
TimeDB 2.0
Version Beta 1
December 1998

A TimeConsult Product
www.TimeConsult.com

© Andreas Steiner

2

©TimeConsult

This documentation describes the installation and use of TimeDB 2.0 Beta.

Information presented here is accurate as of the time of writing, but is
subject to change without notice.

Please send any questions, comments, suggestions and bug reports to
steiner@timeconsult.com.

In no event shall TimeConsult or any persons working for TimeConsult be liable for any
consequential, incidental or special damages whatsoever (including without limitation
damages for loss of critical data, loss of profits, interruption of business, and the like)
arising out of the use or inability to use this software.

Copyright © 1995-1999 by Andreas Steiner, TimeConsult.

3

©TimeConsult

Table of Contents

WHAT IS TIMEDB? . 4

FEATURES OF TIMEDB . 4
WHAT IS NEW IN TIMEDB 2.0? ...5
WHAT IS MISSING IN THE BETA VERSION 1 OF TIMEDB 2.0..5
DIFFERENCES TO ATSQL2...5

SOFTWARE REQUIREMENTS. 6

SUPPORTED DBMS. 6

USING TIMEDB 2.0 . 6
INSTALLING TIMEDB 2.0..6
USING THE INPUT TEXT AREA...8
EXECUTING A FILE..8
TIMEFLAG SEMANTICS...8
NESTING OF TIMEFLAGS ..8
SUPPORTED TEMPORAL EXPRESSIONS AND COMPARISON OPERATIONS...10
CALENDAR..10
RESTRICTIONS CAUSED BY UNDERLYING DBMS ..11

AVAILABILITY OF THE FULL VERSION OF TIMEDB 2.0 . 1 1

LITERATURE. 1 2

GRAMMAR . 1 3

4

©TimeConsult

What is TimeDB?
TimeDB implements a temporal version of SQL called ATSQL2 [SBJS96a,
SBJS96b, SBJS98]. It translates temporal SQL statements into standard SQL
statements which then are evaluated using a commercial database management system
(DBMS). TimeDB thus supports a uniform way to implement applications dealing with
historical (or temporal) data. By using TimeDB, it is possible to store and manage not
only a single database state (as it is done in all the currently available commercial
DBMS) but several ones. Research in the area of temporal databases has shown that
while it is usually no problem to store the validity time periods of data in commercial
DBMS in one way or another, it is very cumbersome to query and update such data
and keep it consistent. These drawbacks are eliminated when using a temporal DBMS.

TimeDB, however, is not a temporal DBMS itself but is a frontend to a relational
DBMS. By translating temporal SQL into standard SQL statements, TimeDB supports
temporal functionality for a non-temporal relational DBMS. The advantage of this
approach is that existing databases stored in a commercial DBMS and applications
accessing this data still can be used while new applications dealing with temporal data
can be added. These applications then access the databases via TimeDB. This is
depicted in the following figure :

TimeDB

Commercial DBMS

Application Application

Features of TimeDB
TimeDB 1.0 was implemented during the design of ATSQL2 [SBJS96a, SBJS96b].
It helped refining the language and eliminating weaknesses. This prototype system was
implemented at the Swiss Federal Institute of Technology (ETH Z�rich) as part of a
Ph. D. thesis [S98]. The language implemented in TimeDB supports
· temporal queries
· temporal insert, update and delete statements
· temporal tables and views
· temporal table constraints and assertions

5

©TimeConsult

 It supports valid time (when was a fact true in the real world) and transaction time (when
was a fact stored in the database). These time lines are treated orthogonally which
means that for each valid-time query a corresponding transaction-time query exists, for
example.

What is new in TimeDB 2.0?

 There are several important differences between TimeDB 1.0 and TimeDB 2.0 :
· TimeDB 2.0 was implemented in Java and thus is platform independent
· TimeDB 2.0 uses JDBC and thus can be used with many different DBMS
· TimeDB 2.0 has a GUI and thus is easier to install and use
· TimeDB 2.0 is optimised with respect to the creation of auxiliary tables
· Different DBMS are supported by changing the preferences

 TimeDB 2.0 is a re-implementation of TimeDB 1.0. There were several reasons why
we implemented TimeDB 2.0 from scratch. First, with the spreading of the object-
oriented programming language Java, it becomes possible to run the same code on
different platforms without extra effort. Thus, we decided to go for a platform
independent implementation for the next release of TimeDB in order to supply it to as
many users as possible. Second, there were many inquiries of users who wanted to
use TimeDB together with a commercial relational DBMS. TimeDB 1.0 could only be
used with the product of a single DBMS vendor, namely Oracle, since the supported
interface in TimeDB 1.0 used the Oracle Call Interface (OCI). However, using JDBC
[HCF97], a standardised way to access data in different DBMS is possible. Thus, the
DBMS interface of TimeDB 2.0 is based on JDBC and hence is independent of any
DBMS. Third, a graphical user interface (GUI) seemed to be helpful to simplify the
installation procedure and use of TimeDB.

 Future versions of TimeDB will also support an API to allow the development of
temporal applications using TimeDB (e. g. a temporal JDBC). Additionally, we plan to
add semantical query optimisation to provide faster query evaluation.

What is missing in the beta version 1 of TimeDB 2.0

 The beta version 1 of TimeDB 2.0 does not support all of the features found in
TimeDB 1.0. The full version of TimeDB 2.0, however, will have the same functionality
as TimeDB 1.0. The features missing in the beta version are:

· No support of assertions and constraints
· No update operation
· No transaction time and bitemporal operations (snapshot, nonsequenced valid

and valid time operations are supported)
· Only a single minimal calendar is supported

Differences to ATSQL2
The temporal SQL supported in TimeDB 2.0 is slightly different from ATSQL2 as it is
proposed in [SBJS96a, SBJS96b]. In the beta version, interval expressions after

6

©TimeConsult

timeflags (as shown in the example below) may only refer to constant values.
References to timestamps of tables are not allowed.

validtime period [1980-1990) select ...

Software Requirements
In order to run TimeDB, the following software is needed:

· Java 1.1
· A DBMS, e.g. Oracle (Version 8), Sybase (Version 11.5) or CloudscapeÕs

JBMS (Version 1.1)
· A JDBC driver for the DBMS

You also need a login and password for the database you will use, the JDBC driver
name and the URL to connect to your database (this information should be provided in
the documentation of the JDBC driver).

Supported DBMS

 While we developed TimeDB using the Oracle DBMS (Version 8), we also tested it
on SybaseÕs DBMS (Adaptive Server Enterprise 11.5) and CloudscapeÕs JBMS
(Version 1.1). We further plan to support DBMS such as
· Oracle Lite
· MicrosoftÕs Access
· Informix

Other DBMS may be supported on demand.

Using TimeDB 2.0
Installing TimeDB 2.0
The first step is to set up the Java environment correctly. Add the path to the zip file
containing the classes of TimeDB (e. g. /home/steiner/TimeDB2.0B/TimeDB2.0.zip)
and the path to the classes containing the JDBC driver to the classpath of your Java
environment. Start TimeDB 2.0 using a command which looks like

java -classpath <set your classpath here> TimeDB

After a few seconds, the main window of TimeDB should open up (see Figure 1 : Main
Window). The next step is to configure TimeDB. Select item Preferences in
menuTimeDB. A new window opens where you can set the path to the TimeDB
directory (application dir), the JDBC driver, the URL to your database and the DBMS
you are using. The path to the TimeDB directory can be set by clicking on the

7

©TimeConsult

corresponding text area which opens up a file selection dialog box. Select any file in the
main directory of TimeDB. Write the name of the JDBC driver and the URL in the
corresponding text areas and select the DBMS you are using. Press Save to save this
data.

Now you can connect to your database account. Select Open DB in menu TimeDB. A
window appears where you can enter your login and password (if there is one needed).
Click the ok button, and after a short while the status information Database opened will
be displayed in the result window.

The next step is to add the metadata needed by TimeDB to your database account.
You have to select the Create DB menu item in menuTimeDB which starts to create the
necessary tables and inserts metadata to your database.

If all of the above steps have been successfully completed, you can use TimeDB to
store and query temporal data. The directory demos contains example queries and
statements.

Figure 1 : Main Window of TimeDB

Input
Text
Area

Button
Panel

Menus

8

©TimeConsult

Using the Input Text Area
Temporal SQL statements can be written to the input text area in the main window of
TimeDB. Note that in any case only the first statement will be executed. Each statement
must end with a semicolon. If you would like to execute several statements at once, you
can write them to a file and execute the file.
The first statement in the input text area can be executed by pushing buttonExecute in
the button panel. Push Clear to clear the input text area. The results of your statement
are displayed in the result window.

Executing a File
To execute temporal SQL statements stored in a file, choose item Execute File in menu
File. A file selection dialog box opens up where you can select the file to be executed.
The output will be written into the result window.

Timeflag semantics
The language ATSQL2 distinguishes three different modes to evaluate an SQL
statement: snapshot semantics, sequenced and nonsequenced semantics. Snapshot
semantics means that only the database state valid at time instant now is evaluated. This
corresponds to evaluating a non-temporal SQL statement over a non-temporal
database containing data about the current state of the real world. In ATSQL2, a
statement without a time flag has snapshot semantics.
Sequenced semantics means that an SQL statement is evaluated over all database
states stored in the temporal database. A query with sequenced semantics thus returns
temporal data. In ATSQL2, a sequenced valid-time statement starts with timeflag
validtime.
Statements with nonsequenced semantics treat the timestamps as any other user
defined attribute. The algebra operations have non-temporal semantics. This allows the
comparison of different database states with each other. In ATSQL2, a nonsequenced
valid-time statement starts with timeflag nonsequenced validtime.

Table 1 gives an overview of the different timeflags together with the semantics of the
corresponding statements.

Nesting of Timeflags
Usually, timeflags are propagated from the outside to the inside of nested queries. For
example, in the query

validtime
 (select * from employees)

union
É

the timeflag validtime is propagated to the inner select statement.
Timeflags, however, may also be overwritten. In the query

9

©TimeConsult

validtime
 (nonsequenced validtime period [1980-1990)

 select * from employees)
union
É

the inner query has a different timeflag than the outer query. First, the inner select
statement is evaluated using nonsequenced semantics. Due to the interval expression in
the timeflag, it returns a valid-time table. The outer query then calculates the valid-time
union of this table and the rest of the outer query.

timeflag Semantics
no flag Snapshot semantics

Algebra operations have non-temporal
semantics. Queries return non-temporal
tables. Modification statements only refer to
the currently valid database state.

nonsequenced validtime Nonsequenced semantics
Algebra operations have non-temporal
semantics. Queries return non-temporal
tables. Modification statements do not
interpret timestamps.

nonsequenced validtime
<interval exp>

Nonsequenced semantics
Algebra operations have non-temporal
semantics. Queries return valid-time tables
where each tupleÕs valid-time corresponds
to <interval exp>. Modification statements
do not interpret timestamps and set
timestamps of modified tuples to <interval
exp>.

validtime Sequenced semantics
Algebra operations have temporal
semantics. Queries return valid-time tables.
Modification statements update each
database state separately.

validtime <interval exp> Sequenced semantics
Algebra operations have temporal
semantics. Queries return valid-time tables
and are evaluated during <interval exp>.
Modification statements update each
database state during
<interval exp>.

Table 1 : Timeflags

10

©TimeConsult

Supported temporal expressions and comparison
operations
TimeDB supports spans (a duration of time, e. g. two years and one month), events (a
time instant, e. g. June 12, 1964) and time intervals (e. g. from 1980 to 1990). Spans,
events and time intervals are treated just as any other values such as strings, integers
etc. and thus may appear anywhere in select and where clauses where expressions are
allowed.

According to the syntax given at the end of this document, a legal time span - specified
as a constant value - is, for example, interval 2 year 1 month. Additionally, values of
type span stored in tables may be referenced. Last but not least, new spans may be
calculated using the operators +, -, * and /. Allowed are the following combinations:

span + span -> span
span - span -> span
number * span -> span
span / number -> span

Spans may be compared with other spans using the comparison operations =, <, >,
<=, >= and <>.

The expressions date Ô1964-06-12Õ, timestamp Ô1964-06-12 12:30:24Õ and date
1964/6/12~12:30:24 are legal event values. While the first two correspond to the SQL
standard, the third is used for output of event values and may also be used for input. It
is special in the sense that only the significant part of an event is displayed. For
example, 1964 actually is shorthand for 1964/1/1~00:00:00.
New events may be calculated by adding or subtracting a time span :

event + span -> event
event - span -> event

Events may be compared with each other using the comparison operations precedes
and =.

The constant period [1980-1990) is a legal time interval. TimeDB displays time intervals
as [1980-1990). Time intervals are closed on the lower and open on the upper bound.
Time intervals may be compared either with other time intervals using the comparison
operations precedes, overlaps, meets, contains and =, or they may be compared with
events. In the latter case, the following combinations are supported:

interval contains event -> boolean
interval precedes event -> boolean
event precedes interval -> boolean

Calendar
TimeDB 2.0 supports a simple minimal calendar. The calendar starts with year 1. Each
month has 30 days and each day 24 hours (0 to 23). Expressions calculating new
events may lead to illegal values which are represented as << NAD >> (not a date).
The smallest non-decomposable time unit is a second.

11

©TimeConsult

Restrictions caused by underlying DBMS
Apart from the different data types supported in the different commercial DBMS, there
is another restriction you should be aware of. CloudscapeÕs JBMS and Sybase do not
support the non-temporal set operations intersect and except. These operations thus
are not available in TimeDB, too, if it is used with one of these DBMS. However, you
still can calculate temporal intersect and except operations.

Availability of the full version of TimeDB 2.0

 The full version of TimeDB 2.0 will be available soon. Note that TimeDB 2.0 is not a
prototype system anymore and must be purchased from TimeConsult.

12

©TimeConsult

Literature
[HCF97] G. Hamilton, R. Cattell, M. Fisher : JDBC Database Access with Java.

Addison Wesley.
July 1997.

[SBJS96a] R. Snodgrass, M. B�hlen, C. Jensen, A. Steiner : Adding Valid Time to
SQL/Temporal (Change Proposal).
ANSI X3H2-96-501r2, ISO/IEC JTC1/SC 21/WG 3 DBL-MAD-146r2.
November 1996.

[SBJS96b] R. Snodgrass, M. B�hlen, C. Jensen, A. Steiner : Adding Transaction
Time toSQL/Temporal (Change Proposal).
ANSI X3H2-96-502r2, ISO/IEC JTC1/SC 21/WG 3 DBL-MAD-147r2.
November 1996.

[SBJS98] R. Snodgrass, M. B�hlen, C. Jensen, A. Steiner : Transitioning Temporal
Support in TSQL2 to SQL3.
In Temporal Databases : Research and Practice.
O. Etzion, S. Jajodia and S. Sripada, editors.
LNCS 1399, Springer Verlag.
March 1998.

[S98] Andreas Steiner : A Generalisation Approach to Temporal Data
Models and their Implementations.
Ph. D. Thesis, ETH Z�rich.
November 1997.

13

©TimeConsult

Grammar
The following syntax defines the legal temporal SQL statements supported in TimeDB
2.0 Beta :

Statement ::= (query | ddl | dml | control) ';'

Query

timeFlag ::= ['nonsequenced'] 'validtime' [scalarExp]

coal ::= '(' 'period' ')'

query ::= [timeFlag] queryExp
queryExp ::= queryTerm { ('union' | 'except') queryTerm }
queryTerm ::= queryFactor { 'intersect' queryFactor }
queryFactor ::= '(' query ')' [coal] | sfw

sfw ::= 'select' selectItemList
 'from' tableRefList
 ['where' condExp]

selectItemList ::= '*' | selectItem { ',' selectItem }
selectItem ::= scalarExp [alias]

tableRefList ::= tableRef { ',' tableRef }
tableRef ::= '(' query ')' [coal] alias [colList] |
 identifier [coal] [alias]

alias ::= ['as'] identifier

condExp ::= condTerm { 'or' condTerm }
condTerm ::= condFactor { 'and' condFactor }
condFactor ::= ['not'] simpleCondFactor
simpleCondFactor ::=
 '(' condExp ')' |
 'exists' '(' query ')' |
 scalarExp condOp scalarExp |
 scalarExp condOp ('all' | 'any' | 'some') '(' query ')' |
 scalarExp ['not'] 'between' scalarExp 'and' scalarExp |
 scalarExp ['not'] 'in' '(' query ')

condOp ::= '<' | '>' | '<=' | '>=' | '<>' | '=' |
 'precedes' | 'overlaps' | 'meets' | 'contains'

scalarExp ::= term { ('+' | '-') term }
term ::= factor { ('*' | '/') factor }
factor ::= [('+' | '-')] simpleFactor

14

©TimeConsult

simpleFactor ::= colRef |
 const |
 '(' scalarExp ')' |
 'abs' '(' scalarExp ')'

colRef ::= identifier ['.' identifier]

const ::= integer |
 float |
 ''' string ''' |
 interval |
 event |
 span

interval ::= 'validtime' '(' identifier ')' |
 'period' intervalExp |
 'period' '(' scalarExp ',' scalarExp ')'
intervalExp ::= '[' time '-' time ')'
time ::= timeDBDate | eventExp

event ::= ('begin' | 'end') '(' scalarExp ')' |
 ('first' | 'last') '(' scalarExp ',' scalarExp ')' |
 eventExp

eventExp ::= 'now' |
 'beginning' |
 'forever' |
 'date' dateString |
 'date' timeDBDate |
 'timestamp' timestampString

dateString ::= ''' YYYY '-' MM '-' DD '''
timestampString ::= ''' YYYY '-' MM '-' DD ' ' HH ':' MM ':' SS '''
timeDBDate ::= YYYY ['/' MM ['/' DD
 ['~' HH [':' MM [':' SS]]]]]

span ::= 'interval' spanExp
spanExp ::= integer qualifier { integer qualifier }
qualifier ::= 'year' |
 'month' |
 'day' |
 'hour' |
 'minute' |
 'second'

15

©TimeConsult

Data Definition

ddl ::= ddlTable | ddlView | 'drop' 'table' | 'drop' 'view'

ddlTable ::= 'create' 'table' identifier (tableDef | ddlQuery)
ddlView ::= 'create' 'view' identifier ddlQuery

tableDef ::= '(' colDefList ')' ['as' 'validtime']
ddlQuery ::= ['(' colList ')'] 'as' query

colDefList ::= colDef { ',' colDef }
colDef ::= identifier dataType

colList ::= col { ',' col }
col ::= identifier

dataType ::= 'number' [typeLength] | /* Oracle */
 'numeric' [typeLength] | /* Sybase */
 'smallint' | /* Cloudscape's JBMS */
 'longint' | /* Cloudscape's JBMS */
 'integer' |
 'real' |
 'float' |
 'interval' |
 'date' |
 'period' |
 'char' [typeLength] |
 'varchar' [typeLength]

typeLength ::= '(' integer ')'

Data Manipulation

dml ::= [timeFlag] (insert | delete)

insert ::= 'insert' 'into' identifier valExp
valExp ::= 'values' '(' valList ')' | query

delete ::= 'delete' 'from' identifier ['where' condExp]

Control

control ::= 'commit' | 'rollback'

