass. The Baseline Clock. In R. T. Snodgrass, editor,The TSQL2 Temporal
Query Language, Chapter 5, pages 77–96. Kluwer Academic Publishers, 1995.

[6] C. E. Dyreson, M. Soo, and R. T. Snodgrass. The Data Model for Time. In R. T. Snodgrass, editor,The
TSQL2 Temporal Query Language, Chapter 6, pages 97–101. Kluwer Academic Publishers, 1995.

[7] R. Elmasri and S. B. Navathe.Fundamentals of Database Systems. Benjamin/Cummings, 2. edition,
1994.

[8] S. Ferg. Modeling the Time Dimension in an Entity-Relationship Diagram. In Proceedings of the4th
International Conference on the Entity-Relationship Approach, pages 280–286, Silver Spring, MD, 1985.

[9] H. Gregersen and C. S. Jensen. Conceptual Modeling of Time-varying Information. TIMECENTER Tech-
nical Report TR-35, September 1998.

[10] P. Hall, J. Owlett, and S. J. P. Todd. Relations and Entities. In G. M. Nijssen, editor,Modelling in Data
Base Management Systems, pages 201–220. North-Holland, 1976.

[11] C. S. Jensen and C. E. Dyreson [editors]. The Consensus Glossary of Temporal Database Concepts -
February 1998 Version. In O. Etzion, S. Jajodia, and S. Sripada, editors,Temporal Databases: Research
and Practice, Volume 1399 ofLecture Notes in Computer Science, pages 367–405. Springer-Verlag, 1998.

[12] C. S. Jensen, M. D. Soo, and R. T. Snodgrass. Unifying Temporal Data Models via a Conceptual Model.
Information Systems, 19(7):513–547, December 1994.

33

[13] V. S. Lai, J-P. Kuilboer, and J. L. Guynes. Temporal Databases: Model Design and Commercialization
Prospects.DATA BASE, 25(3):6–18, 1994.

[14] A. Narasimhalu. A Data Model for Object-Oriented Databases with Temporal Attributes and Relation-
ships. Technical report, National University of Singapore, 1988.

[15] R. T. Snodgrass. The Temporal Query Language TQuel.ACM Transactions on Database Systems,
12(2):247–298, June 1987.

[16] R. T. Snodgrass. Temporal Databases. In A. U. Frank, I. Campari, and U. Formanti, editors,Theories and
Methods of Spatio-Temporal Reasoning in Geographic Space, Volume 639 ofLecture Notes in Computer
Science, pages 22–64. Springer-Verlag, 1992.

[17] C. I. Theodoulidis, P. Loucopoulos, and B. Wangler. A Conceptual Modelling Formalism for Temporal
Database Applications.Information Systems, 16(4):401–416, 1991.

[18] J. D. Ullman.Principles of Database and Knowledge-Base Systems, Volume I. Computer Science Press,
1988.

A Procedure for Adding Timestamp Attributes to Relations

This section presents the procedure that will be used to extend relations representing temporal entity types,
temporal attributes, and temporal relationship types with timestamp attributes.

1. If the temporal support of the modeling construct, for subclasses including the support inherited from any
superclass, is

(a) LS, then extend the relation with two timestamp attributesLs andLe and extend the primary key
of the relation withLs.

(b) LT , then extend the relation with four timestamp attributesLs, Le, TTs, andTTe and extend the
primary key of the relation withTTs, Ls, andLe.

(c) TT , then extend the relation with two timestamp attributesTTs andTTe, and extend the key of the
relation withTTs.

(d) V T , then extend the relation with two timestamp attributesV Ts andV Te, and extend the key of the
relation withV Ts.

(e) BT , then extend the relation with four timestamp attributesV Ts, V Te, TTs, andTTe, and extend
the key of the relation with,V Ts, V Te, andTTs.

B Step I

This section presents the algorithm that transforms TIMEER diagrams to relations in the surrogate-based rela-
tional target model.

1. For each entity typeE, not participating in a superclass/subclass relationship, create an E-relationR

that includes an E-attribute,eø. If E has non-temporal attributesA
1
; A

2
; : : :; An, create an A-relation

R A
1
A
2
: : : An that includeseø andA

1
; A

2
; : : :; An. Include all single-valued components of non-

temporal composite attributes. Mark the lexical attributes that participate in a user-defined key with
“u.k.” if the entity is regular, or “pt.k.” if it is weak. The key ofR A

1
A
2
: : : An is the E-attribute. The

primary key ofR is eø. If E is temporal, proceed as described in Appendix A.

34

2. For each entity type participating in a superclass/subclass relationship with superclassE and subclasses
S
1
; S

2
; : : :; Sn, either

(a) create an E-relationR to represent the superclassE and E-relationsR
1
; R

2
; : : :; Rn to represent

the the subclassesS
1
; S

2
; : : :; Sn that each include the E-attribute,eø. If one ofE or Si has non-

temporal attributesA
1
; A

2
; : : :; An, create A-relationsR A

1
A
2
: : : An andRi A1

A
2
: : : An

that includeeø andA
1
; A

2
; : : :; An. Include all single-valued components of non-temporal compos-

ite attributes. The key ofR A
1
A
2
: : : An andRi A1

A
2
: : : An is the E-attribute. The primary

key ofR andRi is the E-attributeeø. If E or Si are temporal, extend the relations as described in
Appendix A.

(b) Or create E-relationsR
1
; R

2
; : : :; Rn to represent the subclassesS

1
; S

2
; : : :; Sn that include an E-

attribute,eø. If E has non-temporal attributesA
1
; A

2
; : : :; Ak andRi has non-temporal attributes

Al; Am; : : :; An, create an A-relationRi A1
A
2
: : : An that includeseø andA

1
; A

2
; : : :; An. In-

clude all single-valued components of non-temporal composite attributes. The key of
Ri A1

A
2
: : : An is the E-attribute. The primary key ofRi is the E-attribute. IfSi is temporal,

apply the procedure from Appendix A

3. For each simple temporal attributeA of entity typeE, create an A-relationR A that includes the E-
attribute ofE, eø, the attributeA; include all single-valued components of temporal composite attributes.
The key ofR A is the E-attribute in combination withA if A is multivalued. ExtendR A using the
procedure in Appendix A.

4. For each binary non-temporal relationship typeS, involving entity typesE
1

andE
2
, both with snapshot

participation constraint (0,1) or (1,1), identify the A-relationsR
1
X andR

2
X that represent the non-

temporal attributes of the participating entity types. Extend, say,R
1
X with the E-attributee

2
ø ofR

2
X

as a foreign key. If the relationship type is identifying, always extend the the relation representing non-
temporal attributes of the weak entity type and mark the importedeø with “ow.”. If S has non-temporal
attributesA

1
; A

2
; : : :; An, extendR

1
X to include these.

5. For each binary non-temporal relationship typeS, involving entity typesE
1

andE
2
, where one has

snapshot participation constraint (0,1) or (1,1) and the other has snapshot participation constraint (0,n) or
(1,n), identify the A-relationR X that represents the non-temporal attributes of the participating entity
type that has snapshot participation constraint (0,1) or (1,1). ExtendR X with the E-attributeeiø of the
E-relationR, representing the other participating entity type as a foreign key. If the relationship type is
identifying, mark the importedeø with “ow.”. If S has non-temporal attributesA

1
; A

2
; : : :; An, extend

R X to include these.

6. For each binary non-temporal relationship typeS, involving entity typesE
1

andE
2
, both with snapshot

participation constraint (0,n) or (1,n), create an A-relationR that include the E-attributes,e
1
ø ande

2
ø

from the E-relations representingE
1

andE
2
. If S has non-temporal attributesA

1
; A

2
; : : :; An, extendR

to include these. The key of the A-relation is the E-attributes in combination.

7. For each n-ary relationship typeS, involving entity typesE
1
; E

2
; : : :; En, create an A-relationR that

includes the E-attributes,eiø, of all the participating entity types as foreign keys. If the relationship
type is identifying, mark theeiø of the owner entity types with “ow.”. IfS has non-temporal attributes
A
1
; A

2
; : : :; An, extendR to include these. The key of the A-relation is

(a) oneof the E-attributes,eiø, for whichEi has snapshot participation constraint (0,1) or (1,1),or

(b) the concatenation of the E-attributes,eiø, otherwise.

35

8. For each binary temporal relationship typeS, involving entity typesE
1

andE
2
, supporting valid time,

transaction time, or both, create an A-relationR that includes the E-attributes,eiø, from the E-relations
representing the participating entity types as foreign keys. If the relationship type is identifying, mark
the eiø’s of the owner entity types with “ow.”. The key ofR is chosen as in step 7. Use the proce-
dure in Appendix A to extendR. If S has non-temporal attributesA

1
; A

2
; : : :; An, create an A-relation

R A
1
A
2
: : : An that includes the E-attributeseiø andA

1
; A

2
; : : :; An. The E-attributeseiø that are to

part of the key ofR A
1
A
2
: : : An are chosen as just described forR.

9. For each temporal n-ary relationship typeS involving entity typesE
1
; E

2
; : : :; En, supporting valid time,

transaction time, or both create an A-relationR that includes the E-attributes,eiø, of all the participating
entity types as foreign keys. If the relationship type is identifying, mark theeiø’s of the owner entity
types with “ow.” The key ofR is chosen as in step 7. ExtendR according to Appendix A. IfS has non-
temporal attributesA

1
; A

2
; : : :; An, create an A-relationR A

1
A
2
: : : An that includes the E-attributes

eiø andA
1
; A

2
; : : :; An. The E-attributeseiø that is to part of the key ofR A

1
A
2
: : : An is chosen as

described above.

10. For each temporal attributeA of relationship typeS, which is either non-temporal or temporal supporting
valid time, transaction time, or both, involving entity typesE

1
; E

2
; : : :; En, create an A-relationR A that

includes the E-attributes,eiø, of the participating entity types, the attributeA. The E-attributes that is to
be part of the key ofR A is chosen as in step 7, and ifA is multivalued, includeA in the key. Proceed as
described in Appendix A.

11. For each temporal relationship typeS supporting lifespan, or both lifespan and transaction time, create
an E-relationR including an E-attributesø and the set of timestamp attributes described in Appendix A.
Create an A-relationR X that includessø and the E-attributeseiø of the participating entity types as
foreign keys. If the relationship type is identifying, mark theeiø of the owner entity types with “ow.”. If
S has non-temporal attributesA

1
; A

2
; : : :; An, include these inR X. The key ofR X is the E-attribute

sø.

12. For each temporal attributeA of temporal relationship typeS supporting lifespan or both lifespan and
transaction time, create an A-relationR A that includes the E-attribute,sø, of the E-relation representing
S, the attributeA, and the set of timestamp attributes prescribed by the procedure in Appendix A. The key
of R A is the E-attribute in combination with the appropriate timestamp attributes. IfA is multivalued,
includeA in the key.

C Step II

This section presents the algorithms that transforms relations in the surrogate-based relational model to relations
in the lexically-based relational target model.

1. For each A-relation containing a user-specified key (marked “u.k.”), do

(a) Let the set of attributes that constitute the user-specified key of the A-relation be identified byUK .

(b) Identify the E-relations referenced by the above A-relation by E-attributes that are part ofUK .

(c) For each E-relation identified in 1b, do

i. Let the E-attribute be identified byEK .

ii. identify all relations referencing the E-relation (containingEK as foreign key).

iii. for each of the relations identified in 1(c)ii, do

36

A. replaceEK with UK .

iv. replaceEK with UK .

(d) Remove duplicate columns in the A-relation.

2. For each A-relation containing a user-specified partial key (marked “pt.k.”), do

(a) Let the set of attributes that constitute the user-specified partial key of the A-relation concatenated
with all attributes marked “o.w” be identified byUK .

(b) Identify the E-relations referenced by the above A-relation by E-attributes that are part ofUK .

(c) For each E-relation identified in 2b, do

i. Let the E-attribute be identified byEK .

ii. identify all relations referencing the E-relation (containingEK as foreign key).

iii. for each of the relations identified in 2(c)ii, do

A. replaceEK with UK .

iv. replaceEK with UK .

(d) Remove duplicate columns in the A-relation.

3. For each E-relation still containing E-attributes, do

(a) Let the E-attribute be denotedEK .

(b) Identify all relations containingEK .

(c) Identify the relation R among the relations identified in 3b not containing timestamp attributes.

(d) LetUK be the set of foreign keys in R that is not an E-attribute.

(e) For each relation identified in 3b, do

i. replaceEK with UK .

(f) Remove duplicate columns from R, the relation identified in 3c.

37

