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Abstract

As everything in the real world changes over time, the ability to model this temporal

dimension of the real world is essential to many computer applications. Almost ev-

ery database application involves the management of temporal data. This applies not

only to relational data but also to any data that models the real world including XML

data. Expressing queries on time-varying (relational or XML) data by using standard

query language (SQL or XQuery) is more difficult than writing queries on nontem-

poral data. In this dissertation, we present minimal valid-time extensions to XQuery

and SQL/PSM, focusing on the procedural aspect of the two query languages and

efficient evaluation of sequenced queries. For XQuery, we add valid time support to

it by minimally extending the syntax and semantics of XQuery. We adopt a stratum

approach which maps a τXQuery query to a conventional XQuery. The first part of

the dissertation focuses on how to perform this mapping, in particular, on mapping

sequenced queries, which are by far the most challenging. The critical issue of sup-

porting sequenced queries (in any query language) is time-slicing the input data while

retaining period timestamping. Timestamps are distributed throughout an XML doc-

ument, rather than uniformly in tuples, complicating the temporal slicing while also

providing opportunities for optimization. We propose five optimizations of our ini-

tial maximally-fragmented time-slicing approach: selected node slicing, copy-based

per-expression slicing, in-place per-expression slicing, and idiomatic slicing, each of

which reduces the number of constant periods over which the query is evaluated. We

also extend a conventional XML query benchmark to effect a temporal XML query

benchmark. Experiments on this benchmark show that in-place slicing is the best.

We then apply the approaches used in τXQuery to temporal SQL/PSM. The stratum

architecture and most of the time-slicing techniques work for temporal SQL/PSM.

Empirical comparison is performed by running a variety of temporal queries.
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Chapter 1

Introduction

Time is an important aspect of all real-world phenomena. Events occur at specific

points in time; entities and the relationships among entities exist over time. The

ability to model this temporal dimension of the real world and to respond to changes

in the real world is essential to many computer applications, such as accounting,

inventory control, law, medical records, reservation systems, scientific data analysis.

Almost every database application involves the management of temporal data.

This aspect has been acknowledged and long studied in the field of temporal data-

bases [51]. It truly applies not only to relational data but also to any data that models

the real world. Recently, Extensible Markup Language (XML) [8] has become the

emerging standard for data representation and exchange on the web. There is a large

amount of XML data being created and stored [38]. Similarly, XML data changes over

time with the creation, modification, and deletion of the XML documents. The man-

agement of dynamic XML documents requires the adoption of temporally enhanced

data models and systems.

Querying data is an important aspect in relational databases as well as in XML

data management. The standard query language for relational databases is SQL,

which is supported by most commercial relational database management systems.

More recently, most DBMSs provide more powerful SQL language constructs that

support computational completeness. These language constructs are also part of the

SQL standard (control statements and persistent stored modules (PSM)) [49]. We

consider the control statements and PSM as the procedural components of SQL. Al-

though each commercial DBMS has its own idiosyncratic syntax and semantics, stored

routines are widely used in database applications. The reasons are as follows. PSM
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provides the ability to compile and optimize SQL statements and the corresponding

database operations once and then execute them many times on demand. This repre-

sents a significant savings in resource utilization and savings in the time required to

execute those statements. The computational completeness of the language enables

complex calculations. Stored SQL facilities allow users to share common function-

ality and encourage code reuse, thus saving development time, money, and other

resources [37].

It has been shown that queries on temporal data are often hard to express in

conventional SQL [47] and the average temporal query/modification is three times

longer than the nontemporal equivalent [45]. This led to a large number of research

works on temporal query languages. Previous research [47] successfully extended SQL

to add temporal support while guaranteed the new temporal query language is com-

patible to the conventional SQL. However, the temporal semantics of the procedural

components has never been defined. Temporal applications may potentially benefit

from temporal query languages because queries and modifications for these applica-

tions are simplified and easier to maintain. To benefit temporal database applications

more generally, a temporal SQL language should include stored modules.

In the XML world, the counterpart of SQL is XQuery [5]. Although the XQuery

working draft is still under development, several dozen demos and prototypes of

XQuery processors can be found on the web. The major DBMS vendors, Oracle [17],

IBM [28], and Microsoft [16], have all released early implementations of XQuery.

XQuery is not only a query language, but also a programming language with com-

putational completeness. It supports user-defined functions, similar to PSM in SQL.

Our research [25] shows that expressing queries on temporal data is harder than writ-

ing queries on nontemporal data in XQuery. Compared to temporal SQL, there has

been even less research work on temporal XQuery, since the problem of processing

non-temporal XML queries efficiently is itself a hot topic. Most of the existing re-

search work on temporal XML queries focuses on the versioning of XML documents
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[13, 14, 35]. Some have proposed transaction-time extensions to XPath (a part of

XQuery) [20]. Others proposed temporal extensions in multiple time dimensions to

FLWR expression (also a part of XQuery) [27]. These extensions do not guarantee

the easy migration of legacy applications to temporal systems.

In the context of databases, two time dimensions are of general interest: valid

time and transaction time [46]. Valid time denotes the time a fact was true in reality.

Transaction time is the time during which the fact was recorded in the database.

These two dimensions are orthogonal. A data model supporting neither is termed a

snapshot, as it captures only a single snapshot in time of both the database and the

real world modeled by the database. A data model that supports both valid time and

transaction time is termed bitemporal [29].

This dissertation presents minimal valid-time extensions to XQuery and SQL/PSM,

focusing on the procedural aspect of the two query languages and efficient evaluation

of sequenced queries. Such languages make it easy to migrate legacy database appli-

cations to work with temporal databases.

This dissertation comprises nine chapters besides this introduction. They can

be divided into four major parts. The first part is Chapter 2 which is a survey of

related work. The second part consists of Chapters 3 to 6. This part focuses on

temporal XQuery. Chapter 3 briefly introduces the temporal XML data model and

then proposes the temporal XML query language τXQuery. Both the syntax and the

semantics of τXQuery are provided in this chapter. Chapter 4 explains the advan-

tages of using a stratum approach to implement the τXQuery query processor and

illustrates the architecture of the stratum. We propose several timeslicing techniques

in Chapter 5 to optimize the translation of τXQuery queries to semantically equiva-

lent XQuery queries. The performance of different timeslicing techniques is compared

empirically in Chapter 6. The third part of the dissertation discusses how to apply

the approaches used in τXQuery to temporal SQL/PSM. Chapter 7 describes the

problem of temporal SQL/PSM and our proposals of the syntax and semantics of
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temporal PSM. In Chapter 8, we observed in temporal SQL/PSM the counterparts

of some of the techniques used for implementing τXQuery. The performance of these

techniques are evaluated in Chapter 9. Finally, the dissertation is concluded in Chap-

ter 10 which summarizes the work and its major contributions and holds an outlook

to future work.
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Chapter 2

Related Work

In this chapter, we revisit the research on temporal query languages for relational

databases and temporal XML. Since query languages are based on specific data mod-

els, we introduce the related temporal data models as well.

2.1 Temporal Relational Data Models

There have been a large number of temporal data models for relational databases

proposed in the past two decades [39]. Some models are defined only over valid time

or transaction time; others are defined over both. A temporal data model should

simultaneously satisfy many goals. The experience of the past twenty years and

dozens of data models appearing in the literature [39] demonstrate that such an ideal

temporal data model does not exist. A conceptual temporal data model uses a suite

of data models to achieve goals that no single data model can. This is the data model

proposed as the foundation of TSQL2 [30]. This language employs the Bitemporal

Conceptual Data Model as its underlying data model, which retains the simplicity

and generality of the relational model. A separate, representational data model of

equivalent expressive power, employed for implementation, ensures high performance.

Other, presentational data models may be used to render time-varying behavior to

the user or application.

A natural and frequently used way to represent a bitemporal relation is a 1NF

representation proposed by Snodgrass [44], which allows the use of existing, well-

understood implementation techniques. This representation scheme associates each

tuple in a conventional relation with valid timestamps and transaction timestamps.
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Let the bitemporal relation schema have the non-temporal attributes A1, ..., An. It

is represented by a snapshot relation schema R as follows.

R = (A1, ..., An, Ts, Te, Vs, Ve)

The additional attributes Ts, Te, Vs, Ve are atomic valued timestamp attributes

containing a starting and ending transaction-time chronon and a starting and ending

valid-time chronon, respectively. A chronon is the smallest time unit [29]. For exam-

ple, consider a relation recording customer information, which includes a customer’s

name and his/her support level. Support level of a customer indicates how valuable

the customer is to the company. We assume that the granularity of chronons is one

day for both valid time and transaction time. Figure 2.1 shows the 1NF representation

of the temporal relation.

CName SupportLevel Ts Te Vs Ve

Bill Gold 6/5 6/9 6/10 6/15
Bill Gold 6/10 6/14 6/5 6/15
Bill Gold 6/15 UC 6/5 6/9
Bill Platinum 6/15 UC 6/10 6/15
Jane Gold 6/20 UC 6/25 6/30

Figure 2.1. 1NF representation of a temporal relation

Customer Bill was a gold customer for the period from June 10th to June 15th,

and this fact is recorded in the database predictively on June 5th. On June 10th, the

customer service department discovers an error. Bill was actually a gold customer

since June 5th. The database is corrected on June 10th. On June 15th, the customer

service department finds that Bill was actually promoted to a platinum customer since

June 10th, and the database is corrected the same day. After that, the information

about Bill remains unchanged, which is represented by UC (until changed). Another

customer Jane is a gold customer for the period from June 25th to June 30th, and

this is recorded in the database on June 20th.
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There are many other temporal data models, each of which may be appropriate

under some circumstances. However, those data models are not related to our research

on temporal SQL/PSM since our work is based on the temporal query language

SQL/Temporal, which uses the data model presented above.

2.2 Temporal Query Languages for Relational Data

Many temporal query languages have been proposed. These languages are based on

different conventional query languages varying from relational algebra, tuple calculus-

based query language, to domain calculus-based query language. Since SQL is the

standard query language for relational databases, the SQL-based temporal query

languages have more potential of being used.

SQL/Temporal [47] is a query language obtained by adding valid-time support

to SQL3. It was proposed as part of the new SQL standard. The classification

of temporal queries to current query, sequenced query, and representational query

was introduced in this language to ensure upward compatibility and temporal upward

compatibility [4, 6]. Upward compatibility guarantees that the existing applications

running on top of the temporal system will behave exactly the same as when they run

on the legacy system. Temporal upward compatibility ensures that when an existing

database is transformed into temporal database, the legacy queries apply to the cur-

rent state of the database. These two properties guarantee the easy migration of a

legacy application to a temporal system. We use this classification in the language

design of τXQuery. SQL/Temporal only defines the temporal semantics of data def-

inition statements and data manipulation statements. It does not support temporal

persistent stored modules (PSM). Our work on temporal SQL/PSM is an integration

of SQL/Temporal and persistent stored modules.
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2.3 Implementation of Relational Temporal Query Languages

Implementing a DBMS with built-in temporal support from scratch is a daunting

task that may only be accomplished by major DBMS vendors that already have

a DBMS to modify and have large resources available. Torp et al. proposed the

layered strategy to implement temporal DBMS [52]. A layer is inserted between the

conventional DBMS and the users of the temporal DBMS. The main task of this layer

is to map the queries written in temporal SQL to semantically equivalent queries in

conventional SQL. The intension was to maximally reuse the facilities of an existing

SQL implementation. We adopted this strategy for a similar reason. Slivinskas et

al. explored the query optimization issues for temporal DBMS implemented by a

middle-ware approach [42, 43]. This dissertation does not address the optimization

of temporal query languages.

2.4 Temporal XML Data Models

In recent years, a crop of research work addressed temporal and versioning aspects in

the Web and, in particular, in the management of XML documents.

In terms of data model, there are three different categories. Approaches that fall

in the first category focus on the representation of changes, where different versions

of data are produced by updates. In these approaches, temporal attributes are often

used to timestamp stored versions [2, 12, 13, 53]. They represent the time the updates

occurred and thus, have the (implicit) semantics of transaction time. The second

category includes the approaches considering the classical notion of valid time [10, 26,

54] or valid and transaction time [21, 34]. For example, the “Valid Web” approach [26]

is an infrastructure designed to represent temporal Web documents with timestamps

explicitly encoded by the document authors to assign validity to information contents.

An example that considers both valid time and transaction time is τXSchema. Similar

to TSQL2, τXSchema uses a suite of schemas to separate the logical schema from
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the physical representation. This data model serves as the base of our research on

temporal XQuery. We give more details of τXSchema in Section 3.2. The last category

considers more time dimensions than valid time and transaction time. Data models

in this category usually focus on a particular application. For example, Grandi et

al. designed a data model to manage normative text in XML format [27]. They

identified two more time dimensions: publication time (the time of publication of the

norm) and efficacy time (the time the norm can be applied to a concrete case). These

time dimensions may not be applicable to general XML applications.

2.5 Temporal XML Query Languages

Concerning temporal XML query languages, there has been some work addressing

the transaction time dimension of XML [12, 13, 15, 36]. These papers focus on XML

versioning, including detecting and querying the changes in XML documents. Dyreson

et al. proposed a framework for querying meta-data properties including temporal

information in semistructured data [21]. This work can be viewed as an extension to a

conventional semistructured database. Grandi and Mandreoli [26] introduced a valid

time extension to XQL to express temporal predicates. In our terminology, their

approach would be considered to support representational queries with additional

predicates. Similarly, Wang and Zaniolo [54, 55, 56] added temporal predicates to

XQuery to query histories of XML-published relational databases. The normative

text data model proposed by Grandi et al. [27] supports temporal queries following

a particular XQuery format, specifically a simplified FLWR expression, in which

temporal predicates can be specified. A temporal extension to XPath was proposed

by Dyreson [20] in which a transaction time axis is added to path expression. Later,

Zhang and Dyreson added a valid time axis to XPath [58]. Our work is different in

that we added the valid time extension to the entire language of XQuery. We also

guarantee the temporal upward compatibility of the temporal query language, which
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is not addressed by other temporal XML query languages.

2.6 Implementation of Temporal XML Query Languages

Two sets of authors proposed the implementation of Temporal XML Query. Grandi

et al. implemented a prototype system to manage temporal normative documents

by means of a stratum [27]. The temporal XML documents are stored as a CLOB

in a relational DBMS that supports XML/SQL query. The stratum accepts query

expressions which can involve both temporal constraints and search keywords and

then maps each request to a semantically equivalent XML/SQL expression to be

passed to the relational DBMS. The result query is a SELECT statement with path

expression specifying the target nodes. The temporal constraints are translated to

predicates in a WHERE clause. Wang and Zaniolo’s approach is similar [55]. Their

system translates XQuery expressions with temporal constraints to SQL statements

to be submitted to a relational DBMS that stores the data. The details of how the

translation is done is not provided. In this dissertation, we discuss how to translate

expressions in temporal XQuery language to conventional XQuery expressions.
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Chapter 3

Temporal XQuery

In this chapter, we present a temporal XML query language, τXQuery, in which

we add temporal support to XQuery by extending its syntax and semantics. Our

goal is to move the complexity of handling time from the user/application code into

the τXQuery processor. Moreover, we do not want to design a brand new query

language. Instead, we made minimal changes to XQuery to make sure τXQuery is

both upward compatible and temporal upward compatible to XQuery. Section 3.1

gives an example that illustrates the benefit of temporal support within the XQuery

language. Temporal XML schema is briefly introduced in Section 3.2. Section 3.3

describes the syntax and semantics of τXQuery informally. The following section

provides a formal semantics of the language expressed as a source-to-source mapping

in the style of denotational semantics. Two useful properties of τXQuery are identified

in Section 3.5. The example τXQuery queries are evaluated on an XQuery engine,

Galax, and their results are shown in Section 3.6. In the following two chapters, we

discuss the details of a stratum to implement τXQuery on top of a system supporting

conventional XQuery and the time-slicing techniques used in the stratum.

3.1 An Example

An XML document is static data; there is no explicit semantics of time. But often

XML documents contain time-varying data. Consider customer relationship manage-

ment, or CRM. Companies are realizing that it is much more expensive to acquire

new customers than to keep existing ones. To ensure that customers remain loyal,

the company needs to develop a relationship with that customer over time, and to

tailor its interactions with each customer [3, 24]. An important task is to collect and
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analyze historical information on customer interactions. As Ahlert emphasizes, “It

is necessary for an organization to develop a common strategy for the management

and use of all customer information” [1], termed enterprise customer management.

This requires communicating information on past interactions (whether by phone,

email, or web) to those who interact directly with the customer (the “front desk”)

and those who analyze these interactions (the “back desk”) for product development,

direct marketing campaigns, incentive program design, and refining the web inter-

face. Given the disparate software applications and databases used by the different

departments in the company, using XML to pass this important information around

is an obvious choice.

Figure 3.1 illustrates a small (and quite simplified) portion of such a document.

This document would contain information on each customer, including the identity

of the customer (name or email address or internal customer number), contact infor-

mation (address, phone number, etc.), the support level of the customer (e.g., silver,

gold, and platinum, for increasingly valuable customers), information on promotions

directed at that customer, and information on support incidents, where the customer

contacted the company with a complaint that was resolved (or is still open).

While almost all of this information varies over time, for only some elements is the

history useful and should be recorded in the XML document. Certainly the history

of the support level is important, to see for example how customers go up or down

in their support level. A support incident is explicitly temporal: it is opened by

customer action and closed by an action of a staff member that resolves the incident,

and so is associated with the period during which it is open. A support incident

may involve one or several actions, each of which is invoked either by the original

customer contact or by a hand-off from a previous action, and is terminated when a

hand-off is made to another staff or when the incident is resolved; hence, actions are

also associated with periods of validity.

We need a way to represent this time information. In next section, we will describe
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<CRMdata>

<customer supportLevel = "platinum">

<contactInfo> ... </contactInfo>

<directedPromotion> ... </directedPromotion>

<supportIncident>

<product>...</product>

<description>...</description>

<action>

<who> ... </who>

<what> ... </what>

<handoff> ... </handoff>

</action>

<resolution> ...</resolution>

</supportIncident>

...

</customer>

...

</CRMdata>

Figure 3.1. A CRM XML document

a means of adding time to an XML schema to realize a representational schema, which

is itself a correct XSchema [23], though we’ll argue that the details are peripheral to

the focus of this paper. Instead, we just show a sliver of the time-varying CRM

XML document in Figure 3.2. In this particular temporal XML document, a time-

varying attribute is represented as a timeVaryingAttribute element, and that a

time-varying element is represented with one or more versions, each containing one

or more timestamp sub-elements. The valid-time period is represented with the

beginning and ending instants, in a closed-open representation. Hence, the “gold”

attribute value is valid for the day September 19 through the day March 19; March

19 is not included. (Apparently, a support level applies for six months.) Also, the

valid period of an ancestor element (e.g., customer) must contain the period(s) of

descendant elements (e.g., action). Note, though, that there is no such requirement

between siblings, such as different supportLevels or between time-varying elements

and attributes of an element.
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<CRMdata>

<customer>

<timeVaryingAttribute name="supportLevel"

value="gold" vtBegin="2001-9-19"

vtEnd="2002-3-19"/>

<timeVaryingAttribute name="supportLevel"

value="platinum" vtBegin="2002-3-19"

vtEnd="2004-9-19"/>

...

<supportIncident>

<timestamp vtBegin="2002-2-11" vtEnd="2002-2-29"/>

...

<action>

<timestamp vtBegin="2002-2-11" vtEnd="2002-2-21"/>

<who> ... </who>

...

</action>

<action> <timestamp .../> ... </action>

</supportIncident>

</customer>

</CRMdata>

Figure 3.2. A time-varying CRM XML document
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Consider now an XQuery query on the static instance in Figure 3.1, “What is

the average number of open support incidents for gold customers?” This is easily

expressed in XQuery as

avg(for $c in document("CRM.xml")//customer[@supportLevel="gold"]

return count($c/supportIncident)).

This query binds the variable $c to each customer element whose support level is

gold, counts the number of support incidents of each customer, and computes the

average number of support incidents for these customers.

Now, if the analyst wants the history of the average number of open support

incidents for gold customer (which hopefully is trending down), the query becomes

much more complex, because both elements and attributes are time-varying. (The

reader is invited to try to express this in XQuery, an exercise which will clearly show

why a temporal extension is needed.) The temporal query written in XQuery is as

follows.

let $timepoints = distinct-values(

for $p in (document("CRM.xml")//timestamp union

document("CRM.xml")//timeVaryingAttribute)

for $t in ($p/@vtBegin, $p/@vtEnd)

order by $t return $t)

for $index := 1 to count($timepoints)-1

let $begin := item-at($timepoints, $index)

let $end := item-at($timepoints, $index+1) return

<timeVaryingValue>

<timestamp vtBegin=$begin vtEnd=$end />

<value>

avg(for $c in document("CRM.xml")//customer
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where some $sl in $c/timeVaryingAttribute satisfies

($sl/@vtBegin <= $begin and

$sl/@vtEnd > $begin and

$sl/@name = "supportLevel" and

$sl/@value = "gold") return

count(for $si in $c/supportIncident

where some $ts in $si/timestamp satisfies

($ts/@vtBegin <= $begin and

$ts/@vtEnd > $begin)

return $si)

</value>

</timeVaryingValue>

An XML query language that supports temporal queries is needed to fill the gap

between XQuery and temporal applications. As we will see, this temporal query (the

history of the average) is straightforward to express in τXQuery.

3.2 Temporal XML Schema

The conventional schema defines the structure of the non-temporal data, which are

simply XML instance documents. A time-varying XML document can be conceptu-

alized as a series of conventional documents, all described by the same schema, each

with an associated valid and/or transaction time. Hence we may have a version on

Monday, the same version on Tuesday, a slightly modified version on Wednesday, and

a further modified version on Thursday that is also valid on Friday. This sequence of

conventional documents in concert comprise a single time-varying XML document.

The temporal XSchema model, τXSchema [18] allows users to annotate XML

Schemas to support temporal information while preserving data independence. The

data designer starts by specifying the base non-temporal schema in an XML schema.
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Then, he annotates the non-temporal schema to produce the logical schema, also

termed the temporal annotated schema. These annotations state which components

in the XML document can change over time. The remaining components of the XML

document are considered to be static, and have the same values during the lifetime.

The designer must then further annotate the logical schema to create a physical

annotated schema that states where in the time-varying document the timestamps

should be placed, and how are the timestamps represented, which are independent

from which components in the document can change over time. For example, the user

may want to add timestamps to a parent node if all sub-elements of that parent node

are time-varying. An alternative design is to add timestamps to all the sub-elements.

This is a desirable flexibility provided to the user. However, note that timestamps

can occur at any level of the XML document hierarchy. τXQuery has to contend with

this variability.

The three schemas imply a representational schema that has the actual timestamps

in all the right places. We emphasize that the representational schema is a conven-

tional XML schema. The non-temporal schema for our CRM example would describe

e.g., customer and supportIncident elements; the representational schema would

add (for the document in Figure 3.2) the timestamp and timeVaryingAttribute ele-

ments. The rest of this paper is largely independent of these representational details.

All the four schemata and the instance temporal XML documents for the CRM ex-

ample are given in Appendix D to H. We provide two physical schemata for the same

logical schema, therefore, two representational schemata and two instance documents

follow.

Constraints must be applied to the temporal XML documents to ensure the va-

lidity of the temporal XML documents. One important constraint is that the valid

time boundaries of parent elements must encompass those of its child. Violating this

constraint means at some time, a child element exists without a parent node, which

never appears in a valid document. Another constraint is that an element without
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timestamps inherits the valid periods of its parent. These constraints are exploited

in the optimizations that will be discussed in Chapter 5.

3.3 τXQuery

There are three kinds of temporal queries supported in τXQuery: current queries,

sequenced queries, and representational queries. We will introduce these queries and

show an example of each kind of query. The next section provides the formal semantics

for these queries, via a mapping to XQuery.

3.3.1 Current Queries

An XML document without temporal data records the current state of some aspect

of the real world. After the temporal dimension is added, the history is preserved

in the document. Conceptually, a temporal XML document denotes a sequence of

conventional XML documents, each of which records a snapshot of the temporal XML

document at a particular time. A current query simply asks for the information about

the current state. An example is, “what is the average number of (currently) open

support incidents for (current) gold customer?”

current

avg(for $c in document("CRM.xml")//customer[@supportLevel="gold"]

return count($c/supportIncident))

The semantics of a current query is exactly the same as the semantics of the XQuery

(without the reserved word current) applied to the current state of the XML docu-

ment(s) mentioned in the query. Applied to the instance in Figure 3.2, that particular

customer would not contribute to this average, because the support level of that cus-

tomer is currently platinum.
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Note that to write current queries, users do not have to know the representation

of the temporal data, or even which elements or attributes are time-varying. Users

can instead refer solely to the nontemporal schema when expressing current queries.

3.3.2 Sequenced Queries

Sequenced queries are applied independently at each point in time. An example

is, “what is the history of the average number of open support incidents for gold

customer?”

validtime

avg(for $c in document("CRM.xml")//customer[@supportLevel="gold"]

return count($c/supportIncident))

The result will be a sequence of time-varying elements, in this case of the following

form.

<timeVaryingValue>

<timestamp vtBegin="2001-1-1" vtEnd="2001-2-10"/>

<value>4</value>

</timeVaryingValue>

<timeVaryingValue>

<timestamp vtBegin="2001-2-10" vtEnd="2001-5-6"/>

<value>2</value>

</timeVaryingValue>

...

Our CRM customer in Figure 3.2 would contribute to several of the values. As

with current queries, users can write sequenced queries solely with reference to the

non-temporal schema, without concern for the representation of the temporal data.
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3.3.3 Representational Queries

There are some queries that cannot be expressed as current or sequenced queries.

To evaluate these queries, more than one state of the input XML documents needs

to be examined. These queries are more complex than sequenced queries. To write

such queries, users have to know the representation of the timestamps (including

time-varying attributes) and treat the timestamp as a common element or attribute.

Hence, we call these queries representational queries. There is no syntactic extension

for representational queries. An example is, “what is the average number of support

incidents, now or in the past, for gold customer, now or in the past?”

avg(for $c in document("CRM.xml")//customer

where $c/timeVaryingAttribute[@value="gold"][@name="supportLevel"]

return count($c/supportIncident))

Such queries treat the timeVaryingAttribute and timestamp elements as normal el-

ements, without any special semantics. Our customer in Figure 3.2 would participate

in this query because she was once a gold member.

Representational queries are important not only because they allow the users to

have full control of the timestamps, but also because they provide upward compatibil-

ity; any existing XQuery expression is evaluated in τXQuery with the same semantics

as in XQuery.

3.3.4 Compatibility

Representational queries have the same semantics (and syntax!) as XQuery. This

indicates τXQuery is a superset of XQuery, which ensures τXQuery is upward com-

patible with XQuery. Thus, any existing XQuery program can be run on a τXQuery

processor without any changes.
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If an existing application needs temporal support, the non-temporal schema can

be augmented to include the timestamp and timeVaryingAttribute elements. Tem-

poral upward compatibility [4] demands that existing XQuery code operating on the

previous non-temporal documents continue to work (accessing the current state) on

time-varying documents, without any changes.

So that τXQuery is both upward compatible and temporal upward compatible,

we define two default working modes of the τXQuery processor, representational

mode and current mode. When the default mode is set to representational, queries

without any τXQuery reserved word are treated as representational queries. This

ensures the upward compatibility. The default mode can be reset to current mode,

in which queries without any τXQuery reserved word are treated as current queries.

Then, representational queries need a reserved word (representational validtime

or rep validtime for short) in current mode. The current mode ensures temporal

upward compatibility.

The default mode can be configured by the user or it can be decided by the

τXQuery processor automatically. Here is one possible way to determine the mode.

The query processor accesses the documents that are specified in the query to check if

the namespace of the representational schema (e.g., http://www.cs.arizona.edu/tau/-

RXSchema) is used in any document. If that namespace is found, the document con-

tains temporal data, and the default mode is set to current. Otherwise, the default

mode is set to representational. Such an approach realizes both kinds of upward

compatibility simultaneously.

3.4 Semantics

We now define the formal syntax and semantics of τXQuery statements, the latter as

a source-to-source mapping from τXQuery to XQuery. We use a syntax-directed de-

notational semantics style formalism [50]. The reason we use denotational semantics
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is that we would like to demonstrate the mapping formally. By writing the deno-

tational semantics for each language construct, we accurately show that the whole

language can be mapped. Alternative approaches to show the mapping include us-

ing English to describe the mapping, using graph to illustrate the mapping, or using

pseudo codes to show the mapping algorithms. None of them are as accurate as

denotational semantics.

The resulting XQuery expression uses some auxiliary functions; the definition of

these functions is given in Appendix C. There are several ways to map τXQuery

expressions into XQuery expressions. We show the simplest of them in this section to

provide a formal semantics; we will discuss more efficient alternatives in Chapter 5.

The goal here is to utilize the conventional XQuery semantics as much as possible.

As we will see, a complete syntax and semantics can be given in just two pages by

exploiting the syntax and semantics of conventional XQuery.

The BNF of XQuery we utilize is from a working draft [19] of W3C. The grammar

of τXQuery begins with the following production. Note that the parentheses and

vertical bars in an italic font are the symbols used by the BNF. Terminal symbols are

given in a sans serif font.

A τXQuery expression has an optional modifier; the syntax of 〈Q〉 is identical to

that of XQuery.

〈TQ〉 ::= (current | validtime ([〈BT〉, 〈ET〉])? | rep validtime )? 〈Q〉

The semantics of 〈TQ〉 is expressed with the semantic function τXQuery J K, taking

one parameter, a τXQuery query, which is simply a string. The domain of the se-

mantic function is the set of syntactically valid τXQuery queries, while the range

is the set of syntactically correct XQuery queries. The mapping we present will re-

sult in a semantically correct XQuery query if the input is a semantically correct

τXQuery query. As mentioned in Section 3.3.4, τXQuery has two modes: the rep-

resentational mode and the current mode, which supports the upward compatibility
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and the temporal upward compatibility respectively. Thus, we have two semantic

functions (rep J K and cur J K) to denote the semantics of τXQuery.

τXQuery J〈TQ〉K = rep J〈TQ〉K or cur J〈TQ〉K

3.4.1 Current Queries

The mapping of current queries to XQuery is pretty simple. Following the conceptual

semantics of current queries, the current snapshot of the XML documents are com-

puted first. Then, the corresponding XQuery expression is evaluated on the current

snapshot.

cur Jcurrent 〈Q〉K = rep Jcurrent 〈Q〉K = cur J〈Q〉K

〈Q〉 ::= 〈QueryProlog〉 〈QueryBody〉

cur J〈Q〉K =

import schema namespace rs = "http://www.cs.arizona.edu/tau/RXSchema"

at "RXSchema.xsd"

declare namespace tau = "www.cs.arizona.edu/tau/Func"

snapshot J〈QueryProlog〉K current-dateTime()
define function tau:snapshot...

snapshot J〈QueryBody〉K current-dateTime()

The two namespaces defined in the above code are used by the auxiliary func-

tions. RXSchema.xsd (see Appendix A) contains definitions of the timestamp and

timeVaryingAttribute elements. The other namespace tau is defined for the se-

mantic mapping. All the auxiliary functions and variables used for the mapping have

this prefix. We use a new semantic function snapshot J K which takes an additional

parameter, an XQuery expression that evaluates to the xs:dateTime type. As with
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other semantic functions utilized here, the domain is a τXQuery expression (a string)

and the range is an XQuery expression (also a string).

In both 〈QueryProlog〉 (that is, the user-defined functions) and 〈QueryBody〉,
only the function calls document() and input() need to be mapped. The rest of the

syntax is simply retained. We show the mapping of document() below. A similar

mapping applies to input().

snapshot Jdocument(〈String〉)K t = tau:snapshot(document(〈String〉), t)

snapshot Jinput()K t = tau:snapshot(input(), t)

The auxiliary function snapshot() (see Appendix C) takes a node n and a time t

as the input parameters and returns the snapshot of n at time t. This snapshot

document has no valid timestamps; elements not valid now have been stripped out.

3.4.2 Representational Queries

The mapping for representational queries is trivial.

rep Jrep validtime 〈Q〉K = rep J〈Q〉K
cur Jrep validtime 〈Q〉K = rep J〈Q〉K
rep J〈Q〉K = 〈Q〉

The only thing needed is to remove the reserved word rep validtime. This mapping

obviously ensures that τXQuery is upward compatible with XQuery.

3.4.3 Sequenced Queries

In a sequenced query, the reserved word validtime is followed by an optional time

period represented by two dateTime values enclosed by a pair of brackets. If the

period is specified, the query result contains only the data valid in this period. For
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example, the query asking for the history of the average number of open support

incidents for gold customers during year 2001 would be expressed as follows.

validtime [2001-01-01, 2002-01-01]

avg(for $c in document("CRM.xml")//customer[@supportLevel="gold"]

return count($c/supportIncident))

The semantics of sequenced queries utilizes the seq J K semantic function, which we

will provide shortly. Sequenced queries have the same semantics in both current mode

and representational mode.

rep Jvalidtime 〈Q〉K = cur Jvalidtime 〈Q〉K =

seq J〈Q〉K $tau:period("1000-01-01", "9999-12-31")

When there is no valid-time period specified in the query, the query is evaluated in the

whole timeline the system can represent. Therefore, this period is implementation

dependent. The above semantic function is written with the assumption that the

earliest time and the latest time can be represented by the system are 1000-01-01

and 9999-12-31 respectively.

If the valid-time period is explicitly specified by the user, the translation is as

follows.

rep Jvalidtime [〈BT〉,〈ET〉] 〈Q〉K = cur Jvalidtime [〈BT〉,〈ET〉] 〈Q〉K =

seq J〈Q〉K tau:period(〈BT〉, 〈ET〉)

As with snapshot J K, the sequenced semantic function seq J K has a parameter, in

this case an XQuery expression that evaluates to an XML element of the type

rs:vtExtent (defined in Appendix A). This element represents the period in which

the input query is evaluated.
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Semantics The semantics of a sequenced query is that of applying the associated

XQuery expression simultaneously to each state of the XML document(s), and then

combining the results back into a period-stamped representation. We adopt a straight-

forward approach to map a sequenced query to XQuery, based on the following simple

observation first made when the semantics of temporal aggregates were defined [48]:

the result changes only at those time points that begin or end a valid-time period

of the time-varying data. Hence, we can compute the constant periods, those peri-

ods over which the result is unchanged. To compute the constant periods, all the

timestamps in the input documents are collected and the begin time and end time

of each timestamp are put into a list. These time points are the only modification

points of the documents, and thus, of the result. Therefore, the XQuery expression

only needs to be evaluated on each snapshot of the documents at each modification

point. Finally, the corresponding timestamps are added to the results. The semantic

function of sequenced queries is as follows.

〈Q〉 ::= 〈QueryProlog〉 〈QueryBody〉
seq J〈Q〉K p =

import schema namespace rs = "http://www.cs.arizona.edu/tau/RXSchema"

at "RXSchema.xsd"

import schema namespace tvv = "http://www.cs.arizona.edu/tau/Tvv"

at "TimeVaryingValue.xsd"

declare namespace tau = "www.cs.arizona.edu/tau/Func"

seq J〈QueryProlog〉K p

define function tau:all-const-periods...

...

for $tau:p in tau:all-const-periods(p, getdoc J〈Q〉K ) return

tau:associate-timestamp($tau:p, timeslice J〈QueryBody〉K $tau:p/@vtBegin)
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The namespace tvv defines the sequenced time-varying value type needed in the

mapping. The schema that defines tvv is given in Appendix B. getdoc J K takes

a query string as input and returns a string consisting of a parenthesized, comma-

separated list of the function calls of document() that appear in the input string.

The function all-const-periods() takes this list of document nodes as well as

a time period and computes all the periods during which no single value in any of the

documents changes. The returned periods should be contained in the input period,

specified by the first parameter. This function first finds all the closed-open time

points in all the input documents and contained in the input period. Then it sorts

this list of time points and removes duplicates. The period between each pair of

points that are adjacent forms a [closed–open) constant period. For example, if three

time-points 1, 3, and 5 are found, then a list of two timestamp elements representing

the periods [1–3) and [3–5) is returned. The input documents and the result are all

constant over each of these periods.

The function associate-timestamp() takes a sequence of items and a timestamp

element as input and associates the timestamp representing the input period with

each item in the input sequence. Both this and the previous function are auxiliary

functions that depend on the representation. Again, the definitions are provided in

Appendix C, for the particular representation in Figure 3.2.

We need to time-slice all the documents on each of the constant periods computed

by the auxiliary function all-const-periods() and evaluate the query in each time

slice of the documents (in Chapter 5, we examine more sophisticated slicing strate-

gies). Since the documents appearing in both 〈QueryProlog〉 and 〈QueryBody〉 need

to be time-sliced, we define seq J〈QueryProlog〉K p and timeslice J〈QueryBody〉K t fur-

ther. In 〈QueryProlog〉, only the function definitions need to be mapped. We add an

additional parameter (a time point) to each user-defined function and use this time

point to slice the document specified in the function.



41

〈FunctionDefn〉 ::= define function 〈FuncName〉(〈ParamList〉?) as

〈SequenceType〉 {〈ExprSequence〉}

seq J〈FunctionDefn〉K p =

define function 〈FuncName〉(xs:dateTime $tau:time,〈ParamList〉?) as

〈SequenceType〉 {timeslice J〈ExprSequence〉K $tau:time}

In 〈ExprSequence〉, only the function calls need to be changed. The functions are

partitioned into two categories: the user-defined functions and the built-in functions.

All the user-defined functions have one more parameter, therefore calling the functions

should be changed accordingly.

〈FunctionCall〉 ::= 〈QName〉( ( 〈Expr〉 ( , 〈Expr〉)∗)? )

For user-defined functions, the semantics is defined as follows.

timeslice J〈FunctionCall〉K t =

〈QName〉(t, (timeslice J〈Expr〉K t (, timeslice J〈Expr〉K t)∗)?)

The function document() and input() are the only two built-in functions that

need to be mapped.

timeslice Jdocument(〈String〉)K t = tau:snapshot(document(〈String〉), t)

Note that the actual parameter of document() could be an expression that evaluated

to a string. In this case, the mapping approach does not work. However, we will give

the mapping approach that can handle this case in Section 5.2.

〈QueryBody〉 is actually an 〈ExprSequence〉. We will not repeat the above map-

ping for 〈QueryBody〉. The function call input() is treated the same as the function

call document(), in that it should also be time-sliced.

timeslice Jinput()K t = tau:snapshot(input(), t)
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Time-slicing a document on a constant period is implemented by computing the

snapshot of the document at the begin point of the period. There are two reasons that

we add one more parameter to user-defined functions and introduce a new function

timeslice J K instead of using the existing function snapshot J K. First, the constant

periods are computed in XQuery, but the query prolog must proceed the query body

which includes the computation of the constant periods. Secondly, at translation time

it is not known on which periods the documents appearing inside function definitions

should be time-sliced. This is not a problem for current queries, where it is known

when (now) the snapshot is to be taken.

The need for an extra parameter for user-defined functions can be seen from an

example. Let term.xml list (time-varying) terminology. A user-defined function

lookup() searches a term in this document and returns the definition.

define function lookup(xs:string $s) as xs:node

{ document("term.xml")//term[name = $s] }

During the mapping of function definitions, the constant periods are not known.

Typing Sequenced Queries The result of a sequenced query should have the valid

timestamp associated with it, which is not the case for a conventional XQuery expres-

sion. Thus, the type of the result from a sequenced statement is different from that

from a representational or current statement. The XQuery data types are mapped to

timestamped types by associate-timestamp() as follows.

A single value of an atomic type: A single value with an atomic type is mapped

to a sequence of elements with the type tvv:timeVaryingValueType.

An element whose value is a simple type: Such an element is mapped to a se-

quence of elements of the complex type with two subelements. One subelement

is named timestamp with the type rs:vtExtent. The other is named value

with the simple type of the original type of the element value.
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An element of a complex type: This is mapped to a sequence of elements with

a new complex type which extends the original complex type by adding a new

subelement timestamp.

An attribute: An attribute is mapped to a sequence of elements, each of which is

named timeVaryingAttribute and of rs:vtAttributeTS type.

A document: A document is mapped to a sequence of documents, the root element

of which has one more subelement of the original root element, each with a

timestamp subelement.

A processing-instruction, comment, or text node: These remain the same.

A sequence: A sequence is mapped to a sequence with each of its items mapped to

the corresponding timestamped type.

One concern is how to maintain the order of values within sequences. Queries can

be divided into three broad classes regarding the order of the result. The first class

consists of queries that do not care about the order. Any order that is returned is

fine. The second class consists of queries that explicitly sort the resulting sequence,

via the XQuery order by operator. In our mapping, the sequences are sorted on the

constant period, using a stable sort to retain the order within a constant period, and

then timestamped and concatenated. This ensures that the timeslice of this sequence

at any point in time would result in the correct order. The third class contains

queries that do not have an order by operator yet is not an unordered query. Here

according to the way that the result is sorted, with a stable sort by the begin time of

the constant period, the document order of the sequence in each constant period is

retained. Thus, for all the three classes, the order of the result sequence is correct.
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3.4.4 Summary

There are three modes in τXQuery. Representational queries are syntactically and

semantically identical to XQuery queries. This is modulo the choice taken for the de-

fault mode. For the approach we advocate in Section 3.3.4, simultaneously ensuring

upward compatibility and temporal upward compatibility requires that some XQuery

expressions be interpreted in current mode. Current queries are evaluated on a snap-

shot of each time-varying document. As the snapshot will contain no timestamp nor

timeVaryingAttribute elements, the conventional XQuery semantics can be used.

Interestingly, for sequenced queries, once the document(s) are timesliced based on

the constant periods, we can again utilize the conventional XQuery semantics, thus

ensuring snapshot reducibility [29, 44]. Effectively, a sequenced query is treated as a

series of conventional queries, based on the constant periods. This provides a pleasing

symmetry in the formal semantics of the three modes.

Our approach is independent of the representation (other than the details of some

of the XQuery functions utilized by the mapping); in particular, it is independent of

the location of the timestamps within the document.

3.5 Useful Properties of the Semantics

Based on the semantics defined in the last section, we identify the following two

properties of τXQuery.

If every expression in a query language is equivalent to a valid XQuery expression,

we term that query language XQuery-complete. For such languages, their syntactic

constructs of τXQuery do not provide additional expressive power over XQuery.

Theorem 1. τXQuery is XQuery-complete.

Proof outline: We examine the semantics of the three kinds of queries. A

representational query has the same semantics as the query without the keyword. A



45

current query or sequenced query can be mapped to a semantically equivalent XQuery.

This can be seen from the definitions of τXQuery J K , which produce valid XQuery

strings except that the document name is a computed string. When the document

name is a computed string, the mapping approach in Section 3.4.3 does not work.

However, in Section 5.2, we will show two approaches that work in this case. Thus,

we conclude τXQuery has the same expressive power as XQuery. ut
To discuss the second property, we define the semantic function eval JK first. This

function takes an XQuery string and a collection of XML documents (which we call

the input database) as the inputs, and outputs the data resulting from the evaluation

of the input query string against the input database.

We use c to denote a valid-time granule, and D to denote a temporal XML

database. The snapshot function ss takes as arguments a valid-time temporal XML

database D and a valid-time granule c and returns the snapshot of the XML docu-

ment(s) that are valid at time c. τXQuery is snapshot reducible to XQuery if

∀Q ∈ XQuery, ∀D, ∀c (ss(c, eval Jseq Jvalidtime QKK D) = eval JQK ss(c,D)).

This is an application of snapshot reducibility defined on the relational algebra [44].

Theorem 2. τXQuery is snapshot reducible to XQuery.

Proof outline: According to the semantic mapping defined in the last section,

the sequenced query validtime Q is mapped to an XQuery expression evaluates Q

on time-sliced portion of the input documents. The input documents are time-sliced

on the constant periods. There are two cases regarding the relationship between c

and the constant periods. In the first case, one of the constant periods contains c.

Let cp denote this particular constant period. The snapshot of the result of the se-

quenced query at c is the result of Q executed on the input documents valid during cp.

If cp = [bt, et], time-slicing a document on cp is done by taking snapshot of the docu-

ment at bt, which yields the same document as the snapshot at c. Thus, the snapshot
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of the result of the sequenced query at c is the result of Q executed on the snapshot of

the input documents at c. In the second case, none of the constant periods contains

c. This implies that nothing in the input documents is valid at time c. Therefore, the

result is an empty XML data set for both the left-hand-side and the right-hand-side

of the above equality. ut

3.6 Example Queries and Results

The three example queries mentioned in Section 3.3 have been mapped to XQuery and

tested on an XQuery engine Galax [31]. Since Galax does not support all the features

of XQuery, we made a few changes to the auxiliary functions to enable the test. For

example, it does not support the data type dateTime. We just used string as a

substitution. As mentioned in Section 3.2, the physical representation of temporal

XML data is independent from the logical schema of the same data. Different physical

schemas imply different representational schemas, therefore, different structures of the

temporal XML documents (instances). All the three queries are evaluated against the

two different instances, CRM1.xml and CRM2.xml in Appendix H. They are defined by

the two representational schemas in Appendix G, which are implied by the physical

schemas in Appendix F respectively. The results of the queries on CRM1.xml are the

same as those on CRM2.xml. Therefore, our mapping approach is independent from

the physical schema of the temporal XML document. Indeed, except for some details

of auxiliary XQuery functions defined in Appendix C, the formal semantics and the

optimizations described later are largely independent of the representation.

3.6.1 Current Query

Query:

What is the average number of open support incidents for gold customers?

Expression:
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current

avg(for $c in document("CRM.xml")//customer[@supportLevel="gold"]

return count($c/supportIncident))

Expanded Query:

import schema namespace rs = "http://www.cs.arizona.edu/tau/RXSchema"

at "RXSchema.xsd"

declare namespace tau = "www.cs.arizona.edu/tau/Func"

define function tau:snapshot...

avg(for $c in tau:snapshot(document("CRM1.xml"), current-dateTime())//

customer[@supportLevel="gold"]

return count($c/supportIncident))

Result: 0

The query results from CRM1.xml and CRM2.xml are the same.

3.6.2 Sequenced Query

The sequenced query is mapped using the slicing approach described in Section 3.4.3.

The query results from the two instances are exactly the same. None of them are

coalesced.

Query:

What is the history of the average number of open support incidents for gold

customers?

Expression:

validtime

avg(for $c in document("CRM.xml")//customer[@supportLevel="gold"]

return count($c/supportIncident))
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Expanded Query:

import schema namespace rs = "http://www.cs.arizona.edu/tau/RXSchema"

at "RXSchema.xsd"

import schema namespace tvv = "http://www.cs.arizona.edu/tau/Tvv"

at "TimeVaryingValue.xsd"

declare namespace tau = "www.cs.arizona.edu/tau/Func"

define function tau:snapshot...

for $tau:p in tau:all-const-periods(tau:period("1000-01-01",

"9999-12-31"), document("CRM1.xml")) return

tau:associate-timestamp($tau:p,

avg(for $c in tau:snapshot(document("CRM1.xml"), $tau:p/@vtBegin)

//customer[@supportLevel="gold"] return

count($c/supportIncident)))

Result:

<timeVaryingValue>
<rs:timestamp vtBegin="2001-01-05" vtEnd="2001-02-15"/>
<value>0</value>

</timeVaryingValue>,
<timeVaryingValue>
<rs:timestamp vtBegin="2001-02-15" vtEnd="2001-03-12"/>
<value>0</value>

</timeVaryingValue>,
<timeVaryingValue>
<rs:timestamp vtBegin="2001-03-12" vtEnd="2001-03-20"/>
<value>0</value>

</timeVaryingValue>,
<timeVaryingValue>
<rs:timestamp vtBegin="2001-03-20" vtEnd="2001-04-02"/>
<value>0</value>

</timeVaryingValue>,
<timeVaryingValue>
<rs:timestamp vtBegin="2001-04-02" vtEnd="2001-04-05"/>
<value>1</value>

</timeVaryingValue>,
<timeVaryingValue>



49

<rs:timestamp vtBegin="2001-04-05" vtEnd="2001-04-10"/>
<value>0</value>

</timeVaryingValue>,
<timeVaryingValue>
<rs:timestamp vtBegin="2001-04-10" vtEnd="2002-02-15"/>
<value>0</value>

</timeVaryingValue>,
<timeVaryingValue>
<rs:timestamp vtBegin="2002-02-15" vtEnd="2002-09-12"/>
<value>0</value>

</timeVaryingValue>,
<timeVaryingValue>
<rs:timestamp vtBegin="2002-09-12" vtEnd="2002-09-14"/>
<value>1</value>

</timeVaryingValue>,
<timeVaryingValue>
<rs:timestamp vtBegin="2002-09-14" vtEnd="forever"/>
<value>0</value>

</timeVaryingValue>

3.6.3 Representational Query

The representational query must manipulate the temporal information explicitly.

Therefore, different representational queries are written for different documents. The

results of the two queries are the same.

Query:

What is the average number of support incidents, now or in the past, for gold

customers, now or in the past?

Expression for CRM1.xml:

avg(for $c in document("CRM1.xml")//customer

where $c/timeVaryingAttribute[@name="supportLevel][@value="gold"]

return count($c/supportIncident))

Expression for CRM2.xml:
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avg(for $n in distinct-values(document("CRM2.xml")//

customer[@supportLevel="gold"]//name)

return count(distinct-values(for $c in document("CRM2.xml")//

customer

where $c/contactInfo/name=$n

return $c/supportIncident/product)))

Result: 1

Now, we have seen the syntax and semantics of the temporal XML query language

τXQuery and the example τXQuery queries. Next chapter discusses the implemen-

tation of this language using a stratum approach.
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Chapter 4

The Stratum Approach

In Section 3.4.4, we discussed the pleasing symmetry in the formal semantics of the

three modes. We would like to carry over the nice symmetry of the semantics into the

implementation of τXQuery. We do so by utilizing a stratum approach, advocated

by Torp [52]. Each τXQuery expression is mapped to an XQuery expression, which

is passed to an XQuery processor for evaluation.

The architecture of the τXQuery stratum is shown in Figure 4.1. The dashed

rectangle indicates the boundary of the stratum. When a query is input, the initial

keyword is examined and the default mode of the stratum is consulted to determine

the kind of query. A representational query is passed to the underlying XQuery

processor directly, while a current or sequenced query must be converted by the

appropriate mapper to effect the translation given in Section 3.4. The resulting

XQuery expression is sent to the XQuery processor.

The two mappings are straight-forward. One interesting aspect is that all the

semantic functions are implemented directly in the query mappers. For example, the

getdoc J K semantic function discussed briefly in Section 3.4.3 is implemented by the

sequenced query mapper. The documents mentioned in the query (and in functions

called directly or indirectly by the query) can be determined from a syntactic analysis

of the query; no interaction with the XQuery processor is required for that semantic

function. The other semantic functions are also evaluated in the mappers, to convert

a τXQuery expression as a text string into an XQuery expression, again as a text

string.

Once the XQuery processor has evaluated the query, the stratum’s postprocessor
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Figure 4.1. Architecture of the τXQuery stratum
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coalesces the query results. Coalescing in relational temporal databases is a unary

operator [33, 29]; it reduces the number of tuples by eliminating duplicate values

valid at the same time and merge tuples that have adjacent time periods and that

agree on the explicit attribute values. Coalescing in an XML context involves merging

versions of elements that have identical subelements and whose periods of validity are

adjacent.

Of the three kinds of queries discussed in Section 3.3, current queries do not return

a time-varying result, and so coalescing is not relevant. For representational queries,

we do not (and indeed cannot) coalesce the result. Hence, coalescing is only relevant

for sequenced queries.

In most cases, the result of a sequenced query is a sequence of elements. Associated

with each element is a timestamp, denoting some period of time. This period is a

constant period of its parent element. However, it may not be the maximal constant

period of its parent element. Consider the example query used in Section 3.3.2. It is

possible that the average is 5 during two separate but adjacent periods. In this case,

the result is uncoalesced (the result is represented by two elements when one would

do). Coalescing this result will merge the two elements into one.

Coalescing temporal XML data is different in many aspects from coalescing re-

lational data. It is an open question whether coalescing can be done efficiently in

XQuery, or whether this computation is best done in the stratum. It is an interesting

topic for future research which we discuss in Chapter 10.

It is obvious that processing a representational query is trivial to the stratum since

no mapping is needed. The most challenging part is to map a sequenced query. We

focus on the techniques for mapping sequenced queries in next chapter.
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Chapter 5

Optimization of Slicing

In Section 3.4.3, we presented one method to map sequenced τXQuery expressions

to XQuery. In that method, we time-sliced all the input documents at the finest

granularity of modification time by using every single time point present as a begin

time or an end time in a timestamp or timeVaryingAttribute element contained

in each document. We call this method maximally-fragmented time-slicing. (We

emphasize that this approach is far more efficient than taking a timestamp of the

document at every time point in which it is valid, termed unfolding in the context of

temporal relations [32]. Maximally-fragmenting still uses the periods in the data to

compute the constant periods.)

Some queries may not touch the information of the most frequently updated ele-

ments. In the CRM example in Figure 3.2, the most frequently changing element is

action. Maximally-fragmented time-slicing always slices the document on the con-

stant periods of action. The example query in Section 3.3.2 does not go all the

way down to action. In particular, examining Figure 3.2 indicates that a constant

period of [2002-4-11–2002-4-29) is sufficient, without being broken into two periods

at 2002-4-21. Figure 5.1 illustrates this situation using the timevarying information

of an example customer. The support level of the customer changed at some point

(indicated by the dot on the segment of support level). The customer had two sup-

port incidents, each of which had two actions. The constant periods computed by

maximally-fragmented slicing are shown as the segments in the lowest line. The cir-

cled point is one of the extra slices since this changing point of action does not

impact the query results. Slicing the whole document at all the time points found in

the timestamp periods often involves too much work over too many constant periods.
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In this chapter, we discuss several optimizations that compute fewer constant periods

and slice only portions of the document; these optimizations are largely independent

of the query language and representation.

 

Valid Time 
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Level 

Support
Incident 

Action 

Constant 
Period 

gold platinum 

Figure 5.1. Extra Slicing in Maximally-Fragmented Slicing

5.1 Selected Node Slicing

Given a query string, the stratum can find all the names of the elements and the

attributes specified in the query. Collecting the valid time points of only these nodes,

constructing the constant periods for them, and time-slicing the documents only on

these constant periods is sufficient. Each of the constant periods found in this process

is the coarsest period during which all the nodes specified in the query are guaranteed

to be stable. In this way, the query body is evaluated in fewer periods in the generated

XQuery. Thus, the translated query is expected to be more efficient. An added benefit

is that the result may already be coalesced, without further effort by the stratum.

The semantic function sn J K p defines the mapping of sequenced queries by se-

lected node slicing.
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sn J〈Q〉K p =

import schema namespace rs = "http://www.cs.arizona.edu/tau/RXSchema"

at "RXSchema.xsd"

import schema namespace tvv = "http://www.cs.arizona.edu/tau/Tvv"

at "TimeVaryingValue.xsd"

declare namespace tau = "www.cs.arizona.edu/tau/Func"

sn J〈QueryProlog〉K p

define function tau:element-const-periods...

...

for $tau:p in tau:element-const-periods(p, getdoc J〈Q〉K, getnode J〈Q〉K)
return tau:associate-timestamp($tau:p,

timeslice J〈QueryBody〉K $tau:p/@vtBegin)

The only difference between selected node slicing and maximally-fragmented slicing

is that it uses element-const-periods() rather than all-const-periods(). The

XQuery function element-const-periods() takes a sequence of documents and a

sequence of strings representing node names (elements or attributes) and collects the

times appearing at those nodes (or inherited from ancestor nodes, if not timestamped

directly) and then constructs the constant periods. If the schema is available, the

stratum can instruct this function as to when to stop descending through the XML

data, via a third parameter. The function getnodes J K implemented in the stratum

takes a query string as the input and returns the node names that appear in the query

string.

For the example query mentioned in Section 3.3.2, the stratum first determines

that the elements specified in the query are customer and supportIncident; the

time-varying attribute supportLevel is also referenced. The function element-const-

periods() will not collect the valid periods of the element action. This can be ob-

served by comparing the number of slices in Figure 5.2 with that in Figure 5.1.
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Figure 5.2. Selected Node Slicing

Selected node slicing does not work when a wildcard is present in the query and

the schema information is not available. However, a sample of four existing XML

benchmarks shows that wildcards appear only in a small number of queries: none in

XMark [41], one in 23 queries in XOO7 [9], one in 16 queries in XBench [57], and four

in eight queries in XMach-1 [7].

This method and the maximally-fragmented time-slicing method both slice the

documents at the document level on a sequence of constant periods. However, a

query may not touch a large part of the document. In Figure 5.2, the circled point is

one of the extra slices. The support level of the customer at this point was “platinum”,

thus the support incident at this point does not contribute to the result. Time-slicing

this untouched part is wasted work. In the next two sections, we present methods

that avoid slicing the unused subtrees.

5.2 Per-Expression Slicing

XQuery is a functional language which allows various kinds of expressions to be nested

with full generality. The syntax tree of the query used in Section 3.3.2 is shown in

Figure 5.3. The query is a function call, which has a for expression embedded as a

parameter. The for expression further has a path expression and another function
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call embedded. The evaluation of the expression is in a bottom up fashion. The path

expression in the lower left part of the syntax tree should be evaluated first. The

result is a sequence of customer elements, each of which is a subtree of the input

XML document, Then each customer element is bound to the variable $c and the

lower right subexpression is evaluated.

 

avg(ForExpr) 

for $c in PathExpr return functionCall 

document("CRM.xml")// 
customer[@supportLevel="gold"] 

count(PathExpr) 

$c/supportIncident 

functionCall 
 

Figure 5.3. The Syntax Tree

Per-expression slicing maps each sequenced subexpression individually. It slices

the subtree (data) that is referenced by the relevant portion of the recursively evalu-

ated query expression; this slicing is only on the constant periods of the root of this

subtree (data). The sequenced version of the current subexpression then is evalu-

ated on the time-sliced subtree (data). The result, a sequence of trees (data) each

of which associated with valid time-stamps, is again time-sliced on the constant pe-

riods of these trees for the evaluation of the expression at the next level (usually a

higher level in the syntax tree). The constant periods in the subsequent level are

shorter than, and contained within, the constant periods in the previous level. Thus,

those unused subtrees (data) are pruned before they are time-sliced. Consider the

sequenced query in Figure 5.3 evaluated on the example data shown in Figure 5.1.

The result of the lower left path expression is the customer elements with only the
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valid descendants. Figure 5.4 illustrates the valid parts of the customer element.

The evaluation of any subsequent expression will not consider the invalid parts of

this customer.

 

Valid 
Period 

gold platinum 
Support

Level 

Valid Time 

Support
Incident 

Action 

Figure 5.4. Intermediate Result

Since some of the nodes do not have timestamps in the original temporal XML

document, we need a way to remember the valid period for such nodes. In this section,

we will present two per-expression slicing approaches: copy-based and in-place per-

expression slicing. They utilize different methods to record the valid periods for the

intermediate results.

5.2.1 Copy-Based Per-Expression Slicing

To record the valid periods of the intermediate results, copy-based slicing timestamps

all the intermediate results no matter whether they are timestamped in the original

document. During the query evaluation, copy-based slicing prunes the irrelevant

portion of the document tree either because that portion is not referenced in the

query or because that portion is not valid in the input period. This pruning is done

by copying the relevant portion and then associating every element and attribute with

the exact timestamp.

The stratum maps each non-terminal in a parsed τXQuery expression to a segment
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of valid XQuery code. Each production is handled individually, to minimize the slicing

that is required. The translation rule for each production is given in this section. Since

any XQuery program can be normalized by using the core grammar [19], a subset of

the XQuery grammar provided by the W3C, defining the semantics to map the core

grammar of τXQuery is sufficient.

The normalized result of the example query mentioned in Section 3.3.2 is shown

in Figure 5.5. This result is obtained by applying the normalization formally defined

in W3C working draft [19]. The only difference is we change the prefix fs to tau,

validtime

avg(for $c in

(let $tau:sequence:=document("CRM.xml") return

for $tau:dot in $tau:sequence return

for $tau:dot in $tau:dot/descendant-or-self::customer return

if ($tau:dot/attribute::supportLevel = "gold")

then $tau:dot

else ()) return

count(for $tau:dot in $c return

$tau:dot/child::supportIncident))

Figure 5.5. Normalizing the example query

since the normalization is the starting point of per-expression slicing and is treated

as part of the mapping. We do not normalize built-in functions. Each step of a path

expression is converted to some let and for expressions. The length of the query

is increased while the number of distinct nonterminals to be dealt with is reduced.

Some complicated expressions such as FLWR expressions and quantified expressions

are removed during normalization.

From now on, we will show the BNF of core grammar and the mapping of each

production in the core grammar. Normalization is performed before the translation

of sequenced queries. The mapping is defined by the function cb J K p. The period p

is propagated from the top level of the expression to the bottom during the mapping.

This description is somewhat involved, because the time-slicing is done individually
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for each nonterminal in the core grammar.

1. 〈Q〉 ::= 〈QueryProlog〉 〈QueryBody〉

As with the mapping function defined in previous sections, before 〈QueryProlog〉
and 〈QueryBody〉 are mapped, some necessary schema imports, namespace dec-

larations, and function definitions that help the sequenced mapping should be

put at the beginning. We have seen rs:vtExtent and tvv:timeVaryingValue-

Type previously. The type timeVaryingValueType is the timestamped analogue

of all the built-in simple types. This type is used for substitution of the original

data types referenced in the query body (especially in typeswitch expression

and the signature of functions). We will examine the details later. The tau

namespace also contains the sequenced version of the built-in operations and

functions such as xf:avg() and op:numeric-add().

cb J〈Q〉K p =

import schema namespace

rs = "http://www.cs.arizona.edu/tau/RXSchema"

at "RXSchema.xsd"

import schema namespace tvv = "http://www.cs.arizona.edu/tau/Tvv"

at "TimeVaryingValue.xsd"

declare namespace tau = "www.cs.arizona.edu/tau/Func"

cb J〈QueryProlog〉K p

define function tau:snapshot...

...

cb J〈QueryBody〉K p
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2. 〈QueryProlog〉 ::= (〈NamespaceDecl〉
| 〈XMLSpaceDecl〉
| 〈DefaultNamespaceDecl〉
| 〈DefaultCollationDecl〉
| 〈SchemaImport〉)∗ 〈FunctionDefn〉∗

〈XMLSpaceDecl〉 and 〈DefaultCollationDecl〉 do not need mapping. All the

rest require work. The namespace declaration produces an environment that

associates a prefix with a URI, whose schema location is indicated by the schema

import statement. The τXQuery processor maps the namespace declaration

to its temporal counterpart. For example, the following statement declares a

namespace crm defined by CRM.xsd.

import schema namespace crm = "CRM" at "CRM.xsd"

This declaration will be translated to the following.

import schema namespace tcrm =

"http://www.cs.arizona.edu/stratum/tCRM"

at "tCRM.xsd"

The file tCRM.xsd is a new schema file generated from CRM.xsd, but with all the

user-defined data type timestamped. We call it the timestamp schema. This

schema is similar to the schema that defines tvv:timeVaryingValueType. The

timestamp schema of the CRM example is given in Appendix I. The data types

defined in tCRM.xsd will be used when the sequenced query specifies data types

defined in CRM.xsd. The namespace tcrm replaces the namespace crm in the

sequenced query.

As an example, consider the type of customer in CRM.xml defined as crm:cust-

omerType. The timestamp schema tCRM.xsd defines another type tcrm:custom-

erType. An element of this new type have all the attributes and subelements
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of crm:customerType, along with zero or more timestamp and timeVarying-

Attribute which could appear as children of customer and all its subelements.

The 〈DefaultNamespaceDecl〉 is processed similarly. In this way, it is guaranteed

the user-defined type can be validated correctly in the sequenced semantics.

Consider the following statement that declares a default namespace crm defined

by CRM.xsd.

import schema default element namespace

crm ="CRM" at "CRM.xsd"

The declaration is translated to the following.

import schema default element namespace

tcrm ="http://www.cs.arizona.edu/stratum/tCRM"

at "tCRM.xsd"

When the namespace crm is specified in the query, it is replaced with tcrm. If

no namespace prefix is specified for an element in the query, the query processor

considers the element in the default namespace.

3. 〈FunctionDefn〉 ::= define function 〈FuncName〉 (〈ParamList〉?)
as 〈SequenceType〉
{〈ExprSequence〉}

cb J〈FunctionDefn〉K p =

define function 〈FuncName〉 ( ( cb J〈ParamList〉K p )? )

as cb J〈SequenceType〉K p

{cb J〈ExprSequence〉K p}
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〈ParamList〉 ::= 〈Param〉 ( , 〈Param〉)∗

cb J〈ParamList〉K p = cb J〈Param〉K p ( , cb J〈Param〉K p )∗

For the rest of the section, we will omit such obvious semantic functions that

mirror the productions.

〈Param〉 ::= 〈SequenceType〉 $〈VarName〉

cb J〈Param〉K p = cb J〈SequenceType〉K p $〈VarName〉

A function defined by a user should be evaluated using sequenced semantics.

However, the data type of the input parameters and the return value may be

the data types without timestamps, since the user may not have annotated the

particular data type. If the non-temporal signature of the function is retained,

the valid time period of the input expression will be lost. Thus, in such cases

the result of the function call doesn’t comply with the sequenced semantics

of the function. Changing the signature of the function by replacing the non-

temporal types with temporal types defined in the timestamp schema will solve

this problem.

〈SequenceType〉 ::= ( 〈ItemType〉〈OccurenceIndicator〉 ) | empty

cb J〈ItemType〉 〈OccurenceIndicator〉K p =

temType J〈ItemType〉K 〈OccurenceIndicator〉

The new semantic function temType J K takes a string representing a non-

temporal type as an input parameter and returns a string representing the

corresponding timestamped type. Note that the period p is not passed to this

function because this mapping does not depend on a particular period.
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〈ItemType〉 ::= ( ( element | attribute )〈ElemOrAttrType〉? )

| 〈AtomicType〉
| node
| processing-instruction
| comment
| text
| document
| item
| untyped
| atomic value

〈AtomicType〉, atomic value, and untyped are mapped to tvv:timeVarying-

ValueType. An element with the type specified is converted to its timestamped

counterpart. For example, element of type crm:customerType is converted

to element of type tcrm:customerType. An attribute is always mapped

to an element of the type rs:vtAttributeTS. The remaining data types retain

their XQuery semantics.

4. 〈QueryBody〉 ::= 〈ExprSequence〉?

〈ExprSequence〉 ::= 〈Expr〉 ( ,〈Expr〉 )∗

〈Expr〉 ::= 〈ForExpr〉 | 〈LetExpr〉

〈ForExpr〉 ::= ( 〈ForClause〉 〈OrderByClause〉? return )∗ 〈TypeswitchExpr〉
〈ForClause〉 ::= for 〈SequenceType〉? $〈VarName〉 in 〈Expr1〉
〈OrderByClause〉 ::= order by 〈Expr2〉 〈OrderModifier〉
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cb J〈ForExpr〉K p =

for $tau:i in cb J〈Expr1〉K p

for $tau:p in tau:periods-of($tau:i)

let (cb J〈SequenceType〉K p)? $〈VarName〉 :=

tau:copy-restricted-subtree($tau:p, $tau:i)

for $tau:i1 in cb J〈Expr2〉K $tau:p
for $tau:p1 in tau:periods-of($tau:i1)

order by $tau:i1 〈OrderModifier〉
return cb J〈TypeswitchExpr〉K $tau:p1

The auxiliary function periods-of() returns all the timestamps associated

with the input node. Since the sequence returned by 〈Expr1〉 could contain

multiple versions of an item, valid over different periods of time, the follow-

ing 〈OrderByClause〉 should be evaluated in each of these periods. Similarly,

The evaluation of sequenced 〈Expr2〉 produces more and shorter valid periods.

〈TypeswitchExpr〉 should be evaluated in each of these periods. The function

copy-restricted-subtree() makes a copy of the input node (nodes) and re-

moves the subtrees that are not valid in the input period.

5. 〈LetExpr〉 ::= ( 〈LetClause〉 return )∗ 〈TypeswitchExpr〉
〈LetClause〉 ::= let 〈SequenceType〉? $〈VarName〉 := 〈Expr〉

cb J〈LetExpr〉K p =

let $tau:s := cb J〈Expr〉K p

for $tau:p in tau:const-periods(p, $tau:s)

let (cb J〈SequenceType〉K p)? $〈VarName〉 :=

tau:copy-restricted-subtree($tau:p, $tau:s)

return cb J〈TypeswitchExpr〉K $tau:p

In XQuery, 〈LetExpr〉 binds a variable to the value of an expression which

could be a single item or a sequence. In sequenced τXQuery, the expression
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is evaluated to a sequence even it is a single item at each time point. So, the

expression is time-sliced in each constant period to ensure the variable is bound

to the correct value.

The auxiliary function const-periods() is similar to all-const-periods().

The only difference is that the former returns the constant periods for each of

the nodes in the input sequence, not for all the subelements. Thus, the periods

returned in this level could be divided further into smaller constant periods.

6. 〈TypeswitchExpr〉 ::= ( typeswitch (〈Expr〉)
( case 〈SequenceType〉 $〈VarName〉 return 〈Expr1〉 )+

default $〈VarName〉 return )∗ 〈IfExpr〉

The mapping of 〈TypeswitchExpr〉 is similar to that of 〈LetExpr〉.

cb J〈TypeswitchExpr〉K p =

let $tau:s := cb J〈Expr〉K p

for $tau:p in tau:const-periods(p, $tau:s)

let $tau:v := tau:copy-restricted-subtree($tau:p, $tau:s)

return typeswitch ($tau:v)

(case cb J〈SequenceType〉K $tau:p $〈VarName〉
return cb J〈Expr1〉K $tau:p )+

default $〈VarName〉 return cb J〈IfExpr〉K $tau:p

7. 〈IfExpr〉 ::= ( if (〈Expr1〉) then 〈Expr2〉 else )∗ 〈ValueExpr〉
cb J〈IfExpr〉K p =

let $tau:b := cb J〈Expr1〉K p

for $tau:p in tau:const-periods(p, $tau:b)

let $tau:s := tau:snapshot($tau:b, $tau:p/@vtBegin) return

if ($tau:s)

then cb J〈Expr2〉K $tau:p
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else cb J〈ValueExpr〉K $tau:p

In XQuery, 〈IfExpr〉 evaluates an expression to a Boolean value and chooses

the branch according to that value. The rule to evaluate the expression to a

Boolean value is complicated by the fact that the result of the expression may

be time-varying. This is why we time-slice the expression to be evaluated to

a Boolean value and then evaluate the snapshot of the expression over each of

the constant periods.

8. 〈ValueExpr〉 ::= 〈ValidateExpr〉 | 〈CastExpr〉 | 〈Constructor〉 | 〈StepExpr〉
〈ValidateExpr〉 ::= validate 〈SchemaContext〉? { 〈Expr〉 }

cb J〈ValidateExpr〉K p =

let $tau:s := cb J〈Expr〉K p

for $tau:p in tau:const-periods(p, $tau:s) return

validate ( temSC J〈SchemaContext〉K )?

tau:copy-restricted-subtree($tau:p, $tau:s)

〈SchemaContext〉 = in 〈SchemaGlobalContext〉 ( /〈SchemaContextStep〉 )∗

〈SchemaGlobalContext〉 = 〈QName〉 | type 〈QName〉
〈SchemaContextStep〉 = 〈QName〉

temSC J〈SchemaContext〉K =

in temSC J〈SchemaGlobalContext〉K ( /temSC J〈SchemaContextStep〉K )∗

The new function temSC J K maps a string which is a name of an element,

attribute, or type, to its timestamped analog. This function is similar to

temType J K. The timestamp of the node will not be lost after it is validated

since the non-temporal schema context is replaced by the corresponding tempo-

ral schema context. An example of 〈ValidateExpr〉 is as follows (suppose that

$x is bound to a product element).
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validate in crm:customer/supportIncident $x

The 〈SchemaContext〉 portion is mapped to the following.

tcrm:customer/supportIncident

9. 〈CastExpr〉 ::= cast as 〈AtomicType〉 (〈ExprSequence〉?)

cb J〈CastExpr〉K p =

let $tau:s := cb J〈ExprSequence〉K p

for $tau:p in tau:const-periods(p, $tau:s)

let $tau:v := cast as 〈AtomicType〉 tau:snapshot(

tau:copy-restricted-subtree($tau:p, $tau:s), $tau:p/@vtBegin)

where not(empty($tau:v))

return <timeVaryingValue>

$tau:p

<value>$tau:v</value>

</timeVaryingValue>

Since the 〈CastExpr〉 can only cast an expression of one atomic type to another

atomic type, we cast the snapshot of the expression at each constant period and

wrap the cast result in a timeVaryingValue element.

10. 〈Constructor〉 ::= 〈XmlComment〉
| 〈XmlProcessingInstruction〉
| 〈ComputedDocumentConstructor〉
| 〈ComputedElementConstructor〉
| 〈ComputedAttributeConstructor〉
| 〈ComputedTextConstructor〉
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Only computed constructors have a sequenced semantics different from their

XQuery semantics.

〈ComputedDocumentConstructor〉 ::=

document { 〈ExprSequence〉 }

cb J〈ComputedDocumentConstructor〉K p =

document

{ element timeVaryingRoot

{ p, cb J〈ExprSequence〉K p }
}

One timeVaryingRoot element is added to each computed document as the

root element. This is again because the expression sequence is time-varying.

Without timeVaryingRoot, multiple versions of the root will violate the well-

formedness of a document.

〈ComputedElementConstructor〉 ::= element 〈QName〉 { 〈ExprSequence〉? }
| element { 〈Expr〉} {〈ExprSequence〉?}

cb Jelement 〈QName〉 {〈ExprSequence〉}K p =

element 〈QName〉 { p, cb J〈ExprSequence〉K p }

The mapping of a computed element constructor adds a timestamp to the ele-

ment and evaluates the expression sequence using the sequenced semantics.

cb Jelement 〈Expr〉 {〈ExprSequence〉}K p =

let $tau:s := cb J〈Expr〉K p

for $tau:p in $tau:const-periods(p, $tau:s)
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return

element {snapshot(tau:copy-restricted-subtree($tau:p, $tau:s),

$tau:p/@vtBegin)}
{

$tau:p,

cb J〈ExprSequence〉K $tau:p
}

〈ComputedAttributeConstructor〉 ::= attribute 〈QName〉 {〈ExprSequence〉?}
| attribute {〈Expr〉} {〈ExprSequence〉?}

cb J〈ComputedAttributeConstructor〉K p =

let $tau:s := cb J〈ExprSequence〉K p

for $tau:p in $tau:const-periods(p, $tau:s) return

element timeVaryingAttribute

{
attribute name {〈QName〉},
attribute value {tau:snapshot(tau:copy-restricted-subtree(

$tau:p,$tau:s), $tau:p/@vtBegin)},
attribute vtBegin {$tau:p/@vtBegin},
attribute vtEnd {$tau:p/@vtEnd}

}

An attribute constructor is mapped to construct a sequence of timeVaryingAttribute

elements. When the attribute name itself is an expression, the valid periods of

the attribute are computed from both the 〈Expr〉 and the 〈ExprSequence〉.

11. 〈StepExpr〉 ::=

$〈VarName〉/〈ForwardStep〉 | $〈VarName〉/〈ReverseStep〉 | 〈PrimaryExpr〉

〈ForwardStep〉 ::= 〈ForwardAxis〉 〈NodeTest〉
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〈ForwardAxis〉 ::= child ::

| descendant ::

| attribute ::

| self ::

| descendant-or-self ::

| following-sibling ::

| following ::

| namespace ::

〈NodeTest〉 ::= 〈KindTest〉 | 〈NameTest〉

〈KindTest〉 ::= processing-instruction(〈StringLiteral〉?)
| comment()
| text()
| node()

〈KindTest〉 is mapped to itself.

〈NameTest〉 ::= 〈QName〉 | 〈Wildcard〉

Among the forward axes, the attribute axis is special because all the attributes

are mapped to elements. The following function gives the mapping rule for

attributes.

cb J$〈VarName〉/attribute::〈NameTest〉K p =

for $tau:ta in $〈VarName〉/timeVaryingAttribute[@name=〈NameTest〉]
return tau:copy-restricted-subtree(p, $tau:ta)

The function copy-restricted-subtree() guarantees the valid period of the

returned time-varying attribute is the intersection of the period of the original

time-varying attribute and that of the input period.
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The other forward steps are mapped as follows. The filters in the where clause

is needed when the 〈NodeTest〉 is a wildcard. It hides all the subelements added

by τXQuery from the user.

cb J$〈VarName〉/〈ForwardStep〉K p =

for $tau:step in $〈VarName〉/〈ForwardAxis〉 cb J〈NodeTest〉K p

where not(tau:special-node($tau:step))

return tau:copy-restricted-subtree(p, $tau:step))

The function special-node() returns true when the input node is a special

node (e.g., timestamp and timeVaryingAttribute) for representing the valid

periods. This where clause filters out those special nodes when the 〈NodeTest〉
is a wildcard. Only when the 〈NodeTest〉 is a 〈NameTest〉 and it has the format

of 〈Prefix〉:〈LocalName〉, does it need to be mapped to sequenced semantics.

The new function temNode J K takes the string representing the name of a

namespace and returns the corresponding temporal namespace.

cb J〈Prefix〉:〈LocalName〉K p = temNode J〈Prefix〉K:〈LocalName〉

Due to the copy-based nature, the results at each step are not the original

nodes in the documents, but copies of those nodes with the same value in

the corresponding valid periods. It is easy to understand that the ancestor

information cannot be obtained. Thus, this approach does not work for reverse

axis and sibling axis in path expression of the original node. In the next section,

we will introduce a per-expression slicing approach that can handle all the path

expressions.

〈ReverseStep〉 ::= 〈ReverseAxis〉〈NodeTest〉
〈ReverseAxis〉 ::= parent::
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| ancestor::
| preceding-sibling::
| preceding::
| ancestor-or-self::

12. 〈PrimaryExpr〉 ::= 〈Literal〉
| 〈FunctionCall〉
| $〈VarName〉
| ( 〈ExprSequence〉? )

cb J〈Literal〉K p =

<timeVaryingValue>

p,

<value>〈Literal〉</value>
</timeVaryingValue>

A 〈Literal〉 is mapped to a timeVaryingValue element.

13. 〈FunctionCall〉 ::= 〈QName〉 ( ( 〈Expr1〉 ( , 〈Expr2〉 )∗ )? )

Functions in τXQuery are divided into two groups. Each group of functions are

treated differently from others when they are called.

The first group are user-defined functions, which are mapped as follows.

cb J〈FunctionCall〉K p = 〈QName〉( ( cb J〈Expr1〉K p( , cb J〈Expr2〉K p )∗ )?)

The second group are built-in functions. These function calls can be mapped

by going through the following steps. First, all the constant periods of the

input data (and the subtree rooted at the input data) are found and put into

a sorted sequence. Then, the original function is called once on each snapshot
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of the input data on each constant period. Finally the results are timestamped

accordingly.

cb J〈FunctionCall〉K p =

let $tau:par1 := cb J〈Expr1〉K p

let $tau:par2 := cb J〈Expr2〉K p

for $tau:p in tau:all-const-periods(p,

($tau:par1, $tau:par2)) return

tau:associate-timestamp($tau:p,

〈QName〉(tau:snapshot($tau:par1, $tau:p/@vtBegin),

tau:snapshot($tau:par2, $tau:p/@vtBegin)))

Some built-in functions, cannot be given a sequenced semantics because the

identity information is lost when the nodes are copied during the evaluation.

These functions are listed below.

xf:base-uri

xf:lang

xf:root

xf:id

xf:idref

op:node-equal

xf:distinct-nodes

14. cb J$〈VarName〉K p =

tau:copy-restricted-subtree(p, $〈VarName〉)

The function copy-restricted-subtree() takes one or more time periods and

a variable as input parameters. It propagates the time period from the top node
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of the variable to all its descendants, while removing elements not valid during

the input periods.

Given the example query stated in Section 3.3.2, the τXQuery processor first

normalizes it to the query shown in Figure 5.5. This normalized query is then mapped

to the XQuery query in Figure 5.6. The document trees (or sub-trees) are time-sliced

at each level of the expression on the constant periods of the root of the trees (or

sub-trees). A copy of the intermediate result is made on each constant period by

copy-restricted-subtree(). When the evaluation goes to a deeper level of the

expression, the intermediate result is time-sliced further either because the evaluation

period changes or because the context nodes are in a deeper level of the document

trees.

5.2.2 In-Place Per-Expression Slicing

Rather than timestamping all the intermediate results, in-place per-expression slicing

keeps all the intermediate results with the document. To record the valid period of

these intermediate results, it puts the intermediate results and their actual timestamps

in one sequence in the form of (item, timestamp, item, timestamp, ...). When the

evaluation of the query is finished, the stratum associates the actual timestamps with

each item to obtain the final result. In this way, the XQuery engine can identify each

node in the context of the original document and find the ancestor of each node as

well.

In this approach, whenever an item is needed in the evaluation, an (item, times-

tamp) pair is provided. The difference between copy-based slicing and in-place slicing

is shown in Figure 5.7. Figure 5.7(a) shows a customer element in the original doc-

ument. The customer has two timestamped sub-elements supportIncident. The

support level of this customer changed from gold to platinum at time point 3. Con-

sider the syntax tree in Figure 5.3. When the path expression in the lower left part
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{-- validtime avg(for $c in --}
let $tau:par :=

(for $tau:i in
{-- let $tau:sequence:=document("CRM.xml") return --}
(let $tau:s := tau:copy-restricted-subtree(tau:period("1000-01-01",

"9999-12-31"), document("CRM.xml"))
for $tau:p in tau:const-periods(tau:period("1000-01-01", "9999-12-31"),

$tau:s)
let $tau:sequence := tau:copy-restricted-subtree($tau:p, $tau:s) return
{-- for $tau:dot in $tau:sequence return --}
for $tau:i1 in tau:copy-restricted-subtree($tau:p, $tau:sequence)
for $tau:p1 in tau:periods-of($tau:i1)
let $tau:dot := tau:copy-restricted-subtree($tau:p1, $tau:i1) return
{-- for $tau:dot in $tau:dot/descendant-or-self::customer return --}
for $tau:i2 in

(for $tau:step in $tau:dot/descendant-or-self::customer return
tau:copy-restricted-subtree($tau:p1, $tau:step))

for $tau:p2 in tau:periods-of($tau:i2)
let $tau:dot := tau:copy-restricted-subtree($tau:p2, $tau:i2) return
{-- if expression--}
for $tau:c in

(for $tau:ta in $tau:dot/timeVaryingAttribute[@name="supportLevel"]
return tau:copy-restricted-subtree($tau:p2, $tau:step))

let $tau:p3 := tau:periods-of($tau:c)
let $tau:b := element timeVaryingValue

{$tau:p3,
$tau:c/@value = "gold"}

let $tau:s := tau:snapshot($tau:b, $tau:p3/@vtBegin) return
if ($tau:s)
then tau:copy-restricted-subtree($tau:p3, $tau:dot)
else ())

for $tau:p in tau:periods-of($tau:i)
let $c := tau:copy-restricted-subtree($tau:p, $tau:i) return
{-- count(for $tau:dot in $c return --}
let $tau:par1 :=

(let $tau:s1 := tau:copy-restricted-subtree($tau:p, $c)
for $tau:p1 in tau:const-periods($tau:p, $tau:s1)
let $tau:dot := tau:copy-restricted-subtree($tau:p1, $tau:s1) return

{-- $tau:dot/child::supportIncident))) --}
for $tau:step in $tau:dot/child::supportIncident
tau:copy-restricted-subtree($tau:p1, $tau:step))

for $tau:p2 in tau:all-const-periods($tau:p, $tau:par1) return
tau:associate-timestamp($tau:p2,

count(tau:snapshot($tau:par1, $tau:p2/@vtBegin))))
for $tau:p in tau:all-const-periods(tau:period("1000-01-01", "9999-12-31"),
$tau:par)
return tau:associate-timestamp($tau:p, avg(tau:snapshot($tau:par,
$tau:p/@vtBegin)))

Figure 5.6. The Result of Copy-Based Per-Expression Slicing
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of the tree is evaluated, the intermediate result in copy-based slicing is shown in Fig-

ure 5.7(b). Copy-based slicing makes a copy of the relevant portion with the correct

timestamp. In-place slicing returns the original sub-tree with an actual timestamp as

shown in Figure 5.7(c).
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Figure 5.7. Intermediate results for per-expression slicing

As in the last section, we will show the translation for in-place slicing production

by production. The semantic function that defines the mapping is called inp J K p. It

is helpful to compare each production with the analogous definition of cb J K .

1. 〈Q〉 ::= 〈QueryProlog〉 〈QueryBody〉

inp J〈Q〉K p =

import schema namespace

rs = "http://www.cs.arizona.edu/tau/RXSchema"

at "RXSchema.xsd"

declare namespace tau = "www.cs.arizona.edu/tau/Func"

inp J〈QueryProlog〉K p

define function tau:apply-timestamp...

...

tau:apply-timestamp(inp J〈QueryBody〉K p)

Since the result of inp J〈QueryBody〉K p is a sequence of items and their times-

tamps, One more step over cb J K is needed to get the desired result. The
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function apply-timestamp() makes a copy of the final result with the correct

timestamps.

2. 〈QueryProlog〉 ::= (〈NamespaceDecl〉
| 〈XMLSpaceDecl〉
| 〈DefaultNamespaceDecl〉
| 〈DefaultCollationDecl〉
| 〈SchemaImport〉)∗ 〈FunctionDefn〉∗

Among the non-terminals on the right-hand-side, only 〈FunctionDefn〉 need to

be translated.

〈FunctionDefn〉 ::= define function 〈FuncName〉 (〈ParamList〉?)
as 〈SequenceType〉
{〈ExprSequence〉}

inp J〈FunctionDefn〉K p =

define function 〈FuncName〉 ( ( inp J〈ParamList〉K p )? ) as item*

{inp J〈ExprSequence〉K p}

The signature of each user-defined function is changed from cb J K so that all

the input and output data types are item* no matter what type they are in

the original query. The reason is the intermediate result is always a sequence

of items and their timestamps.

3. 〈QueryBody〉 ::= 〈ExprSequence〉?

〈ExprSequence〉 ::= 〈Expr〉 ( ,〈Expr〉 )∗

〈Expr〉 ::= 〈ForExpr〉 | 〈LetExpr〉
〈ForExpr〉 ::= ( 〈ForClause〉 〈OrderByClause〉? return )∗ 〈TypeswitchExpr〉
〈ForClause〉 ::= for 〈SequenceType〉? $〈VarName〉 in 〈Expr1〉
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〈OrderByClause〉 ::= order by 〈Expr2〉 〈OrderModifier〉

inp J〈ForExpr〉K p =

let $tau:s := inp J〈Expr1〉K p

for $tau:i in (1 to (count($tau:s) div 2))

let $tau:vi := 2 * $tau:i - 1

let $tau:v := item-at($tau:s, $tau:vi)

let $tau:p := item-at($tau:s, $tau:vi+1)

let $〈VarName〉 := ($tau:v,$tau:p)

let $tau:s1 := inp J〈Expr2〉K $tau:p
for $tau:i1 in (1 to (count($tau:s1) div 2))

let $tau:vi1 := 2 * $tau:i1 - 1

let $tau:v1 := item-at($tau:s1, $tau:vi1)

let $tau:p1 := item-at($tau:s1, $tau:vi1+1)

order by $tau:v1

return inp J〈TypeswitchExpr〉K $tau:p1

The variable 〈VarName〉 is bound to an (item, timestamp) pair instead of a sin-

gle item in cb J K. The order by operation changes the ordering of the items in

the intermediate results. The mapping function must make sure the timestamp

is immediately after the corresponding item.

4. 〈LetExpr〉 ::= ( 〈LetClause〉 return )∗ 〈TypeswitchExpr〉
〈LetClause〉 ::= let 〈SequenceType〉? $〈VarName〉 := 〈Expr〉

inp J〈LetExpr〉K p =

let $tau:s := inp J〈Expr〉K p

for $tau:p in tau:const-periods2(p, $tau:s)

let $〈VarName〉 := tau:sequence-in-period($tau:s, $tau:p)

return inp J〈TypeswitchExpr〉K $tau:p
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The function const-periods2() takes a sequence, including items and their

timestamps, and a period as inputs. It returns the constant periods of this

sequence of items contained in the input period. The function sequence-in-

period() takes two input parameters, a sequence of items with their timestamps

and a period. It computes the overlap of the valid period of each item and the

input period. Those items that are not valid in the input period are filtered

out. The rest items with the overlapped periods are returned in a sequence.

5. 〈TypeswitchExpr〉 ::= ( typeswitch (〈Expr〉)
( case 〈SequenceType〉 $〈VarName〉 return 〈Expr1〉 )+

default $〈VarName〉 return )∗ 〈IfExpr〉

seq J〈TypeswitchExpr〉K p =

let $tau:s := inp J〈Expr〉K p

for $tau:p in tau:const-periods2(p, $tau:s)

let $tau:ss := tau:sequence-in-period($tau:s, $tau:p)

let $tau:ssp := tau:get-periods($tau:ss) return

typeswitch (tau:get-actual-items($tau:ss))

(case 〈SequenceType〉 $tau:v return

let $〈VarName〉 := tau:interleave($tau:v, $tau:ssp) return

inp J〈Expr1〉K $tau:p)+

default $tau:v return

let $〈VarName〉 := tau:interleave($tau:v, $tau:ssp) return

inp J〈IfExpr〉K $tau:p

When the type of the expression is examined, the actual items are extracted

from the sequence. Before the result is returned, the timestamps and the actual

items are interleaved in one sequence. The function get-periods() takes a

sequence and returns the timestamps in the even position as a sequence. Simi-

larly, the function get-actual-items() returns the items in the odd position
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as a sequence. The function interleave() takes two sequences as inputs and

interleaves them as one sequence.

6. 〈IfExpr〉 ::= ( if (〈Expr1〉) then 〈Expr2〉 else )∗ 〈ValueExpr〉

inp J〈IfExpr〉K p =

let $tau:s := inp J〈Expr1〉K p

for $tau:p in tau:const-periods2(p, $tau:s) return

if (tau:get-actual-items(tau:sequence-in-period($tau:s,

$tau:p)))

then inp J〈Expr2〉K $tau:p
else inp J〈ValueExpr〉K $tau:p

7. 〈ValueExpr〉 ::= 〈ValidateExpr〉 | 〈CastExpr〉 | 〈Constructor〉 | 〈StepExpr〉
〈ValidateExpr〉 ::= validate 〈SchemaContext〉? { 〈Expr〉 }

inp J〈ValidateExpr〉K p =

let $tau:s := inp J〈Expr〉K p

for $tau:p in tau:const-periods2(p, $tau:s)

let $tau:ss := tau:sequence-in-period($tau:s, $tau:p)

let $tau:v := validate 〈SchemaContext〉?

tau:get-actual-items($tau:ss)

return tau:interleave($tau:v, get-periods($tau:ss))

8. 〈CastExpr〉 ::= cast as 〈AtomicType〉 (〈ExprSequence〉?)

inp J〈CastExpr〉K p =

let $tau:s := inp J〈Expr〉K p

for $tau:p in tau:const-periods2(p, $tau:s)

let $tau:ss := tau:sequence-in-period($tau:s, $tau:p)

let $tau:v := cast as 〈AtomicType〉 tau:get-actual-items($tau:ss)

return tau:interleave($tau:v, get-periods($tau:ss))



83

9. 〈Constructor〉 ::= 〈XmlComment〉
| 〈XmlProcessingInstruction〉
| 〈ComputedDocumentConstructor〉
| 〈ComputedElementConstructor〉
| 〈ComputedAttributeConstructor〉
| 〈ComputedTextConstructor〉

Among the non-terminals on the right-hand-side, the mapping of 〈XmlComment〉
and 〈XmlProcessingInstruction〉 are very similar. We show the mapping of

〈XmlComment〉 only.

inp J〈XMLComment〉K p = (〈XMLComment〉, p)

〈ComputedDocumentConstructor〉 ::= document{ 〈ExprSequence〉 }

inp J〈ComputedDocumentConstructor〉K p =

(document { tau:copy-restricted-items(inp J〈ExprSequence〉K p)}, p)

The translation of computed constructors is “copy-based” in in-place slicing.

The result of a document constructor must be a well-formed document including

only one root element, instead of a root element with a timestamp element.

In addition, the evaluation of constructor in XQuery is copy-based (once an

element is used to construct another node, its parent information in the original

document is lost). Therefore, a copying approach is used here. The function

copy-restricted-items() takes a sequence of items and their timestamps

as inputs and copies the actual items with the correct timestamps without

changing the structure of these items. This function is used in computed element

constructor and computed attribute constructor as well.

〈ComputedElementConstructor〉 ::= element 〈QName〉 { 〈ExprSequence〉? }
| element { 〈Expr〉} {〈ExprSequence〉?}
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inp Jelement 〈QName〉 {〈ExprSequence〉}K p =

(element 〈QName〉
{tau:copy-restricted-items(inp J〈ExprSequence〉K p)}, p)

inp Jelement 〈Expr〉 {〈ExprSequence〉}K p =

let $tau:s := inp J〈Expr〉K p

for $tau:p in tau:const-periods2(p, $tau:s) return

(element {tau:copy-restricted-items(
tau:sequence-in-period($tau:s, $tau:p))}

{tau:copy-restricted-items(inp J〈ExprSequence〉K $tau:p)},
$tau:p)

〈ComputedAttributeConstructor〉 ::= attribute 〈QName〉 {〈ExprSequence〉?}
| attribute {〈Expr〉} {〈ExprSequence〉?}

inp J〈ComputedAttributeConstructor〉K p =

let $tau:s := inp J〈ExprSequence〉K p

for $tau:p in tau:const-periods2(p, $tau:s) return

(attribute 〈QName〉
{tau:copy-restricted-items(tau:sequence-in-period($tau:s,

$tau:p))}, $tau:p)

10. 〈StepExpr〉 ::=

$〈VarName〉/〈ForwardStep〉 | $〈VarName〉/〈ReverseStep〉 | 〈PrimaryExpr〉

One major advantage of in-place slicing is that all the 〈PathExpr〉 can be han-

dled. The reverse step is translated the same as the forward step. We show

only the forward step here.
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〈ForwardAxis〉 ::= child ::

| descendant ::

| attribute ::

| self ::

| descendant-or-self ::

| following-sibling ::

| following ::

| namespace ::

〈NodeTest〉 ::= 〈KindTest〉 | 〈NameTest〉

inp J$〈VarName〉/〈ForwardStep〉K p =

let $tau:s := tau:get-actual-items($〈VarName〉)
let $tau:p := tau:get-periods($〈VarName〉)
where tau:overlaps($tau:p, p) return

let $tau:p1 := tau:intersection($tau:p, p)

for $tau:step in $tau:s/〈ForwardStep〉
where not(tau:special-node($tau:step))

and tau:overlaps($tau:p1, $tau:step) return

($tau:step, tau:intersection($tau:p1, $tau:step))

The function overlaps() is used to examine if the two input parameters overlap

in term of the valid-time. The function intersection() computes the valid-

time intersection of the two input parameters.

The translation of the attribute axis requires more work, though it is similar

to the above mapping. The reason is the representation of the time-varying

attribute is an element.
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inp J$〈VarName〉/attribute::〈NameTest〉K p =

let $tau:s := tau:get-actual-items($〈VarName〉)
let $tau:p := tau:get-periods($〈VarName〉)
where tau:overlaps($tau:p, p) return

let $tau:p1 := tau:intersection($tau:p, p) return

(for $tau:a in $tau:s/attribute::〈NameTest〉 return

($tau:a, $tau:p1),

for $tau:ta in $tau:s/timeVaryingAttribute[@name=〈NameTest〉]
where tau:overlaps($tau:ta, $tau:p1) return

($tau:ta, tau:intersection($tau:ta, $tau:p1)))

11. 〈PrimaryExpr〉 ::= 〈Literal〉
| 〈FunctionCall〉
| $〈VarName〉
| ( 〈ExprSequence〉? )

inp J〈Literal〉K p = (〈Literal〉, p)

inp J$〈VarName〉K p =

tau:sequence-in-period($〈VarName〉, p)

12. 〈FunctionCall〉 ::= 〈QName〉 ( ( 〈Expr1〉 ( , 〈Expr2〉 )∗ )? )

As in copy-based slicing, the user-defined functions and the built-in functions

are treated differently. The mapping of user-defined function calls is as follows.

inp J〈FunctionCall〉K p = 〈QName〉( ( inp J〈Expr1〉K p( , inp J〈Expr2〉K p )∗ )?)

The mapping of built-in function can be written by going through the following

steps. first, all the constant periods of the input data (and the subtree rooted at
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the input data) are found and put into a sorted sequence. Then, the actual items

in each constant period are extracted from the input. The original function is

called once on each constant period. Finally, the results are returned with their

timestamps.

inp J〈FunctionCall〉K p =

let $tau:par1 := inp J〈Expr1〉K p

let $tau:par2 := inp J〈Expr2〉K p

for $tau:p in tau:all-const-periods2(p, ($tau:par1, $tau:par2))

let $tau:s1 := tau:sequence-in-period($tau:par1, $tau:p)

let $tau:s2 := tau:sequence-in-period($tau:par2, $tau:p) return

(〈QName〉(tau:get-actual-items($tau:s1),
tau:get-actual-items($tau:s2)), $tau:p)

The function all-const-periods2() takes a time period as well as a sequence

of items and their timestamps as inputs. It returns the constant periods of all

the items and their descendants. The returned periods must be contained in

the input period.

Unlike copy-based slicing, in-place slicing can handle all the built-in functions

since it does not copy the data until constructors are evaluated.

In-place slicing can handle all the sequenced queries in the cost of keeping more

data in the intermediate results and generating longer XQuery expressions. On the

other hand, since it does not change the nodes in the intermediate results, the times-

tamped analog for each namespace and data type is not needed.

Using the in-place slicing, the normalized query shown in Figure 5.5 is mapped to

the XQuery query in Appendix J. We put it in the Appendix because it is too long

to fit in a figure. The translated result is longer than that of the copy-based slicing,

because the actual items are extracted from the mixed sequence before each evaluation
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step and are paired with their timestamps after each evaluation step. However, it does

not copy the nodes until the end of the evaluation. Hence, it does not necessarily

take longer to run than the result of the copy-based slicing.

5.3 Idiomatic Slicing

Idiomatic slicing applies to both copy-based and in-place per-expression slicing. As

we have seen, the normalization of path expressions is tedious. A path expression

with one step is normalized to at least one line of let-for expression. If there is a path

expression with multiple steps, the result of the normalization will be much longer

than the path expression.

In each step of copy-based slicing, the data is time-sliced and the valid timestamps

are propagated to the lower level nodes by copying the valid subtree. Since let and

for expressions both time-slice the expression appearing in them, there are a lot

of time-slices generated. The intermediate results are copied at each step. In the

example query, each variable $tau:dot is copied at least twice. Excessive copying

can potentially lead to bad performance.

To avoid the extra slicing and copying, a path expression can be translated with-

out normalization. This is an instance of idiomatic slicing, in which two or more

consecutive expressions in a query are analyzed as a unit to determine where the

time-slicing most profitably should occur. The example query discussed in last sec-

tion is translated into the query in Figure 5.8 using the copy-based idiomatic slicing.

The auxiliary function seq-path() is defined in Appendix C. It returns the

sequenced query results of a path expression. This function traverses the subtree

rooted at the context node. When it visits a node, it checks whether the node is

a target node. If the node is a target node, it copies and returns the valid subtree

of the node. Thus, copying occures only when the node is found instead of at each

step. Compared with the query in Figure 5.6, the length of the query body is reduced
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{-- the normalized result:
validtime avg(for $c in

(for $tau:dot in document("CRM.xml")//customer return
if ($tau:dot/attribute::supportLevel = "gold")
then $tau:dot
else ()) return

count($c/supportIncident)) --}
let $tau:par :=

(for $tau:i in
(for $tau:i1 in tau:seq-path(tau:period("1000-01-01", "9999-12-31"),

document("CRM.xml")//customer, document("CRM.xml"))
for $tau:p1 in tau:periods-of($tau:i1)
let $tau:dot := tau:copy-restricted-subtree($tau:p1, $tau:i1) return
for $tau:c in
(for $tau:ta in $tau:dot/timeVaryingAttribute[@name="supportLevel"]
return tau:copy-restricted-subtree($tau:p1, $tau:step))

let $tau:p2 := tau:periods-of($tau:c)
let $tau:b := element timeVaryingValue

{$tau:p2,
$tau:c/@value = "gold"}

let $tau:s := tau:snapshot($tau:b, $tau:p3/@vtBegin) return
if ($tau:s)
then tau:copy-restricted-subtree($tau:p3, $tau:dot)
else ())

for $tau:p in tau:periods-of($tau:i)
let $c := tau:copy-restricted-subtree($tau:p, $tau:i) return

let $tau:par1 := tau:seq-path($tau:p, $c/supportIncident, $c)
for $tau:p2 in tau:all-const-periods($tau:p, $tau:par1) return
tau:associate-timestamp($tau:p2,

count(tau:snapshot($tau:par1, $tau:p2/@vtBegin))))
for $tau:p in tau:all-const-periods(tau:period("1000-01-01", "9999-12-31"),

$tau:par)
return tau:associate-timestamp($tau:p, avg(tau:snapshot($tau:par,
$tau:p/@vtBegin)))

Figure 5.8. The Result of Copy-Based Idiomatic Slicing
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dramatically by the copy-based idiomatic slicing. More importantly by reducing the

number of nodes being copied, the performance of the mapped query can be improved

potentially.

One limitation of seq-path() is it does not work when the path expression has

predicates that contains time-varying nodes. In this case, the predicates are normal-

ized first. In Figure 5.8, the first path expression is normalized before mapping, while

the second one is mapped directly.

Idiomatic slicing can also be used to eliminate some of the unneeded slicing thus

makes the mapped query more efficient. There are several situations in which id-

iomatic slicing applies. One is when a let expression binds a variable $a to a se-

quence, followed by a for expression that binds a variable $b to each of the items

in $a. When the for expression is translated, there is no need to evaluate $a in

sequenced semantics, because the evaluation period for $a does not change and the

function copy-restricted-subtree() will do useless work on $a.

Idiomatic slicing also applies to in-place slicing. The advantage of in-place id-

iomatic slicing is that the length of the result query is shorter than that in in-place

slicing. In-place idiomatic slicing use the auxiliary function seq-path-inp(), which

is analogous to seq-path-inp(). This function pairs the target node with the times-

tamp representing its valid period instead of copying the target node.

5.4 Using the Schema

In all the time-slicing techniques we proposed, we didn’t take schema into considera-

tion since a schema is not always available and a schema is not required by XQuery.

However, the schema information can help improve the mapping if it is available.

When evaluating a sequenced path expression, the τXQuery processor propagates

the valid-time periods from the root to the target nodes since the target nodes may

not have the valid-time periods, in which case, the target nodes inherit the valid-
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time period of their nearest ancestor. However, if the τXQuery processor has the

knowledge that the target nodes do have their own valid-time periods, it can save the

propagation of the valid-time periods. This information can be easily found in the

schema of the temporal XML document.

5.5 Comparison

We have proposed six ways to effect time-slicing of the input documents into constant

periods to enable sequenced queries. Maximally-fragmented time-slicing produces

the shortest XQuery expressions. It works in all cases except where the name of

a document is itself an expression. Selected node time-slicing reduces the number

of constant periods, sometimes significantly, at the expense of more analysis by the

stratum. Per-expression slicing reduces the number of constant periods further, while

also not requiring the entire document to be sliced. It can handle the name of a

document as an expression. Although copy-based slicing cannot handle reverse steps

in path expressions nor a few built-in functions, in-place slicing supports the entire

language. One drawback of per-expression slicing is further analysis by the stratum,

and expansion of a query into the core grammar. Idiomatic time-slicing, a refinement

of copy-based slicing, may shorten the resulting XQuery and/or the time complexity

of that query by reducing copying.

While performance tradeoffs clearly depend on the way in which the underlying

XQuery engine implements conventional XQuery statements, we now show that there

are queries and documents that favor each of the five approaches.

Maximally-fragmented slicing. It seems it is hard for maximally-fragmented

slicing to be the best. One reason is that it has to traverse the document to find all

the time points; the other is that it slices the whole document at all the time points.

Consider a document with only the root node timestamped and there is only one

version of the root. Suppose the temporal schema of the document is available. In



92

this case, the stratum can get the constant periods by looking at the root element only.

Since there is only one constant periods, maximally-fragmented slicing will slice the

document only once. The overheads mentioned above are not significant. Consider

a query asks for all the sub-elements (specified as a wildcard) under a particular

element over the entire timeline. Selected node slicing does not work due to the

wildcard. Other slicing approaches need to propagate the timestamp at each level of

the document, which is not necessary in this case.

Selected node slicing. Consider a document with the root element and every

leaf node timestamped. The root element has a very long valid period, while each

leaf node has a very short valid period. There is one non-leaf element named e. A

query asks for the element e favors this approach, because it can get the constant

periods by looking at the root element only and time-slices the document only once.

Maximally-fragmented slicing has to collect the time points of all the leaf nodes and

time-slice the document many times. Other approaches again need to propagate the

timestamp from the root.

Copy-based per-expression slicing. Consider a document with some element

and its child elements timestamped. Each of the children has many versions. A query

asks for the second child element in a short period, but not the shortest period in the

document. Copy-based slicing filters out a large portion of the document tree early at

upper level of the evaluation. Maximally-fragmented slicing and selected node slicing

both slice the whole document on multiple short constant periods. In-place slicing

keeps more sub-elements in the intermediate results. Idiomatic slicing does not work

for the path expression with position predicates.

In-place per-expression slicing. Consider the same document as in the last

paragraph. Now the query is changed to ask for the second child element that has

an ancestor named a in a short period. Copy-based slicing cannot handle ancestors.

Other approaches still have the disadvantages mentioned in the last paragraph.

Copy-based idiomatic slicing. Consider the same document. When the query
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asks for all the child elements in a short period without position predicates, idiomatic

slicing is best in that it reduces the size of the result XQuery code and it avoids

repeatedly slicing some intermediate nodes.

In-place idiomatic slicing. There are no cases that in-place idiomatic slicing

outperforms others, but it can be one of the best. Consider the same document.

Suppose the parent is the root element. When the query asks for all the child elements

of the root element over the whole time line, in-place idiomatic slicing is as good as

in-place slicing because it does not access more nodes than in-place slicing. Copy-

based idiomatic slicing could be as good as in-place idiomatic slicing because it does

not copy more nodes than in-place idiomatic slicing. Copy-based slicing is not good

since it copies too many nodes. The other two slice the document many times.

The above comparison is based on our understanding of the six time-slicing tech-

niques. Again, the performance tradeoffs depend on the way in which the underlying

XQuery engine implements conventional XQuery queries. In next chapter, we empir-

ically study the performance of the different time-slicing techniques.

5.6 Implementation

With the denotational semantics defined for each production, the implementation of

the translator is straightforward. We first need a parser to scan the queries and build

the parse tree for them. Each expression is a subtree in the parse tree. The queries are

translated top down. The nested expressions are translated by calling the translator

recursively. As an example, we show how 〈LetExpr〉 is implemented in copy-based

slicing using pseudo code. The production and the denotational semantics are copied

here for the convenience of the readers.

〈LetExpr〉 ::= let $〈VarName〉 := 〈Expr〉 return 〈TypeswitchExpr〉

The subtree of the 〈LetExpr〉 in the parse tree is as shown in Figure 5.9.
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LetExpr

TypeswitchExprExprVarName

… …

Figure 5.9. Parse tree of the 〈LetExpr〉

The denotational semantics below can be implemented by a function CBS Let,

which takes the parse tree node LetExpr and a valid time period as input parameters

and returns a string, which is the XQuery code that evaluates the expression in

sequenced semantics. The pseudo code of the function is shown in Figure 5.10.

cb J〈LetExpr〉K p =

let $tau:s := cb J〈Expr〉K p

for $tau:p in tau:const-periods(p, $tau:s)

let $〈VarName〉 := tau:copy-restricted-subtree($tau:p, $tau:s)

return cb J〈TypeswitchExpr〉K $tau:p

The function CBS Let needs to call function CBS Expr and CBS Switch to trans-

late the two children nodes in the parse tree. Each of them returns a string that

evaluates the corresponding expression in sequenced semantics based on the input

valid time period. The strings then concatenated according to the definition of the

denotational semantics. We didn’t write the code for the translator. In the perfor-

mance study, we manually translated the τXQuery queries to XQuery queries by

following the denotational semantics.
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FUNCTION: CBS Let
Returns a string which is the XQuery code for the 〈LetExpr〉.

INPUT: LetExpr – a node in the parse tree
p – the valid time period

OUTPUT: A string which is the XQuery code

BEGIN
result code =“let $tau:s :=” + CBS Expr(LetExpr.Expr, p);
result code = result code +

“for $tau:p in tau:const-periods(” + p.string + “, $tau:s)”;
result code = result code +

“let $” + LetExpr.VarName +
“:= tau:copy=restricted-subtree($tau:p, $tau:s)”;

result code = result code +
“return” + CBS Switch(LetExpr.TypeswitchExpr, “$tau:p”);

return result code;
END

Figure 5.10. Pseudo code to translate 〈LetExpr〉

We didn’t write the code for the translator. In the performance study, we manu-

ally translate the τXQuery queries to XQuery queries by following the denotational

semantics.
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Chapter 6

Performance Study for τXQuery

To compare the different time-slicing techniques presented in Chapters 3 and 5, we

conducted a series of performance experiments. The objective is to find the most

efficient time-slicing technique. The best way to do it is to run a benchmark on the

stratum. Unfortunately, there are no temporal XML query benchmarks. Instead,

we extended a non-temporal XML query benchmark to effect a temporal XML query

benchmark. Section 6.1 introduces the non-temporal benchmark and describes how it

was extended. The experimental setup and the results are discussed from Section 6.2

to Section 6.5. Finally, Section 6.6 summarizes the findings of the performance study.

6.1 Extending the Benchmark

There are several XML query benchmarks. These fall in two categories: micro bench-

marks and application benchmarks [57]. Micro benchmarks are designed to test in-

dividual system components to isolate problems, measure, and thus, improve a par-

ticular component of an XML system. The Michigan Benchmark [40] belongs in

this category. Application benchmarks measure the overall query performance of a

DBMS. Benchmarks in this category include XMach-1 [7], XMark [41], XOO7 [9],

and XBench [57]. The workloads of the first three benchmarks cover different func-

tionalities, but leave out a number of XQuery features. XBench covers all XQuery

functionality as captured by XML Query Use Cases [11]. Therefore, we chose XBench

as the base non-temporal benchmark.

Database applications are charaterized along two dimensions: application char-

acteristics and data characteristics. Application characteristics indicate whether



97

they are data-centric (data-oriented) or text-centric (document-centric or document-

oriented) [22]. In data-centric (DC) XML, the set of XML vocabularies represent data

that is more tightly structured than in text-centric (TC) XML. Text-centric XML is

used when authoring loosely structured natural language documents. In terms of

data characteristics, two classes are identified: single document (SD) and multiple

document (MD). In single document case, the database consists of a single document

with complex structures, while the multiple document case covers those databases

that contain a set of XML documents. Thus, XBench consists of four different appli-

cations that cover DC/SD, DC/MD, TC/SD, and TC/MD respectively. We focused

on DC/SD application since valid-time concepts are more applicable to it than to the

other three applications. The DC/MD application has a large number of XML doc-

uments, each of which contains the information of an online order. Since placing an

order is an event occuring at an instant, it is not realistic to add periods of validity to

such informantion. The TC/SD XML document is a dictionary with numerous word

entries and the XML documents in TC/MD application are a set of XML articles.

The valid-time concept does not fit in these two applications. Thus, we chose the

DC/SD application of XBench as our starting point.

The DC/SD XML document is called catalog.xml; this document stores an on-

line catalog of a book store. The root element is catalog which has a sequence of

item elements embedded in it. Each item stores the information for a book. The

visual representation of the tree structure of all element types is shown in Figure 6.1

(excerpted from the XBench technical report [57]). The rectangles refer to element

types; solid rectangles mean element types are mandatory while dotted ones mean

they may or may not exist in a given document. By default, only one instance of

a particular element type can appear in a real document, unless otherwise specified

under rectangle. “(1..n)” means element types are mandatory and can appear up

to n times. “(0..n)” means element types are not mandatory and can appear up to

n times. If an element has attributes, they appear on the top right corner of the
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rectangle where the element is located.

The schema and the data generated by XBench are non-temporal, as are the

queries in the workload. We need to extend both the data and the queries of

XBench. First, the time-varying elements were identified: item, mailing address

and phone number (descendants of author), related item, and quantity in stock.

There were two steps to generate the temporal XML document. The first step was

to generate a non-temporal XML document as the initial snapshot of the temporal

XML document. In the second step, we implemented a program that simulated the

evolving of the catalog. We used the generator of XBench to generate a non-temporal

XML document with the default size 100MB. All the item elements in this document

were divided into two groups. One group formed the initial snapshot of the tempo-

ral XML document (about 20MB); the other group served as the repository in the

simulation step. Assume the starting time of the temporal document was st. Every

time-varying element in the initial snapshot was associated with the valid time period

[st, forever). The simulation program set the current time as st, then it generated

one interval i based on the predefined update frequency (the distribution of the valid

period length of each snapshot will be specified in Section 6.2) of the document. The

program advanced the clock by i. The current time was set as st + i. At each time

point, the program randomly chose some of the time-varying elements from the cur-

rent snapshot and randomly chose an operation (insert, delete, or update) for each

of the chosen elements. For example, at some time point, the program decided to

delete two item elements, update ten quantity in stock elements, and insert one

related item element. If a chosen element was not eligible for some operation, the

program would randomly choose an operation from the applicable operations. For

example, quantity in stock cannot be inserted to or deleted from an existing item.

The only applicable operation is update. A delete operation set the ending time of the

element to the current time; an insert operation inserted an element with the valid

period [current time, forever); and an update operation was a delete of the current
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Figure 6.1. Schema diagram of DC/SD (Catalog)
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element with an insertion of a new element. Both insersion and update needed new

data which came from the repository obtained from the first step. Once some data

has been added to the temporal XML document, it was removed from the repository.

The program advanced the clock until the required number of changes have been

generated. In this way, we obtained a temporal XML document.

We extended all the queries in the workload by adding the keyword validtime

and an optional period [st, et] in front of each query. How the period is decided is

explained in Section 6.2. Thus, all the queries were extended to sequenced queries.

We ran the sequenced queries against the temporal XML document. The ex-

perimental setup is discussed in Section 6.2. We have used temporal XBench to

test the performance of different time-slicing techniques. Instead of implementing the

whole stratum, we manually mapped the sequenced queries to semantically equivalent

XQuery queries by using different time-slicing techniques, which were then evaluated

on the XQuery engine Galax. The applicability of the different techniques to the

queries in the benchmark is discussed in Section 6.3. Sections 6.4 and 6.5 demon-

strate the results of running the queries over periods of different lengths.

6.2 Experimental Setup

All experiments were conducted on a 2.4GHz Pentium 4 machine with 2GB main

memory and two 40GB EIDI disk drives running Red Hat Linux 9.0 with kernel

version 2.4.20. We chose Galax [31] as the underlying XQuery engine. The reason is

that it is the only one we would find that supports user-defined functions. Since user-

defined functions are used extensively to implement auxiliary functions, it is more

easy using Galax than using another query engine with the user-defined functions

inlined. Galax is a main-memory XQuery processor. Therefore, the majority of the

elapsed time we measured in our study is CPU time.

The parameters used when the temporal data was generated are as follows. The
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starting time of the document is 2002-01-01. The length of the valid period of each

snapshot is uniformly distributed between 1 to 30 days. The document stores the

catalog history from 2002-01-01 to now. The total number of changing points in

this document is 63 and the last changing time is 2004-06-12. At each changing

point, the number of elements changed is uniformly distributed between 1 and 5.

The size of the temporal XML document is 25.7MB. The total number of nodes in

the document is 3,152,577.

6.3 Applicability

The queries in XBench DC/SD workload are provided in Appendix K. There are

sixteen queries in the workload (Q1–Q12, Q14, Q17, Q19, Q20). Note that the num-

bers are not continuous. Queries with missing numbers, such as Q13 and Q15, exist

in the workloads of some other applications, but not in that of DC/SD application.

There are six time-slicing techniques to be used, among which maximally-fragmented

slicing and in-place slicing apply to all the queries. Selected-node slicing is not ap-

plicable to Q8 due to its wildcard. Copy-based slicing techniques (idiomatic and

non-idiomatic) do not work for Q4 and Q20 because Q4 compares the relative po-

sitions of two elements (input()/catalog/:item[.<<$item]) and Q20 queries the

parent node ($size/../../title), which needs the internal identity of nodes un-

changed. Similarly in-place idiomatic slicing is not applicable to Q20 since idiomatic

slicing cannot find the parent information. Hence, a total of 90 XQuery queries were

produced and ran on the temporal document.

6.4 Querying over the Whole Timeline

In the first experiment, we ran all the sequenced queries over the whole timeline. To

do this, we added the keyword validtime before each query without the optional

period. The query should return all the data in the history that satisfies the query
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predicates. For a given document and query, this is the worst-case performance for

all the time-slicing techniques because in general, more data needs to be accessed

when the query period is long. The elapsed time of different queries using different

techniques are grouped by queries in Figure 6.2. The right-most group is the average

elapsed time of different techniques over all the queries.
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Figure 6.2. Query over the whole timeline

The results of all the queries are shown in Figure 6.2 except for those of Q3. The

reason is that the results of all the techniques for Q3 are far poorer than the results

for other queries. If we drew the results of Q3 in this figure, the results of other

queries would not be seen clearly. Therefore, we show the numbers of Q3 in Table

6.1. Q3 groups all the items by the publishers and count the number of items in each

group.

In Figure 6.2, MAX (maximally-fragmented slicing) performed worst for all the

queries since it slices the whole document at all the changing points. SEL (selected-

node slicing) had better performance than MAX because SEL slices the document



103

MAX SEL CB CB ID INP ID INP

>5 days 375,000 250,000 71,400 71,900 12,600

Table 6.1. Results for Q3 (secs)

at only the changing points of selected nodes. More specifically, the cost of SEL is

about one third of the cost of MAX for most queries, except for Q6, Q7, and Q12,

for which the cost of SEL is close to the cost of MAX. This can be observed in

the following numbers. As mentioned in Section 6.2, this document has 63 changing

points. Therefore, MAX sliced the document 63 times and executed the non-temporal

queries 63 times. SEL sliced the document 55 times for Q6, Q7, and Q12, and 18

times for the rest of the queries.

To better illustrate the performance of the remaining techniques, we remove the

bars of MAX and SEL from Figure 6.2 and show the rest in Figure 6.3. While CB

(copy-based slicing) performed worst, INP (in-place slicing) had the best performance.

The average elapsed time of INP was 200 secs, which is only one twentieth of that

of CB (4200 secs). The reason for this difference in performance is that CB copies

the sub-trees of the document when evaluating each embedded expression while INP

never copies. As an example, the result query of Q1 translated by CB is shown in

Figure 6.4. The function copy-restricted-subtree() copies the valid subtree of

the input tree. This function appears at each step of the path expression. Figure 6.5

shows the result query of Q1 translated by INP. There is no copying in INP-translated

query.

CB ID (copy-based idiomatic slicing) performed better than CB in all cases.

CB ID does not normalize the path expression. Thus, it only copies the result when

the whole path expression is evaluated. CB copies the result when each step of the

path expression is evaluated. To determine whether the copy operation is the major

factor for the poor performance of CB, we calculated the number of nodes copied in

each query by CB and CB ID. The results are shown in Figure 6.6. When CB ID
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Figure 6.3. Query on the whole timeline

did not copy any nodes or when it copied a small number (< 500) of nodes (i.e., in

Q1, Q5, Q8, Q9, Q12, and Q19), it had almost the same performance with INP ID.

When CP ID copied a large number of nodes, the performance difference between

non-idiomatic and idiomatic version correlated with the number of nodes copied.

INP was always better than its idiomatic version (INP ID) in terms of perfor-

mance. Recall the difference between them is in the way they handle path expres-

sions. INP ID evaluates sequenced path expressions without normalization. INP

evaluates path expressions step by step. The queries obtained from INP ID tend

to be short. For example, the result query of Q1 translated by INP ID, shown in

Figure 6.7 is shorter than the query in Figure 6.5. This made us conjecture that

INP ID would have better performance than INP. On the other hand, INP ID calls a

function tau:seq-path-inp() to evaluate a sequenced path expression. This func-

tion traverses the sub-tree rooted at the context node to find the target node of the

sequenced path expression. In the worst case, it needs to traverse the whole sub-tree.
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let $tau:s := tau:copy-restricted-subtree(tau:period("1000-01-01",

"9999-12-31"), document("CRM.xml"))

let $tau:p in tau:const-periods(tau:period("1000-01-01", 9999-12-31"),

$tau:s)

let $tau:sequence := tau:copy-restricted-subtree($tau:p, $tau:s)

return

for $tau:i1 in tau:copy-restricted-subtree($tau:p, $tau:sequence)

for $tau:p1 in tau:periods-of($tau:i1)

let $tau:dot := tau:copy-restricted-subtree($tau:p1, $tau:i1) return

for $tau:i in (for $tau:step in $tau:dot/catalog return

tau:copy-restricted-subtree($tau:p1, $tau:step))

for $tau:p in tau:periods-of($tau:i)

let $tau:dot := tau:copy-restricted-subtree($tau:p, $tau:i) return

for $tau:i1 in (for $tau:step in $tau:dot/:item return

tau:copy-restricted-subtree($tau:p, $tau:step))

for $tau:p1 in tau:periods-of($tau:i1)

let $tau:dot := tau:copy-restricted-subtree($tau:p1, $tau:i1)

return

for $tau:c in (for $tau:ta in $tau:dot1/timeVaryingAttribute

where ($tau:ta/@name = "id") return $tau:ta)

let $tau:p := tau:periods-of($tau:c)

let $tau:b := element timeVaryingValue

{$tau:p,
$tau:c/@value = "I1"}

let $tau:s := tau:snapshot($tau:b, $tau:p/@vtBegin) return

if ($tau:s)

then tau:copy-restricted-subtree($tau:p, $tau:dot)

else ()

Figure 6.4. Query translated by CB from Q1
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tau:apply-timestamp(
let $tau:s := (document("catalog.xml"), tau:period("1000-01-01", "9999-12-31"))
for $tau:p in tau:const-periods2(tau:period("1000-01-01", "9999-12-31"), $tau:s)
let $tau:sequence := tau:sequence-in-period($tau:s, $tau:p) return

let $tau:s1 := tau:sequence-in-period($tau:sequence, $tau:p)
for $tau:i1 in (1 to count($tau:s1) div 2)
let $tau:vi1 := 2 * $tau:i1 -1
let $tau:v1 := item-at($tau:s1, $tau:vi1)
let $tau:p1 := item-at($tau:s1, $tau:vi1+1)
let $tau:dot := ($tau:v1, $tau:p1) return

let $tau:s2 := (let $tau:s := tau:get-actual-items($tau:dot)
let $tau:p := tau:get-periods($tau:dot)
where tau:overlaps($tau:p, $tau:p1) return

let $tau:p2 := tau:intersection($tau:p, $tau:p1)
for $tau:step in $tau:s/catalog
where tau:overlaps($tau:p2, $tau:step) return
($tau:step, tau:intersection($tau:p2, $tau:step)))

for $tau:i2 in (1 to count($tau:s2) div 2)
let $tau:vi2 := 2 * $tau:i2 -1
let $tau:v2 := item-at($tau:s2, $tau:vi2)
let $tau:p2 := item-at($tau:s2, $tau:vi2+1)
let $tau:dot := ($tau:v2, $tau:p2) return
let $tau:s3 := (let $tau:s := tau:get-actual-items($tau:dot)

let $tau:p := tau:get-periods($tau:dot)
where tau:overlaps($tau:p, $tau:p2) return
let $tau:p3 := tau:intersection($tau:p, $tau:p2)
for $tau:step in $tau:s/:item
where tau:overlaps($tau:p3, $tau:step) return

($tau:step, tau:intersection($tau:p3, $tau:step)))
for $tau:i3 in (1 to count($tau:s3) div 2)
let $tau:vi3 := 2 * $tau:i3 -1
let $tau:v3 := item-at($tau:s3, $tau:vi3)
let $tau:p3 := item-at($tau:s3, $tau:vi3+1)
let $tau:dot := ($tau:v3, $tau:p3) return

for $tau:c in (let $tau:s := tau:get-actual-items($tau:dot)
let $tau:p := tau:get-periods($tau:dot)
where tau:overlaps($tau:p, $tau:p3) return

let $tau:p4 := tau:intersection($tau:p, $tau:p3) return
(for $tau:a in $tau:s/@id return ($tau:a, $tau:p4),
for $tau:ta $tau:s/timeVaryingAttribute[@name="id"]
where tau:tau:overlaps($tau:p4, $tau:ta) return

($tau:ta, tau:intersection($tau:p4, $tau:ta))))
let $tau:s := (item-at($tau:c, 1)="I1" or item-at($tau:c, 1)/@value="I1",

item-at($tau:c, 2))
for $tau:p in tau:const-periods2($tau:p2, $tau:s) return

if (tau:get-actual-items(tau:sequence-in-period($tau:s, $tau:p)))
then tau:sequence-in-period($tau:dot, $tau:p)
else ())

Figure 6.5. Query translated by INP from Q1
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Figure 6.6. Number of nodes copied

If the size of the sub-tree is large, the cost of traversal is high. The good side about

INP is that it only accesses the nodes on the path. Target nodes can be found with-

out accessing all the nodes. This is the reason that INP performed better than its

idiomatic version.

tau:apply-timestamp(

tau:seq-path-inp(tau:period("1000-01-01", "9999-12-31"),

document("catalog.xml")/catalog/:item[@id="I1"],

document("catalog.xml")))

Figure 6.7. Query translated by INP ID from Q1

6.5 Querying over a Short Period

In this experiment, we ran all the sequenced queries over a short period, that of one

day. We placed validtime [2003-01-01, 2003-01-01] in front of each query, to

see the effect of the length of query period. The results are shown in Figure 6.8.
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Figure 6.8. Querying on a short period

MAX and SEL had dramatic improvement of their performance as compared with

the performance in Section 6.4. The reason is that both of them need to slice the

document only once in this experiment, while in the previous experiment, they both

sliced the document multiple times (18 to 63). In the short period experiment, SEL

was a little bit worse than MAX because when it collects the time points, it needs to

judge whether the encountered node is in the selected set.

The performance of other slicing techniques is similar to that of the whole timeline

experiment. INP and INP ID did not take advantage of short query period because

they always keep the original sub-tree even if only a portion of the sub-tree is valid.

Since CB prunes the invalid branches, it should perform better in short period queries

than in long period queries. However, the difference is not seen in this case because

the number of nodes pruned was far less than the number of nodes copied. As

mentioned in Section 6.2, no more than five elements in the document change. Since

most elements remain unchanged most of the time, data valid on a particular day has
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almost the same size with the whole data set.

INP was still the best. In most cases, MAX and SEL had comparable performance

with INP ID.

6.6 Summary

The empirical observations show that the time-slicing techniques are applicable to

most of the queries in a sequenced version of XBench. Among them, MAX and INP

work for all queries.

The length of the query period has a significant impact on the performance of the

two slicing techniques that slice the data at the document level. The shorter the query

period, the fewer the slices, therefore, the better the performance of MAX and SEL.

When the query period is long enough, the performance of them are unacceptable.

Excessive copying led to the bad performance of CB. Idiomatic slicing is not

always better than non-idiomatic counterpart because it accesses extra nodes when

traversing the sub-tree rooted at the context node. In all the cases, non-idiomatic

in-place slicing was the best and therefore is recommended.

The data and queries used in the experiments do not cover all the cases. We expect

the length of the query period impacts the performance of copy-based (non)idiomatic

slicing because it prunes the invalid subtree. However, our data does not change

frequently. Thus most part of the document is valid at most time. In this case, copy-

based slicing needs to keep most of the subtree. We did not demonstrate the cases

that favor maximally-fragmented slicing and selected node slicing because these are

very extreme cases that do not often occur in reality.

For all the queries in the workload, the temporal semantics can be written in

XQuery queries directly. We didn’t compare the performance of a well-written tempo-

ral query using only XQuery and the performance of the best automatically translated

query. The reason is that in our translator, the schema information is not considered
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while a well-written XQuery took the schema into consideration. Thus we expect a

well-written XQuery be better than the automatically translated queries. However,

this needs to be verified in the future.

We didn’t compare the performance of the mapped queries with the non-temporal

queries. This case is less important than the comparison we discussed in the last

paragraph. Temporal queries are more complex than the corresponding non-temporal

queries. So there is no doubt that temporal queries are worse than the non-temporal

ones in performance.

So far we have shown the temporal support of XQuery, its implementation strategy

and techniques. In next chapter, we turn to the temporal support of SQL/PSM.
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Chapter 7

Temporal SQL with PSM

From this chapter, we move our attention to another popular query language, SQL [49].

As the standard query language for relational database, SQL is widely used in database

applications. Previous research on temporal SQL [47] focused on data definition lan-

guage and data manipulation language. Persistent Stored Module (PSM), a part

of SQL standard, was never addressed in any research work on temporal SQL. In

this chapter, we present our solution of integrating PSM with one of the proposed

temporal extension to SQL. Section 7.1 briefly introduces the basic concepts and

terminology in SQL/PSM. The subsequent section summarizes previous research on

temporal data definition language and temporal data manipulation language. Two

questions about combining SQL temporal and PSM are raised in Section 7.3 and the

solution is provided.

7.1 SQL/PSM

When hearing the word “SQL”, most people think of SELECT, INSERT, DELETE, and

UPDATE statements. In fact, SQL standard has more language provisions than just

these four statements. Persistent stored modules (PSM) and control statements are

both important and useful components of the standard SQL [37, 49].

PSM are stored programs that are compiled and stored in some schema, and run

at the SQL server side. PSM consists of stored procedures and stored functions, which

are collectively called stored routines. As in any other programming language, the

difference between procedures and functions is that functions have exactly one ex-

plicit return value while procedures could have output parameters but not an explicit
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return value. Stored routines can be written in either SQL or one of the program-

ming languages with which SQL has defined a binding (Ada, C, COBOL, Fortran,

etc.). Stored routines written entirely in SQL are called SQL routines; stored routines

written in other programming languages are called external routines. In programming

languages such as C, the control statements are used throughout most programs. The

SQL standard [49] also provides control statements, which usually appear in stored

routines.

Each commercial DBMS has its own idiosyncratic syntax and semantics of PSM.

For example, the language PL/SQL created by Oracle supports PSM and control

statements. Microsoft’s Transact-SQL provides extensions to standard SQL that

permit control statements and stored procedures. IBM, Sybase, and Informix all

have their own implementation of the features similar to those in SQL/PSM.

The advantages of writing stored routines in database applications have been de-

scribed in Chapter 1. Here we look at an example in which we create a stored routine

written in SQL and invoke it in a query. Suppose in a music/video store application,

there are two relations movie titles and music titles that keep the information of

movie videos and music records sold in the store, respectively. Figure 7.1 shows the

schemas of the two relations. In Figure 7.2, function discount price() takes a movie

movie titles(movie id, movie title, movie price)

music titles(music id, music title, music price)

Figure 7.1. Schemas of the two relations

title as input and returns the discount price of this movie. Query Q1 in Figure 7.3

returns the music records that have higher price than the discount price of the movie

“Star Wars”. Q1 calls the function discount price() in its where clause. Of course,

this query can be written without utilizing stored functions. But our objective here

is to show how a stored routine can be used to accomplish the task.
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CREATE FUNCTION discount price(title CHARACTER(10))

RETURNS DECIMAL(5,2)

LANGUAGE SQL

READ SQL DATA

BEGIN

DECLARE regular price DECIMAL(5,2);

SET regular price = (SELECT movie price

FROM movie titles

WHERE movie title = title);

IF (regular price > 10) THEN

RETURN regular price * 0.8;

ELSE

RETURN regular price;

END;

Figure 7.2. Function discount price()

Q1: SELECT music title

FROM music titles

WHERE music price > discount price("Star Wars");

Figure 7.3. A query calling discount price()

7.2 SQL/Temporal

SQL/Temporal [47] was proposed as a part of the SQL:1999 standard [49]. To ensure

upward compatibility and temporal upward compatibility, SQL/Temporal classifies

temporal queries into three categories: current query, sequenced query, and nonse-

quenced query [47]. This is analogous to the three kinds of queries in τXQuery. The

name “nonsequenced” implies all the queries that are not sequenced queries. In fact,

it does not include current queries, which are not sequenced queries, either. That

is why we use a more accurate name “representational” in τXQuery for this kind of

query. However, when we talk about SQL/Temporal in this dissertation, we would

like to follow the convention of the original SQL/Temporal proposal. Please keep in

mind “nonsequenced” queries in SQL/Temporal are actually representational queries.
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Current queries only apply to the current state of the database. Sequenced queries

apply independently to each state of the database over a specified temporal period.

Users don’t need to explicitly manipulate the timestamps of the data when writing

either current queries or sequenced queries. Nonsequenced queries are those complex

temporal queries that are not in the first two categories. Users explicitly manipulate

the timestamps of the data when writing nonsequenced queries. Two additional

keywords are used to differentiate the three kinds of queries from each other. Queries

without temporal keywords are considered as current queries. Sequenced queries and

nonsequenced queries have the temporal keywords VALIDTIME and NONSEQUENCED

VALIDTIME, respectively, in front of the conventional queries.

Similar to τXQuery, the implementation of SQL/Temporal can be done using a

stratum approach. Implementing nonsequenced queries in the stratum is trivial. Cur-

rent queries are special cases of sequenced queries. SQL/Temporal defined temporal

algebra operators for sequenced queries. When the stratum receives a temporal query,

it first maps it into temporal algebra, then into conventional SQL.

Let’s look at an example temporal query. Suppose the two relations movie titles

and music titles mentioned in Section 7.1 are now temporal tables with valid-time

support. That is, each row of the relations is associated with a valid-time period.

Now a query asking for the history of the price of the movie “Star Wars” would be

written as the following sequenced query.

Q2: VALIDTIME SELECT movie price FROM movie titles

WHERE movie title = "Star Wars";

When this query is evaluated on a temporal DBMS that is built upon a conventional

DBMS, it is mapped to a conventional SQL query, which is then evaluated on the

conventional DBMS. The result of this query is a temporal relation, each row of which

is a price associated with a valid period.
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7.3 Putting SQL/Temporal and PSM Together

While SQL/Temporal extended the data definition statements and data manipulation

statements in SQL, it never addressed temporal PSM. The design of SQL/Temporal

facilitates the migration of legacy applications to temporal DBMS. Assume we have a

nontemporal application that contains the function discount price() in Figure 7.2.

Now we intend to migrate the application to a temporal DBMS, in which case, the

underlying relations are temporal relations. There are two questions we want to ask

before the migration. The first question is “Can the function discount price() be

called by a temporal query and if so, what is the semantics?” The second ques-

tion is related to the implementation of temporal PSM: “How can the semantics be

implemented?” SQL/Temporal doesn’t answer these two questions.

In this section, we first define the syntax and semantics of temporal PSM infor-

mally. Then the implementation of temporal PSM is discussed briefly. The details of

the mapping techniques will be given in Chapter 8.

7.3.1 Syntax and Semantics of Temporal SQL/PSM

Temporal SQL/PSM is based on SQL/Temporal, which extends the syntax and se-

mantics of SQL data definition statements and data manipulation statements. Tem-

poral SQL/PSM merges SQL/Temporal with traditional SQL/PSM. There are no

syntax extensions to Temporal SQL/PSM. No additional keywords are used when

creating or invoking a stored routine. Therefore, the function discount price() can

be called in a temporal query as shown in Figure 7.4.

Q3: VALIDTIME SELECT music title FROM music titles

WHERE music price > discount price("Star Wars");

Figure 7.4. A sequenced query calling discount price()

The semantics of a stored routine depends on the invocation environment of the



116

routine. If a routine is called in a current (or sequenced or nonsequenced) query, the

routine carries current (or sequenced or nonsequenced) semantics and every statement

in this routine presents current (or sequenced or nonsequenced) semantics. This fea-

ture of stored routines eases the reuse of existing modules written in conventional

SQL. Thus, Q2 returns the music records whose price was ever higher than the dis-

count price of the movie “Star Wars” in the history. The result of Q2 is a temporal

relation, each row of which consists of a music title and a time period, during which

the music record had a higher price than the movie. (Note that effectively the PSM

function must return two things: a value and a validity time.)

Figure 7.5 and Figure 7.6 show the above function invoked in a current query and

a representational query respectively. Q4 has the same semantics with the original

SQL query, i.e., the music records whose price is currently higher than the current

discount price of the movie “Star Wars”. Q5 returns the music records whose price,

now or in the past, is higher than the discount price of the movie “Star Wars”, now

or in the past.

Q4: SELECT music title FROM music titles

WHERE music price > discount price("Star Wars");

Figure 7.5. A current query calling discount price()

Q5: NONSEQUENCED VALIDTIME SELECT music title FROM music titles

WHERE music price > discount price("Star Wars");

Figure 7.6. A nonsequenced query calling discount price()

An alternative approach would allow each routine or each statement in the routine

explicitly stated by the programmer to be current (or sequenced, or nonsequenced).

This approach seems to provide more flexibility to users. However, we didn’t choose

this approach for two reasons. First, this approach needs new language constructs

for temporal PSM to indicate the semantics for each routine and control statement.
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Secondly the flexibility provided by this approach has nothing to do with the goal of

this extension — easy migration of the legacy application.

7.3.2 Formal Semantics of Temporal SQL/PSM

We now define the formal syntax and semantics of temporal SQL/PSM query ex-

pressions. As in Section 3.4, we use a syntax-directed denotational semantics style

formalism [50].

In SQL/Temporal, there are three kinds of SQL queries, in which PSMs can be

invoked. The production of a temporal query expression can be written as follows.

〈Temporal Q〉 ::= (VALIDTIME ([〈BT〉, 〈ET〉])?| NONSEQUENCED VALIDTIME)?〈Q〉

〈Q〉 is a regular SQL query. A query in SQL/Temporal is a current query by default,

or a sequenced query if the keyword VALIDTIME is used, or a nonsequenced query if the

keyword NONSEQUENCED VALIDTIME is used. Note that 〈Q〉 is a query that possibly

invokes a stored function. The semantics of 〈Temporal Q〉 is expressed with the

semantic function TSQLPSM JK. cur JK, seq JK, and rep JK are the semantic functions

for current query, sequenced query, and nonsequenced query. The traditional SQL

semantics is represented by the semantic function SQL JK.

TSQLPSM J〈Q〉K = cur J〈Q〉K

TSQLPSM JVALIDTIME [〈BT〉, 〈ET〉] 〈Q〉K = seq J〈Q〉K [〈BT〉, 〈ET〉]

TSQLPSM JNONSEQUENCED VALIDTIME 〈Q〉K = rep J〈Q〉K

The nonsequenced query has almost the same semantics as the regular SQL query.

For most the language constructs, the following equation is true.

rep J〈Q〉K = SQL J〈Q〉K
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The only exception is when VALIDTIME is used. This is a new construct in

SQL/Temporal. It applies to a correlation name and returns the valid time period of

the tuples. In this case, the semantic function is defined as follows.

rep JVALIDTIME(〈corr name〉)K =

PERIOD(〈corr name〉.BEGIN TIME,〈corr name〉.END TIME)

Current query and sequenced query need to be mapped. The mapping will be

described in detail in Chapter 8.

7.3.3 Implementation of Temporal SQL/PSM

We chose the stratum approach for the same reason mentioned in Chapter 4. The stra-

tum architecture of Temporal SQL/PSM is analogous to that of τXQuery except that

the underlying query processor is a relational DBMS and the stratum translates Tem-

poral SQL/PSM queries to conventional SQL/PSM queries. Although SQL/Temporal

proposed the implementation of a stratum, the mapping techniques do not apply to

Temporal PSM directly. The temporal relational algebra defined for temporal data

statements cannot express the semantics of control statements and stored routines.

Therefore, we need to use different techniques. Since XQuery has complex expres-

sions and we have proposed the time-slicing techniques for τXQuery stratum, we

expect that similar techniques (together with algebra based techniques) can be used

to translate Temporal SQL/PSM queries to SQL/PSM queries.

The differences between the temporal relational data model and temporal XML

data model renders some of the mapping techniques proposed in Chapter 5 mean-

ingless. For example, in temporal relational model adopted by SQL/Temporal, each

tuple is associated with exactly one timestamp, which applies to all the attributes

values of this tuple. Thus, selected-node slicing has no counterparts for temporal

SQL/PSM. The next chapter will examine in detail the other mapping techniques

proposed in Chapter 5, as applied to temporal PSM.



119

Chapter 8

Mapping Techniques for Temporal PSM

In this chapter, we will define the detail of the formal semantics of current query and

sequenced query. As this formal semantics is given by mapping the temporal query

to semantically equivalent SQL/PSM, the mapping techniques will also be described

at the same time. For current query mapping, we only describe a simple approach

to define the semantics. A current query is a special case of a sequenced query.

We will start from this special case, then focus on sequenced queries. Whatever

techniques that can be used to map sequenced queries are also suitable for mapping

current queries. Two techniques will be presented in this chapter, namely maximally-

fragmented slicing and per-statement slicing. Two useful properties of the semantics

will be discussed in this chapter.

8.1 Mapping Current Query

The semantics of a current query on a temporal database is exactly the same as the

semantics of a regular SQL query on the current snapshot of the temporal database.

The formal semantics of current query can be defined as follows.

cur J〈Q〉K (r1, r2, ..., rn) = SQL J〈Q〉K τ vt
now(r1, r2, ..., rn)

In the mapping above, r1, r2, ..., rn denote tables that are accessed by the query 〈Q〉.
These are tables with valid time support. We borrow the temporal operator τ vt

now

from the proposal of SQL/Temporal [47]. τ vt
now extracts the current snapshot value

from one (or more) tables with valid time support.

Calculating the current snapshot of a table is equivalent to do a selection on the

table. To map a current query (with PSM) in SQL, we just need to add one predicate
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for each table to the where clauses of the query and queries inside the PSM. Assume

r1, ..., rn are all the tables that are accessed by the current query. The following

predicate needs to be added to all the where clauses.

r1.begin time <= CURRENT TIME AND r1.end time > CURRENT TIME AND

...

rn.begin time <= CURRENT TIME AND rn.end time > CURRENT TIME

As an example, the current query Q4 in Figure 7.5 should be mapped to the SQL

query in Figure 8.1 and the current version of the function discount price() should

be mapped to the SQL query in Figure 8.2.

SELECT music title FROM music titles

WHERE music price > cur discount price("Star Wars")

AND music title.begin time <= CURRENT TIME

AND music title.end time > CURRENT TIME;

Figure 8.1. The SQL query mapped from Q4

8.2 Maximally-Fragmented Slicing

The idea of maximally-fragmented slicing is similar to that of the one used to define

the semantics of sequenced τXQuery in Section 3.4.3. We compute the constant

periods first, then the SQL query is evaluated at each constant period. Section 8.2.1

gives the SQL statements for computing constant periods. SQL routines include

functions and procedures. Functions can be invoked in both SQL data manipulation

statements and control statements, while procedures can only be invoked inside a

routine by a CALL statement. SQL data manipulation statements include SELECT

statements and modification statements such as INSERT, DELETE, and UPDATE.

We start with the mapping of queries that invoke functions. Nested invocation is

also discussed in this section. Then we will look at SQL modification statements that

invoke functions.
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CREATE FUNCTION cur discount price(title CHARACTER(10))

RETURNS DECIMAL(5,2)

LANGUAGE SQL

READ SQL DATA

BEGIN

DECLARE regular price DECIMAL(5,2);

SET regular price = (SELECT movie price

FROM movie titles

WHERE movie title = title

AND movie title.begin time <= CURRENT TIME

AND movie title.end time > CURRENT TIME);

IF (regular price > 10) THEN

RETURN regular price * 0.8;

ELSE

RETURN regular price;

END;

Figure 8.2. Current version of the function in Figure 7.2

8.2.1 Constant Periods

To compute constant periods, all the timestamps in the input temporal relations are

collected and the begin time and end time of each timestamp are put into a list.

These time points are the only modification points of the temporal data, and thus, of

the result. Instead of storing the constant periods as a sequence of elements, we take

the advantage of relational model and put the constant periods into a relation, each

row of which has two attributes indicating the begin time and end time of a period.

Assume the relations involved in a query (including the relations appearing in the

routines called by the query, which can be determined by a static analysis) are r1, r2,

..., rn. The relation cp that stores the constant periods of the n relations is calculated

by the following relational calculus expression.

cp(r1, r2, ..., rn) = {〈bt, et〉|bt ∈ ts ∧ et ∈ ts ∧ bt < et ∧ ¬∃t ∈ ts(bt < t < et)}

This can be evaluated by a self-join of the single column relation ts, which stores all
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the begin time and end time of the timestamps in the n input temporal relations.

The following relational algebraic expression shows how to calculate ts. Basically, it

is a union of the projection of the begin time column and end time column of all the

temporal relations.

ts =
n⋃

i=1

(πbt(ri) ∪ πet(ri))

The relation ts can be obtained by running the following SQL query, assuming

the valid time of each tuple is represented by begin time and end time.

SELECT begin time AS time point FROM r1

UNION

SELECT end time AS time point FROM r1

UNION

...

UNION

SELECT begin time AS time point FROM rn

UNION

SELECT end time AS time point FROM rn

Then the relation cp (which could also be expressed as a view) is then implemented

by the SQL query below.

SELECT ts1.time point AS begin time, ts2.time point AS end time

FROM ts AS ts1, ts AS ts2

WHERE begin time < end time AND

NOT EXISTS (SELECT time point

FROM ts

WHERE time point > begin time

AND time point < end time)

ORDER BY begin time
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Once cp is computed, the query is evaluated against the snapshot of the input relations

at the begin time of each tuple in cp.

8.2.2 SQL Queries Invoking Functions

An SQL query is written as one or more SQL SELECT statements. The syntax of

an SQL SELECT statement is as follows.

〈select statement〉 ::=

SELECT 〈select list〉
FROM 〈table reference list〉
[ WHERE 〈search condition〉 ]

[ 〈group by clause〉 ]

[ HAVING 〈search condition〉 ]

Assume an SQL function F() is called in this select statement. The function can

appear in several places in the select statement. It could appear as one of the columns

in the select list or as a part of the search condition specified in either the where clause

or the having clause. It could also appear in the table reference list if its return value

is a collection type. A collection type in SQL standard is an array, which can be used

as a derived table. In any case, the sequenced semantics of the select statement is as

follows.

seq J〈select statement〉K =

SELECT tsqlpsm J〈select list〉K, cp.begin time, cp.end time

FROM tsqlpsm J〈table reference list〉K, cp

[ WHERE tsqlpsm J〈search condition〉K AND
overlap Jtables J〈select statement〉K, cp.begin timeK ]

[ 〈group by clause〉, cp.begin time ]

[ HAVING tsqlpsm J〈search condition〉K ]
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A sequenced query always returns a temporal relation, i.e., each row of the relation is

timestamped. Therefore, cp.begin time and cp.end time are added to the select list

and cp is added to the from clause. A search condition is added to the where clause

to ensure that tuples from every table overlaps the constant period. The semantic

function tables J K returns an array of strings, each is a table reference appearing in the

input query. The semantic function overlap J K returns a series of search conditions

represented as a string. If there are n tables referenced in the statement, overlap J K
returns n conditions, each of the form tname.begin time <= cp.begin time AND

cp.begin time < tname.end time, where tname is the table name.

In the above mapping, four nonterminals need to be mapped (〈select list〉,
〈table reference list〉, and two 〈search condition〉s). If the select statement is not a

nested query, the only aspect that need to be mapped in these four nonterminals are

the function calls that occur in these nonterminals. A function call F(par) is mapped

to mf F(par, cp.begin time, cp.end time), an extended version of F. In addition

to the original parameters of F(), mf F() passes the constant period into the function.

8.2.3 Functions Invoked in SQL Queries

The body of the definition of F also needs to be transformed. All the SQL queries in-

side F are mapped in mf F to a temporal query at the input time point cp.begin time.

This translation is done by adding a condition of overlapping cp for each temporal

table in the where clause. In the following mapping, semantic function seqf J K defines

the transformation of a function definition.

seq J〈function definition〉K = seqf J〈function definition〉K

seqf J〈parameter list〉K = 〈parameter list〉, begin time, end time
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seqf J〈search condition〉K =

〈search condition〉 AND overlap Jtables J〈select statement〉K, begin timeK

If there are SQL statements inside the function that modify data in some temporal

tables (e.g., delete, insert, and update statement), these statements are mapped to

sequenced statements that returns the results valid in cp. A sequenced modification

to temporal tables can be done by a series of SQL modifications to the tables in

conventional SQL; this mapping is given elsewhere [45]. An example of such kind of

function will be shown later in this section.

The select statement could be a nested query, which has a subquery in either

the from clause or the where clause. In this case, the subquery (a select statement)

should be mapped to a temporal query at the time point cp.begin time. Therefore,

the mapping of a subquery is similar to the mapping of a query inside a function.

Assume a function f is mapped to f ′. Function f can have routine invocations

inside it. If another function f1 is called inside f , the constant period passed into f ′

now is passed into f ′1. If a procedure is invoked inside f , it can be invoked only by a

call statement in the following syntax.

〈call statement〉 ::= CALL 〈procedure invocation〉
The same constant period is passed to the procedure. The output parameters of the

procedure remain unchanged.

In addition to a sequenced query, a function can be invoked in a sequenced mod-

ification statement. In this case, a cursor is defined for the constant period table cp.

For each period in cp, a sequenced modification on this particular period is executed.

The translation of the function is the same as that in a sequenced query.

As an example, let’s look at the query Q2 mentioned in Section 7.3.1. In Figure 8.3,

Q2 is translated to an SQL query that invokes the function mf discount price(),

which is translated from discount price().

The reader may have noticed that the last parameter end time is not used inside
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SELECT music title, cp.begin time, cp.end time
FROM music titles as music, cp
WHERE music.music price > mf discount price("Star Wars", cp.begin time,

cp.end time)
AND music.begin time <= cp.begin time
AND cp.begin time < music.end time;

CREATE FUNCTION mf discount price(title CHARACTER(10),
begin time DATE),
end time DATE)

RETURNS DECIMAL(5,2)
LANGUAGE SQL
READ SQL DATA

BEGIN
DECLARE regular price DECIMAL(5,2);
SET regular price = (SELECT movie price

FROM movie titles as movie
WHERE movie.movie title = title
AND movie.begin time <= begin time
AND begin time < movie.end time);

IF (regular price > 10) THEN
RETURN regular price * 0.8;

ELSE
RETURN regular price;

END;

Figure 8.3. The example query mapping using maximally-fragmented slicing

the function. We keep it as a parameter because it is needed in the case that the func-

tion modifies data in some temporal tables. In the following example, we extend the

definition of table movie titles by adding one column discount price. Function

discount price with update() computes the same thing as discount price() but

with the side effect of updating the discount price column of the table movie titles.

The definition of the function is shown in Figure 8.4 and the resulting function from

the mapping is shown in Figure 8.5. The update statement in the original function

is a sequenced update applied to the input valid period. It is mapped to two in-

sert statements and three update statements in Figure 8.5 [45] over the period of

applicability [begin time, end time).

Specifically, the two time parameters are added to each function. Inside the func-
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CREATE FUNCTION discount price with update(title CHARACTER(10))

RETURNS DECIMAL(5,2)

LANGUAGE SQL

WRITE SQL DATA

BEGIN

DECLARE regular price DECIMAL(5,2);

DECLARE dp DECIMAL(5,2);

SET regular price = (SELECT movie price

FROM movie titles

WHERE movie title = title);

IF (regular price > 10) THEN

dp = regular price * 0.8;

ELSE

dp = regular price;

UPDATE movie titles

SET discount price = dp

WHERE movie title = title;

RETURN dp;

END;

Figure 8.4. Function discount price with update()

tion, each select statement is changed to a timeslice at the passed-in begin time, and

modify statements are sequenced over the passed-in period. In maximally-fragmented

slicing, no control statements need to be mapped.

8.2.4 External Routines

There are SQL routines and external routines in SQL/PSM. We have discussed the

mapping of SQL routines. For external routines written in other programming lan-

guages such as C/C++ and Java, the same mapping applies to the source code of

the function. When the external function has SQL data manipulation statements, its

source code is usually available to DBMS for precompiling. In the case that a PSM

is a compiled C function, the C function does not access any database tables, thus
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CREATE FUNCTION mf discount price with update(title CHARACTER(10))
begin time DATE),
end time DATE)

RETURNS DECIMAL(5,2)
LANGUAGE SQL
WRITE SQL DATA

BEGIN
DECLARE regular price DECIMAL(5,2);
DECLARE dp DECIMAL(5,2);
SET regular price = (SELECT movie price

FROM movie titles
WHERE movie title = title
AND movie.begin time <= begin time
AND begin time < movie.end time);

IF (regular price > 10) THEN
dp = regular price * 0.8;

ELSE
dp = regular price;

INSERT INTO movie titles
SELECT m.movie id, m.movie title, m.movie price,

m.discount price, m.begin time, begin time
FROM movie titles m
WHERE m.movie title = title AND m.begin time < begin time
AND begin time < m.end time;

INSERT INTO movie titles
SELECT m.movie id, m.movie title, m.movie price,

m.discount price, end time, m.end time
FROM movie titles m
WHERE m.movie title = title AND m.begin time < end time
AND end time < m.end time;

UPDATE movie titles m SET m.discount price = dp
WHERE m.movie title = title AND m.begin time < end time
AND m.end time > begin time;

UPDATE movie titles m SET m.begin time = begin time
WHERE m.movie title = title AND m.begin time < begin time
AND m.end time > begin time;

UPDATE movie titles m SET m.end time = end time
WHERE m.movie title = title AND m.begin time < end time
AND m.end time > end time;

RETURN dp;
END;

Figure 8.5. Mapping Result of Function discount price with update()
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there is no need to map it.

8.3 Per-Statement Slicing

As in τXQuery, maximally-fragmented slicing has to evaluate a stored routine many

times if the base tables change frequently over time. In order to evaluate the stored

routines only once, we carry on the analogy of per-expression slicing in this section.

Since the counterpart of expressions in SQL are statements, we call this method per-

statement slicing. The idea of per-statement slicing is to map each sequenced stored

routine to a semantically equivalent conventional routine that operates on temporal

tables. Therefore, each SQL control statement inside the routines should also operate

on temporal tables. In Section 8.3.3, we describe how to map each sequenced SQL

control statement to semantically equivalent SQL statements.

There are three steps in per-statement slicing. We first convert some of the se-

quenced control statements into time-varying data, which we call temporal closure.

To simplify the mapping of each control statement, we then normalize the SQL con-

trol statements. The intention is similar to the normalization of XQuery. In SQL

there is no normalization provided by the standard organization. In this section, we

will first describe the temporal closure of the control statements. Then normalization

of the control statements is briefly demonstrated. The translation of the rest of the

control statements will be given in Section 8.3.3.

8.3.1 Temporal Closure

We convert the control statements into data which can then be sequenced. The con-

trol flow of the program will then determined by the value of the data. To express the

notion of converting via program translation a control construct in a sequenced opera-

tion into time-varying data, we use the term temporal closure. A conventional closure

consists of a function coupled with its environment, such as local variables from its
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declaration. In doing so, the function is effectively turned into data, admittedly, data

that can be later evaluated. (We thank David S. Wise for this insight.) Specifically,

in SQL/PSM we temporally close LEAVE statement and ITERATE statement. These

two are converted to boolean variables. These boolean variables become sequenced

boolean variables after the mapping.

8.3.1.1 LEAVE Statement

The LEAVE statement is the direct reason that drove us to temporally close control

statements. The syntax of the LEAVE statement is as follows.

〈leave statement〉 ::= LEAVE 〈statement label〉
A 〈statement label〉 indicates the start position of a loop-like statement (〈loop statement〉,
〈while statement〉, 〈repeat statement〉, or 〈for statement〉) or a 〈compound statement〉
enclosed with BEGIN and END. A 〈leave statement〉 allows the program control to

jump to the end of the block labeled by the 〈statement label〉. When used in a

loop-like statement, the semantics of 〈leave statement〉 is the same as that of “break”

in C/C++. It is hard to find the semantically equivalent SQL statements for the

sequenced 〈leave statement〉. Therefore, we tried to remove 〈leave statement〉 be-

fore we map each control statement. Next, we will look at the way we remove the

〈leave statement〉.
Let’s start with a simplest case — leaving a compound statement. This case can

be represented by the following piece of code.

label:

BEGIN

〈SQL statement list 1〉;
LEAVE label;

〈SQL statement list 2〉;
END label
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This compound statement can be converted to the following semantically equivalent

code without a 〈leave statement〉.
DECLARE leave label BOOL;

SET leave label = FALSE;

label:

BEGIN

〈SQL statement list 1〉;
leave label = TRUE;

IF NOT(leave label) THEN

BEGIN

〈SQL statement list 2〉;
END

END label

The above temporal closure can be described as follows. Declare a boolean variable

for the label and initialize the variable as FALSE. Replace the 〈leave statement〉 with

an assignment statement that sets the boolean variable to TRUE. All the statements

following the 〈leave statement〉 are put into an 〈if statement〉 with the condition the

value of the boolean variable is FALSE. Once the value of the boolean variable turns

TRUE, the statement list that follows the 〈leave statement〉 in the compound statement

will not be executed. After the 〈leave statement〉 is removed, the label is no longer

used in the above code. We retain the statement only to show the boundary of the

original compound statement.

Besides compound statements, a 〈leave statement〉 can be used in a loop-like state-

ment. Let’s use 〈loop statement〉 as an example to see the conversion. The temporal

closure of a 〈leave statement〉 inside other loop-like statements is analogous. The

following code shows a 〈leave statement〉 embedded in a 〈loop statement〉.
label:
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LOOP

〈SQL statement list 1〉;
LEAVE label;

〈SQL statement list 2〉;
END LOOP label

After being temporally closed, the above code is converted to the following program.

DECLARE leave label BOOL;

SET leave label = FALSE;

label:

WHILE not(leave label) DO

BEGIN

〈SQL statement list 1〉;
leave label = TRUE;

IF NOT(leave label) THEN

BEGIN

〈SQL statement list 2〉;
END

END WHILE label

The 〈loop statement〉 is converted to a 〈while statement〉 with the entry condition

the value of the boolean variable is FALSE. The mapping of statements inside the

while loop is the same as that in a compound statement. Once the boolean vari-

able turns to TRUE, the statement list that follows the 〈leave statement〉 will not be

executed, neither does the whole while loop. A similar temporal closure can be eas-

ily used for other loop-like statements (〈while statement〉, 〈repeat statement〉, and

〈for statement〉). We omit the details for those statements.
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8.3.1.2 ITERATE Statement

ITERATE statement is another control statement that can change the control flow of

a labeled compound statement or labeled loop statement. The syntax of ITERATE

statement is as follows.

〈iterate statement〉 ::= iterate 〈statement label〉
The 〈statement label〉 is the same as in LEAVE statement. An 〈iterate statement〉
allows the program control to jump to the beginning of the block labeled by the

〈statement label〉. Used in a loop-like statement, the semantics of 〈leave statement〉
is the same as that of “continue” in C/C++. Similar to LEAVE statement, it is hard to

find the semantically equivalent SQL statements for the sequenced 〈iterate statement〉.
Therefore, we tried to temporally close 〈iterate statement〉 before we map each control

statement.

The temporal closure of 〈iterate statement〉 is analogous to the temporal closure of

〈leave statement〉. When an 〈iterate statement〉 is embedded in a loop-like statement,

it is temporally closed in a way similar to the temporal closing of 〈leave statement〉.
An example is as follows.

label:

LOOP

〈SQL statement list 1〉;
ITERATE label;

〈SQL statement list 2〉;
END LOOP label

After being temporally closed, the above code is converted to the following program.

DECLARE iterate label BOOL;

label:

LOOP

SET iterate label = FALSE;
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〈SQL statement list 1〉;
iterate label = TRUE;

IF NOT(iterate label) THEN

BEGIN

〈SQL statement list 2〉;
END

END LOOP label

The 〈iterate statement〉 doesn’t have any impact on the next iteration of the loop. So

the boolean variable iterate label doesn’t need to be checked as the entry condition

of the loop. Once the boolean variable turns to TRUE, the statement list that follows

the 〈iterate statement〉 will not be executed. The same temporal closure can be

easily used for other loop-like statements (〈while statement〉, 〈repeat statement〉, and

〈for statement〉). We omit the details for those statements.

8.3.2 Normalization

The goal of normalizing some of the control statements is to reduce the size of the

control statements set to be translated. For example, REPEAT statement can be con-

verted to WHILE statement. This way we only need to provide the translation of WHILE

statement. In SQL there is no normalization provided by the standard organization.

The intention of our normalization is not to seek a minimal core set of the control

statements, but to make our mapping simple. We choose to normalize two kinds of

statements.

8.3.2.1 REPEAT Statement

As in many programming languages, A REPEAT statement can be rewritten using

WHILE statement. The syntax of REPEAT statement is as follows.
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〈repeat statement〉 ::=

[〈beginning label〉]:
REPEAT

〈SQL statement list〉
UNTIL 〈search condition〉

END REPEAT [〈ending label〉]
The repeat statement is equivalent to the following while statement.

[〈beginning label〉]:
BEGIN

〈SQL statement list〉
WHILE 〈search condition〉 DO
〈SQL statement list〉

END WHILE

END [〈ending label〉]
Therefore, a sequenced 〈repeat statement〉 is mapped to a sequenced 〈while statement〉

first, then is translated to SQL/PSM statements following the mapping rule in Sec-

tion 8.3.3.

8.3.2.2 IF Statement

An IF statement can be converted to a CASE statement. The syntax of IF statement

is as follows.

〈if statement〉 ::=

IF 〈search condition〉
THEN 〈SQL statement list 1〉
[ELSE 〈SQL statement list 2〉]
ENDIF

〈if statement〉 is equivalent to a 〈searched case statement〉 below.

CASE
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WHEN 〈search condition〉
THEN 〈SQL statement list 1〉
[ELSE 〈SQL statement list 2〉]

END CASE

Therefore the mapping of an 〈if statement〉 is the same as the mapping of a

〈searched case statement〉, which we describe in Section 8.3.3.

8.3.3 Translation

After normalization, the normalized routine can be translated. We first look at the

translation of the whole query that invokes the stored routine. Then we show how

the statements inside the routine are mapped.

8.3.3.1 Translation of the Invoking Query and the Interface of the Routine

In per-statement slicing, each routine being invoked in a sequenced query has the

sequenced semantics. Therefore the output and return values are all temporal tables.

This requires the signature of the routine to be changed. Since only functions can

be called in an SQL query, we describe the mapping of function definitions in this

section. The mapping of procedure definitions will be covered in next section. We

use the semantic function ps J K p to show the mapping of per-statement slicing. p is

an input parameter of the semantic function indicating the period of validity of the

return data of the input query.

Each sequenced function is evaluated for a particular temporal period and the

return value of the sequenced function is a temporal table. Therefore, a temporal

period is added to the input parameter list. The return value is a sequence of return

values, each associated with a valid-time period. The formal mapping of a function

definition is as follows.

ps J〈SQL-invoked function〉K p = ps J〈SQL-invoked function〉K
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In this mapping, p is removed. This mapping indicates that when the function is de-

fined, there is no valid time period applied to the definition. Each 〈SQL-invoked function〉
includes a 〈function specification〉 and a 〈routine body〉. We only look at the function

specification in this section, since the major components of 〈routine body〉 are con-

trol statements which will be covered in next section. 〈function specification〉 defines

the signature of the function including three non-terminals, namely 〈routine name〉,
〈parameter declaration list〉, and 〈returns clause〉. The specific mappings are shown

as follows. A suffix ps is added to each routine name to differentiate the sequenced

function from the original function with current semantics.

ps J〈routine name〉K = ps 〈routine name〉
As in maximally-fragmented slicing, two more input parameters are added to the

parameter list to indicate the valid time period the function is evaluated for.

ps J〈parameter declaration list〉K =

〈parameter declaration list〉, begin time DATE, end time DATE

The 〈returns clause〉 has the following syntax.

〈returns clause〉 ::= RETURNS 〈data type〉
The data type of the return value is mapped to a temporal table derived by a collection

type. A collection type is a set of rows that have the same data structure. In this

mapping, each row has three columns representing the return value with its valid time

period.

ps J〈return clause〉K =

RETURNS ROW(value 〈data type〉, begin time DATE, end time DATE) ARRAY

The returned value is always a temporal table. This returned temporal table then

joins with other temporal tables in the invoking query. We can follow the definition

of temporal join and temporal cartesian product [47] to map the invoking temporal

query to the semantically equivalent regular SQL query. If the function appears in

the WHERE clause and the return value is compared with some column of other

temporal tables, a temporal join will be done between the returned temporal table
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and other temporal tables. Otherwise, a temporal cartesian product will be done.

As an example, let’s look at the query Q2 used to illustrate maximally-fragmented

slicing. Assume the sequenced function ps discount price() returns a tempo-

ral table, query Q2 is translated to the following SQL Query. The mapping from

discount price() to ps discount price() will be given when we describe the trans-

lation of control statement.

SELECT music title,

last instant(music.begin time, ps dp.begin time),

first instant(music.end time, ps dp.end time)

FROM music titles as music,

ps discount price("Star Wars", MIN TIME, MAX TIME) as ps dp

WHERE music.music price > ps dp.value

AND last instant(music.begin time, ps dp.begin time)

< first instant(music.end time, ps dp.end time);

The function ps discount price() has two more arguments than then func-

tion discount price(). The time period [MIN TIME, MAX TIME) is the query pe-

riod defined by the sequenced query. The function ps discount price() returns

a temporal table, which is then joined with the table music titles. The function

first instant() [45] returns the earlier one of the two input instants. Similarly,

the function last instant() returns the later one of the two input instants. The

additional predicates in the where clause ensure that the valid time of music price

and the valid time of discount price overlap.

8.3.3.2 Translation of Control Statements

This section focuses on mapping control statements, i.e., translating sequenced SQL

control statements to semantically equivalent SQL. Each scalar variable is represented

by a temporal table that includes three columns — the variable itself, begin time,
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and end time. Any return value of a stored function is also represented by a temporal

table.

SQL/PSM control statements include the twelve types of statements listed in the

following production.

〈SQL control statement〉 ::=

〈call statement〉
| 〈return statement〉
| 〈assignment statement〉
| 〈compound statement〉
| 〈case statement〉
| 〈if statement〉
| 〈iterate statement〉
| 〈leave statement〉
| 〈loop statement〉
| 〈while statement〉
| 〈repeat statement〉
| 〈for statement〉

We classify the twelve kinds of statements into five categories.

• Temporally closed statements. 〈leave statement〉 and 〈iterate statement〉.
They are removed in the temporal closing stage.

• Standalone statements. These include 〈call statement〉, 〈return statement〉,
〈assignment statement〉, 〈compound statement〉, and 〈loop statement〉. Each of

them has a different mapping definition from others.

• Condition statements. These include 〈case statement〉 and 〈if statement〉,
which usually need to use a cursor in the mapping. 〈if statement〉 is removed

in the normalization stage.
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• Conditional loop statements. These are the loop-like statements with con-

ditions. 〈while statement〉, 〈repeat statement〉, and 〈for statement〉 fall in this

category. They are combination of loop-like statements and condition state-

ments. Among them, 〈repeat statement〉 is removed in the normalization stage.

We examine each kind of control statements in turn except for those statements

that have been removed in the first two stages. We start with standalone statements.

1. 〈call statement〉 ::= CALL 〈routine invocation〉

ps J〈call statement〉K p = CALL ps J〈routine invocation〉K p

The routine invoked in a 〈call statement〉 is a procedure. The only difference

between procedures and functions is the procedure can have more than one out-

put parameter. We define each output parameter as a collection that represents

a temporal table.

2. 〈return statement〉 ::= RETURN 〈value expression〉

Each 〈return statement〉 is mapped to an INSERT statement that inserts some

tuples into the temporal table that stores all the return values. At the end of

the function, one 〈return statement〉 is added to return the temporal table. The

invoking query will then get the return value and use it as a temporal table.

ps J〈return statement〉K p =

INSERT INTO TABLE ps return tb

ps J〈value expression〉K p

The sequenced 〈value expression〉 returns a temporal table that has three columns:

one value with the same type of the 〈value expression〉, one begin time, and one

end time of the valid time period of the value. 〈value expression〉 could be a

literal, a variable, a select statement that returns a single value, or a function

that returns a single value. It is trivial to map a literal into a temporal tuple.



141

We just need to add the valid period for the literal. A variable is mapped to

a select statement that retrieves the tuples from the temporal table (the se-

quenced variable). The mapping of the sequenced select statement is given in

previous research [47], and the mapping of a sequenced function call is defined

in Section 8.3.3.

3. 〈assignment statement〉 ::= SET 〈assignment target〉 = 〈value expression〉

The 〈assignment target〉 is usually a variable. A variable inside a routine is

mapped to a temporal table. Therefore a sequenced assignment statement tries

to insert tuples into or update the temporal table for a certain period. Intuitively

the assignment statement should be mapped to a sequenced insert or update.

Here we map it to a sequenced delete followed by an insert to the target temporal

table. If there are tuples valid in the input time period, they are first deleted,

then new tuples are inserted. It is the same as sequenced update. If there are

no tuples valid in the input time period, a new tuple is inserted. The inserted

tuples are returned from the sequenced 〈value expression〉.

ps J〈assignment statement〉K p =

ps JDELETE FROM TABLE 〈assignment target〉K p;

INSERT INTO TABLE 〈assignment target〉
ps J〈value expression〉K p

The mapping of a sequenced deletion to semantically equivalent SQL deletion

have been addressed in previous research [45]. Since it is not the focus of this

dissertation, we will not show the details of the mapping. However, an example

mapping will be shown at the end of this section.

4. 〈compound statement〉 ::=

[〈beginning label〉:]
BEGIN
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[〈local declaration list〉]
[〈local cursor declaration list〉]
[〈local handler declaration list〉]
[〈SQL statement list〉]

END [〈ending label〉]

ps J〈compound statement〉K p =

[〈beginning label〉:]
BEGIN

[ps J〈local declaration list〉K p]

[ps J〈local cursor declaration list〉K p]

[ps J〈local handler declaration list〉K p]

[ps J〈SQL statement list〉K p]

END [〈ending label〉]

〈local declaration list〉 ::= 〈local declaration〉 (; 〈local declaration〉)

〈local declaration〉 ::= 〈SQL variable declaration〉 | 〈condition declaration〉

〈SQL varible declaration〉 ::= DECLARE 〈SQL variable name〉 〈data type〉

ps J〈SQL variable declaration〉K p =

DECLARE LOCAL TEMPORARY TABLE 〈SQL variable name〉
(value 〈data type〉,
begin time TIME,

end time TIME);

An SQL variable declaration is mapped to the declaration of a temporary tem-

poral table that stores the sequenced values of the variable. The table has

three columns: the value with the same type of the original variable, the be-

gin time, and the end time of the valid time period of the value. Any reference

to the value of the variable will be mapped to a reference to the value column
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of the table. Any assignment to the variable will be mapped to a sequenced

deletion followed by an insertion to the table. There are no changes to the

〈condition declaration〉.

〈local cursor declaration list〉 ::= 〈declare cursor〉 (; 〈declare cursor〉)

〈declare cursor〉 ::=

DECLARE 〈cursor name〉 CURSOR

FOR 〈query expression〉

In a sequenced cursor declaration, only the last non-terminal (the 〈query expression〉)
needs to be mapped.

ps J〈declare cursor〉K p =

DECLARE 〈cursor name〉 CURSOR

FOR ps J〈query expression〉K p

〈local handler declaration list〉 ::= 〈handler declaration〉 (; 〈handler declaration〉)

〈handler declaration〉 ::=

DECLARE 〈handler type〉 HANDLER

FOR 〈condition value list〉
〈SQL procedure statement〉

Similarly, in a sequenced handler declaration, only the 〈SQL statement〉 needs

to be mapped.

ps J〈handler declaration〉K p =

DECLARE 〈handler type〉 HANDLER

FOR 〈condition value list〉
ps J〈SQL statement〉K p

5. 〈loop statement〉 ::=

[〈beginning label〉:]
LOOP
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〈SQL statement list〉
END LOOP [〈ending label〉]

In a sequenced 〈loop statement〉, only the 〈SQL statement list〉 inside the loop

needs to be mapped to the sequenced semantics.

ps J〈loop statement〉K p =

[〈beginning label〉:]
LOOP

ps J〈SQL statement list〉K p

END LOOP [〈ending label〉]

6. From now on, we look at the condition statements. The condition in a 〈case statement〉
or an 〈if statement〉 is usually a boolean expression. We map the sequenced

boolean expression into a temporal table since the boolean value could change

during the input valid time period. We then declare a cursor on this temporal

table. The control flow will be determined by the value of the boolean column

in the associated valid-time period.

〈case statement〉 ::= 〈simple case statement〉 | 〈searched case statement〉

〈simple case statement〉 ::=

CASE 〈value expression 1〉
WHEN 〈value expression 2〉
THEN 〈SQL statement list 1〉
[ELSE 〈SQL statement list 2〉]

END CASE

The semantics of the 〈simple case statement〉 is as follows. 〈value expression 1〉
is evaluated first. Then 〈value expression 2〉 is evaluated. If the values are equal,

execute 〈SQL statement list 1〉. Otherwise, execute 〈SQL statement list 2〉 if

there is an ELSE clause.
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In sequenced 〈simple case statement〉, each value expression returns a temporal

table. So we declare a cursor for the boolean expression“〈value expression 1〉=
〈value expression 2〉”. For each value of this boolean expression, the case state-

ment is executed. (In fact, in the following mapping the if statement is used

since it carries the same semantics).

ps J〈simple case statement〉K p =

DECLARE ps case cursor CURSOR

FOR (SELECT

ve1.value = ve2.value,

last instant(ve1.begin time, ve2.begin time),

first instant(ve1.end time, ve2.end time)

FROM ps J〈value expression 1〉K p AS ve1,

ps J〈value expression 2〉K p AS ve2,

WHERE last instant(ve1.begin time, be2.begin time)

< first instant(ve1.end time, ve2.end time))

DECLARE ps case not found CONDITION FOR SQLSTATE ’02000’;

OPEN ps case cursor;

FETCH ps case cursor INTO ps case result;

WHILE NOT(ps case not found) DO

IF (ps case result.value)

THEN ps J〈SQL statement list 1〉K ps case result.validtime;

[ELSE ps J〈SQL statement list 2〉K ps case result.validtime;]

FETCH ps case cursor INTO ps case result;

END WHILE

〈searched case statement〉 ::=

CASE

WHEN 〈search condition〉
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THEN 〈SQL statement list 1〉
[ELSE 〈SQL statement list 2〉]

END CASE

〈search condition〉 ::= 〈boolean value expression〉

Since a 〈search condition〉 is a 〈boolean value expression〉, the mapping of searched

case statements is a generalization to the mapping of simple case statement.

Here the boolean expression is not necessarily in the format of “A=B”. It

could be inequality comparison, or negation, or conjunction of boolean expres-

sions, etc. A cursor needs to be declared for the sequenced 〈search condition〉,
i.e., 〈boolean value expression〉. The rest of the mapping is the same as in

〈simple case statement〉.

7. The last category is the conditional loop statements. These are loop-like state-

ments with condition indicating when to exiting or executing the loop. As in

condition statements, the condition is converted to a temporal table and a cur-

sor is declared on this temporal table. At each iteration of the loop, the cursor

value is fetched to determine the control flow.

〈while statement〉 ::=

[〈beginning label〉:]
WHILE 〈search condition〉 DO

〈SQL statement list〉
END WHILE [〈ending label〉]

The search condition is a boolean type value expression. As in 〈case statement〉,
we declare a cursor for the boolean value expression. For each returned tuple,

the while statement is called once on the valid period of the tuple. At the end

of each iteration of the while statement, add one select statement to reevaluate

the search condition and assign the result to the variable that will be checked
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by the while statement.

ps J〈while statement〉K p =

DECLARE ps while cursor CURSOR

FOR ps J〈value expression〉K p

DECLARE NOT FOUND CONDITION FOR SQLSTATE ‘02000’;

OPEN ps while cursor;

FETCH ps while cursor INTO ps while result;

WHILE NOT(NOT FOUND) DO

[〈beginning label〉:]
WHILE (ps while result.value) DO

ps J〈SQL statement list〉K ps while result.validtime

ps while result = ps J〈value expression〉K ps while result.validtime

END WHILE [〈ending label〉]
FETCH ps while cursor INTO ps while result;

END WHILE

8. 〈for statement〉 ::=

[〈beginning label〉]:
FOR 〈variable name〉AS
[〈cursor name〉 CURSOR FOR ]〈cursor specification〉
DO 〈SQL statement list〉

END FOR [〈ending label〉]

In 〈for statement〉, the 〈cursor specification〉 and the 〈SQL statement list〉 need

to be mapped to the sequenced semantics. A 〈cursor specification〉 is a query

expression, which we have already know how to map.

ps J〈for statement〉K p =

[〈beginning label〉]:
FOR 〈variable name〉AS
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[〈cursor name〉 CURSOR FOR ]

ps J〈cursor specification〉K p

DO

ps J〈SQL statement list〉K 〈variable name〉.validtime
END FOR [〈ending label〉]

8.3.4 An Example

Now we apply the per-statement slicing mapping rules to the example function in

Figure 7.2. We repeat the original function here for convenience.

-------------------------
-- The original function
-------------------------
CREATE FUNCTION discount price(title CHARACTER(10))

RETURNS DECIMAL(5,2)
LANGUAGE SQL
READ SQL DATA

BEGIN
DECLARE regular price DECIMAL(5,2);
SET regular price = (SELECT movie price

FROM movie titles
WHERE movie title = title);

IF (regular price > 10) THEN
RETURN regular price * 0.8;

ELSE
RETURN regular price;

END;

---------------------------------------------------------
-- The mapping result
-- Add two more parameters to indicate the valid period
-- Return value is an array
---------------------------------------------------------
CREATE FUNCTION ps discount price(title CHARACTER(10),

begin time DATE, end time DATE)
RETURNS ROW(value DECIMAL(5,2), begin time DATE, end time DATE)

ARRAY
LANGUAGE SQL
READ SQL DATA

BEGIN
-- Declare a temporal table for the return value
DECLARE ps return tb ROW(value DECIMAL(5,2), begin time DATE,

end time DATE) ARRAY;
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-- Map the variable regular price to a temporal table
DECLARE LOCAL TEMPORARY TABLE regular price
(value DECIMAL(5,2), begin time DATE, end time DATE);

-- Map the assignment statement to an insertion to the table
INSERT INTO TABLE regular price
SELECT movie price,

last instant(movie.begin time, begin time),
first instant(movie.end time, end time)

FROM movie titles as movie
WHERE movie.movie title = title
AND last instant(movie.begin time, begin time)

< first instant(movie.end time, end time);

-- Declare a cursor for the boolean expression in the IF statement
DECLARE ps if cursor CURSOR
FOR (SELECT ve1.value > 10,

last instant(ve1.begin time, begin time),
first instant(ve1.end time, end time)

FROM regular price AS ve1
WHERE last instant(movie.begin time, begin time)

< first instant(movie.end time, end time);
DECLARE ps if not found CONDITION FOR SQLSTATE ‘02000’;
OPEN ps if cursor;
FETCH ps if cursor INTO ps if result;
WHILE NOT(ps if not found) DO
IF (ps if result.value)
THEN INSERT INTO ps return tb

VALUES (ps if result.value * 0.8,
ps if result.begin time,
ps if result.end time);

ELSE INSERT INTO ps return tb
VALUES ps if result;

FETCH ps if cursor INTO ps if result;
END WHILE;
RETURN ps return table;

END;

8.4 Comparison

So far, we have proposed two different ways to map sequenced SQL/PSM to semanti-

cally equivalent regular SQL/PSM. Maximally-fragmented slicing applies small, iso-

lated changes to the routines by adding simple predicates to the SQL statements

inside the routines. However, in this approach, we need to call the routines as many



150

times as the number of constant periods in the input period. Per-statement slicing

produces complex routines by mapping every statement inside the routines. The

resulting sequenced routine becomes much longer than the original one. But each

routine is only called once for each input value.

Similar to the different approaches for τXQuery, there are queries and data that

favor each approach. If a sequenced query asks for the result in a very short valid

time period, maximally-fragmented slicing should perform better because it has the

less complex statements in the routine and a few calls to each routine. On the other

hand, if a sequenced query requires the result for a very long valid-time period and

the data changes frequently in this period, the number of calls to the routine could

be large for the maximally-fragment slicing. In this case, per-statement slicing will

outperform maximally-fragmented slicing.

The next chapter empirically evaluates this tradeoff.
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Chapter 9

Performance Study for Temporal
SQL/PSM

There are two different time-slicing techniques presented in the last chapter. We would

like to find out which one is more efficient by running performance experiments. As we

experienced in the performance study for temporal XML, there are no benchmarks

even for SQL/PSM, let alone temporal SQL/PSM. This time we transformed and

extended the XBench to effect a temporal SQL/PSM benchmark. Section 9.1 provides

more details about how it was extended. The experimental setup and the results

are discussed from Section 9.2 to Section 9.6. Finally, Section 9.7 summarizes the

conclusions of the performance study.

9.1 Transform the Benchmark

Since XBench was designed to study XQuery on XML data, we need to map the

XML data to relational data and map the XQuery queries to SQL/PSM queries. We

extended XBench in the following way. First the DC/SD XML schema was mappped

to a relational schema; then valid time periods were added to the relational data by

simulating the evolving of the data; next the queries were transformed to SQL/PSM

queries; and finally, temporal keywords were added to achieve a temporal SQL/PSM

benchmark.

The XML schema of the DC/SD XML document was mapped to five relational

tables: items, authors, item authors, publishers, and related items. A non-

temporal XML document of 10GB was generated by the generator of XBench. The

document is a catalog of books each of which is represented by an item element.
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We shredded one tenth of the item elements (about 1GB) to the five relational ta-

bles according to the relational schema. This resulted in the initial snapshot of the

database. The rest of the item elements are also shredded but stored separately as

the repository in the simulation step. Shredding XML data is the process of convert-

ing the hierarchical XML data into the two dimensional table. The schema of the five

temporal tables are shown in Appendix L.

Assume the starting time of the temporal snapshot was st. Every tuple in the ini-

tial snapshot was associated with the valid time period [st, forever). The simulation

program set the current time as st, then it generated one interval i based on the pre-

defined update frequency (the distribution of the valid period length of each snapshot

will be specified in Section 9.2). The program advanced the clock by i. The current

time was set as st + i. At each time point, the program randomly chose a number

of tuples from the current snapshot and randomly chose an operation (insert, delete,

or update) for each of the chosen tuple. For the update operation, the program ran-

domly chose some time-varying columns to change. For example, at some time point,

the program decided to delete three items tuples, update two authors tuples on the

phone number and email address columns, respectively, and insert one publishers

tuple. A delete operation set the ending time of the tuple to the current time; an

insert operation inserted a new tuple with the valid period [current time, forever);

and an update operation was a delete of the current tuple with an insertion of a new

tuple. Both insertion and update needed new data which came from the repository

obtained from the XBench data generator. Once some data has been added to the

temporal database, it was removed from the repository. The program advanced the

clock until the required number of changes have been generated. In this way, we

obtained a temporal relational database.

The queries in XBench are written in XQuery. We transformed the queries to

SQL queries with functions and procedures embedded. Not all the queries in XBench

workload can be translated to SQL with PSM. We removed seven queries but added
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one query to the workload. Q4, Q5, and Q12 were removed because they relied on

the sequence order of XML documents which are not applicable to relational data.

Q17 was removed since it tested on the text search in XML documents. Q1, Q8, and

Q19 were removed since they are too simple to be queried with PSM and the rest of

the queries had PSMs contain all the control statements. We duplicate Q3 by writing

it in different control statements. Thus, we ended up with a nontemporal workload

with ten queries. We then added the keyword validtime and an optional period

[st, et] in front of each query. How the period is decided is explained in Section 9.2.

All the queries were extended to sequenced queries. The non-temporal SQL queries

with PSMs are shown in Appendix M.

We ran the sequenced queries against the temporal relational database. The exper-

imental setup is discussed in Section 9.2. The experiments examine the performance

of different time-slicing techniques. Instead of implementing the stratum, we manu-

ally mapped the sequenced queries to semantically equivalent SQL/PSM queries by

using different time-slicing techniques, which were then evaluated on the Oracle 10g

engine. Sections 9.3 to 9.6 demonstrate the results of running the queries over periods

of different lengths.

9.2 Experimental Setup

All experiments were conducted on a 1.86GHz Intel Core 2 machine with 2GB of

RAM and one 300GB MAXTOR STM3320620A disk drive running Windows XP.

We chose Oracle 10g as the underlying SQL engine. The reason is that Oracle is one

of the main-stream DBMS used in today’s database management and its PL/SQL

supports most of the functions in standard SQL/PSM.

The initial parameters used when the temporal data was generated are as follows.

The starting time of the relational database is 2002-01-01. The length of the valid

period of each snapshot is uniformly distributed between 1 to 30 days. The database
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stores the catalog history from 2002-01-01 to now. The total number of change

points in this database is 125 and the last change time is 2007-12-30. At each

change point, the number of records changed is uniformly distributed between 1 and

5. The size of the temporal database is 1.01GB. Another database setting will be

introduced in Section 9.6.

For all the database settings, we set the database buffer to be 256 MB, which

is about one quarter of the database size. We run the queries with a cold cache by

reading a big file into the memory before running each query.

9.3 Querying over the Whole Timeline

In the first experiment, we ran all the sequenced queries over the whole timeline. To

do this, we add the keyword validtime before each query without the optional period.

The query should return all the data in the history that satisfies the query predicates.

For a given temporal database and query, this is the worst-case performance for both

time-slicing techniques because in general, more data must be accessed when the

query period is long. The elapsed time of different queries using different techniques

are grouped by queries in Figure 9.1. The right-most group is the average elapsed

time of different techniques over all the queries.

The results of all the queries are shown in Figure 9.1. In Figure 9.1, MAX

(maximally-fragmented slicing) performed worse than PER ST (per statement slic-

ing) for all the queries since it slices the whole database at all the change points. As

mentioned in Section 9.2, this database has 128 change points. Therefore, MAX sliced

the database 128 times and executed the non-temporal queries 128 times against the

snapshot of the database at each change point. PER ST doesn’t need to slice the

whole database at every change point. Instead, it only needs to slice the intermediate

results inside the PSMs. An intermediate result is usually the temporal table for a

variable or a record resulted from a temporal query and will be manipulated by some
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Figure 9.1. Query over the whole timeline

control statements. Therefore, they are much smaller than the whole database and

have much less change points. Thus we see a big performance difference (about 43

times in average) between the two time-slicing techniques.

Detailed results show that the queries are CPU-bound in both slicing methods.

The first reason is we created indexes on the tables to reduce the I/O. The sec-

ond reason is that we make the queries complex after the mapping. The optimizer

spends more CPU time to optimize the sequenced queries than the non-temporal

queries. When mapping the queries, we add new predicates to the timestamps in

both slicing methods. Timestamps are also added to the parameter list of the func-

tions. For sequenced functions, timestamps are added to the return value as well.

In per-statement slicing, each control statement is mapped to a few lines of control

statements (about three to ten times longer). These mostly increase the CPU time

of the query processing but have very small impact on I/O.

On the other hand, PER ST makes the SQL query more complex than the non-

temporal queries by adding time period and additional non-equality predicates to the

queries. We expected that MAX performed better when the input time period of the
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queries is short enough. The experiment for short input time period is demonstrated

in the next section.

9.4 Querying over a Short Period

In this experiment, we ran all the sequenced queries over a short period, that of one

day. We placed validtime [2003-01-01, 2003-01-02] in front of each query, to

see the effect of the length of query period. The results are shown in Figure 9.2.
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Figure 9.2. Querying on a short period

MAX had dramatic improvement of its performance as compared with the perfor-

mance in Section 9.3. The reason is that it needs to slice the database only once in

this experiment, while in the previous experiment, it sliced the database 128 times.

In the short period experiment, PER ST also had slightly better performance than it

was in the experiment for long period. However it was not as good as MAX in this

experiment. PER ST did not take advantage of short query period too much because

it didn’t have many time-slicing even in the previous experiment. In addition, its

code complexity became dominating so that it took more time to run than the simple
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code in MAX.

9.5 Querying over Different Time Periods

The two extreme cases were examined in the last two sections. How about the cases

in between? Our expectation was that it depends on the temporal feature of the

database. When the input time period for queries is very long, the number of change

points is very big. MAX cannot perform well. In our temporal database setting,

since the number of tuples changed at each change point is very small compared to

the size of the database, the intermediate results that PER ST sliced is of small sizes.

PER ST won on the much less slicing. But if we shrink the length of the input time

period, the number of change points will decrease. The performance of MAX will

improve steadily while the performance of PER ST won’t benefit much. When the

length of the input time period becomes short enough, the performance of MAX will

be better than that of PER ST, which has more complex code than MAX.

To verify the hypothesis, We ran the queries with the input period length varying

from one day, one month, six months, one year, to the whole timeline. The result is

shown in Figure 9.3.

Figure 9.3 shows the average query time for the ten queries when the length

of the query periods vary. When querying over an extremely short time period,

MAX had better performance than PER ST. the performance of MAX degraded

while the length of the query periods increased. The performance of PER ST went

down slightly. When the length of the query periods was between one month and six

months, PER ST outperformed MAX and kept much better performance than MAX

for even longer length of query periods. This was exactly the same as we expected.

Which time-slicing technique is better depends on the temporal feature of the

database. So far we used the database that doesn’t change very often. The amount

of data changed is relatively small at each change point as well as in the whole
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Figure 9.3. Varying the Length of Query periods

timeline. We now examine the performance of the two techniques in a more dynamic

database.

9.6 Querying against a Frequently Changed Database

In this experiment, we changed the database setting. The length of the valid period

of each snapshot is uniformly distributed between 1 to 5 days. The database stores

the catalog history from 2002-01-01 to now. The total number of change points in

this database is 649 and the last change time is 2007-12-30. At each change point,

the number of records changed is uniformly distributed between 20 and 40. The size

of the temporal database is 1.5GB. Compared to the database used in the previous

sections, this database changed 5 times more frequently and at change point, 10 times

more data were changed. The size of the database is bigger since any changes in the

database result in more tuples. The history is never removed but accumulated. The

parameters we used to generate the temporal data are by no means the changing

frequencies of a typical temporal database. Actually, we are not aware of any typical
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changing frequency of temporal databases. The changing frequency totally depends

on the application. Our objective here is to generate data with different changing

frequency to see the relative behavior of the two mapping methods.

The workload ran over all the different time periods used in the previous experi-

ments. The results are shown in Figure 9.4.
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Figure 9.4. Querying against a Frequently Changed Database

When querying over the whole timeline, the difference between MAX and PER ST

is larger than in previous experiments. The reason is MAX had to slice the whole

database at five times more change points. This highest bar of MAX in the graph

made it difficult to see the performance for other lengths of query period. We removed

the last group of bars for the whole timeline from Figure 9.4 and show the rest of

them in Figure 9.5.

In the more dynamic database, the performance trend of MAX and PER ST

remained the same as in the previous database setting. But since data were changed

more frequently, the same query period contained more change points, thus MAX

needed to slice the database more times. This is the reason that the performance of
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Figure 9.5. Querying against a Frequently Changed Database (WT removed)

MAX degraded faster in this experiment. It was already worse than PER ST when

the query period increased to 1 month.

9.7 Summary

The empirical observations show that the time-slicing techniques are applicable to all

the queries in a sequenced SQL/PSM workload.

The length of the query period has a significant impact on the performance of

MAX which slices the data at every change point of the database. The shorter the

query period, the fewer the slices, therefore, the better the performance of MAX. It

could be better than PER ST when the query period is short enough. However, when

the query period is long enough, the performance of MAX drops dramatically.

The temporal feature of the database also play an important role on the perfor-

mance of MAX. The more frequently changed database has more change points in a

given query period. In this case, MAX doesn’t perform as good as in a less frequently

changed database.
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The two factors discussed above have slight impact on PER ST because PER ST

only slices on the small intermediate results inside PSMs. The length of the query

period and the dynamic feature of database both have impact on the size of the

intermediate results, but it is not significant. Therefore, the performance of PER ST

doesn’t degrade dramatically when the length of the query period increases or the

database changing frequency increases.

In most cases PER ST is better than MAX. But the code of PER ST is more com-

plex than MAX. When the query period is extremely short or the data doesn’t change

frequently, thus the query period doesn’t contain a lot of change points, PER ST is

not as good as MAX.
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Chapter 10

Conclusion and Future Work

The pervasiveness of temporal data in both relational databases and XML documents

calls for effective and efficient temporal query ability. Expressing queries on time-

varying (relational or XML) data by using standard query language (SQL or XQuery)

is more difficult than writing queries on nontemporal data. In this dissertation, we

presented minimal valid-time extensions to XQuery and SQL/PSM, focusing on the

procedural aspect of the two query languages and efficient evaluation of sequenced

queries.

For XQuery, we added valid time support to it by minimally extending the syntax

and semantics of XQuery. We adopt a stratum approach which maps a τXQuery

query to a conventional XQuery. The first part of the dissertation focuses on how

to perform this mapping, in particular, on mapping sequenced queries, which are by

far the most challenging. The critical issue of supporting sequenced queries (in any

query language) is time-slicing the input data while retaining period timestamping.

Timestamps are distributed throughout an XML document, rather than uniformly

in tuples, complicating the temporal slicing while also providing opportunities for

optimization. We proposed five optimizations of our initial maximally-fragmented

time-slicing approach: selected node slicing, copy-based per-expression slicing, in-

place per-expression slicing, and idiomatic slicing, each of which reduced the num-

ber of constant periods over which the query was evaluated. We also extended a

conventional XML query benchmark to effect a temporal XML query benchmark.

Experiments on this benchmark showed that in-place slicing was the best.

We then applied the same minimal extension to SQL/PSM to obtain the Temporal

SQL/PSM. The stratum architecture worked for implementing Temporal SQL/PSM.
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To map Temporal SQL/PSM to semantically equivalent SQL/PSM, we proposed two

time-slicing techniques: maximally-fragmented slicing and per-statement slicing. For

the empirical study of the performance of the two techniques, we converted XBench in-

cluding both the data model and the queries to effect a temporal SQL/PSM workload.

In most cases, per-statement slicing was much better than maximally-fragmented slic-

ing.

This dissertation used the same approach to successfully apply temporal ordina-

tion to the two different query languages based on different data models. Since the

two languages are not only query languages but also programming languages, we ex-

pect that the approaches proposed in this dissertation work for temporal ordination

of other programming languages. However it needs to be verified by further study. It

would be an interesting topic for future work. The recent XQuery standard has the

ability to update XML data, which was not discussed by this dissertation. Although

we expect that the approaches discussed in this dissertation work for the update,

temporal ordinating of the update aspect of XQuery is also worth being researched as

future work. The current mapping for τXQuery doesn’t use any schema information.

In the future, we can consider to utilize schema information to further improve the

mapping and compare the performance of the best automatically translated queries

and the well-written temporal queries in XQuery. We would like to automate other

aspects of manually-written XQuery equivalents, and also study how close the exist-

ing automatic approaches get to a manually-written XQuery program. This should

be studied for temporal SQL/PSM, too. The performance result can be sensitive to

the parameters used to generate the changing frequency of the temporal XML and

temporal relational data. In the future, a study is needed on the sensitivity of the

results to the parameters.

In general if statistics of data is available, it can be used by the query optimizer

to estimate the cost of different query methods. Similarly, it can also be used in the

future to build a cost model for the stratum of Temporal PSM and τXQuery. This
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would allow the stratum to compare the estimated cost of different slicing methods

and correctly choose between the two slicing methods.

In some systems, XML data are shredded into relational database. While the user

interface allows the users to use XQuery to retrieve the data, the system actually

maps the XQuery expressions to SQL query since the data are stored in a relational

database. In this case, how to map τXQueryto SQL is a good topic for future research.
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Appendix A

Schema for Valid Timestamp:
RXSchema.xsd

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="http://www.cs.arizona.edu/tau/RXSchema"

xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:rs="http://www.cs.arizona.edu/tau/RXSchema" elementFormDefault="qualified"
attributeFormDefault="unqualified" version="October, 2002">

<xs:annotation>
<xs:documentation>

XML Schema file for describing the Representational Schema.
Definitions for validtime type, element timestamps datatypes, and time-varying
attribute data type.

</xs:documentation>
</xs:annotation>

<xs:simpleType name="validTimeType">
<xs:union memberTypes="xs:dateTime xs:date rs:foreverType" />

</xs:simpleType>

<xs:simpleType name="foreverType">
<xs:restriction base="xs:string">
<xs:enumeration value="forever"/>

</xs:restriction>
</xs:simpleType>

<xs:complexType name="vtStep">
<xs:attribute name="vtBegin" type="rs:validTimeType"/>

</xs:complexType>

<xs:complexType name="vtExtent">
<xs:complexContent>
<xs:extension base="rs:vtStep">

<xs:attribute name="vtEnd" type="rs:validTimeType"/>
</xs:extension>

</xs:complexContent>
</xs:complexType>

<xs:complexType name="vtAttributeTS">
<xs:complexContent>
<xs:extension base="rs:vtExtent">

<xs:attribute name="name" type="xs:string"/>
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<xs:attribute name="value" type="xs:string"/>
</xs:extension>

</xs:complexContent>
</xs:complexType>

</xs:schema>
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Appendix B

Schema for Time-Varying Value:
Tvv.xsd

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="http://www.cs.arizona.edu/tau/Tvv"

xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:rs="http://www.cs.arizona.edu/tau/RXSchema" elementFormDefault="qualified"
attributeFormDefault="unqualified" version="October, 2002">
<xs:annotation>

<xs:documentation>
XML Schema file defining the type for time-varying simple value

</xs:documentation>
</xs:annotation>
<xs:import namespace="http://www.cs.arizona.edu/tau/RXSchema"

schemaLocation="RXSchemaTest.xsd"/>

<xs:complexType name="timeVaryingValueType">
<xs:sequence>
<xs:element name="timestamp" type="rs:vtExtent"/>
<xs:element name="value" type="xs:AnyType"/>

</xs:sequence>
</xs:complexType>

</xs:schema>



168

Appendix C

Auxiliary Functions

Here we provide an implementation of all of the auxiliary functions used in Sections 3.4

and Chapter 5. They are given in alphabetical order.

• Function tau:all-const-periods()

This function takes a time period as well as a list of nodes and computes all

the periods during which no single value in any of the nodes changes. It is

used in maximally-fragmented slicing to find the constant periods in the in-

put documents and in mapping built-in function in copy-based per-expression

slicing.

define function tau:all-const-periods(rs:vtExtent $p, xsd:node* $src)
as rs:vtExtent*
{
{-- get all the time points and sort the list without duplicates --}
let $ts := distinct-values( for $doc in $src

for $t in tau:all-time-points($doc, $p/@vtBegin, $p/@vtEnd)
order by $t
return $t )

for $index in (1 to count($ts)-1)
let $pbt := item-at($ts, $index)
let $pet := item-at($ts, $index+1)
return <timestamp vtBegin="{$pbt}" vtEnd="{$pet}"/>

}

• Function tau:all-const-periods2()

This function takes a time period as well as a sequence of items and their

timestamps as inputs. It computes all the periods during which no single value

in any of the items changes. The returned periods must be contained in the input

period. It is used in mapping the built-in functions in in-place per-expression

slicing.



169

define function tau:all-const-periods2(rs:vtExtent $p, item* $src)
as rs:vtExtent*
{
{-- get all the time points and sort the list without duplicates --}
let $ts := distinct-values( for $doc in $src

where index-of($src, $doc) mod 2 = 1 return
let $dp := item-at($src, index-of($src, $doc) + 1)
where tau:overlaps($dp, $p) return

let $newp := tau:intersection($dp, $p)
for $t in tau:all-time-points($doc, $newp/@vtBegin,

$newp/@vtEnd)
order by $t
return $t )

for $index in (1 to count($ts)-1)
let $pbt := item-at($ts, $index)
let $pet := item-at($ts, $index+1)
return <timestamp vtBegin="{$pbt}" vtEnd="{$pet}"/>

}

• Function tau:all-time-points()

This function takes a sequence of nodes and a time period (represented as two

dateTime value) and as the time points when the state of the input nodes or

their descendants are changed. The returned time points must be contained in

the input period. It is called by tau:all-const-

periods() and tau:all-const-periods2().

define function tau:all-time-points(xsd:node* $src, xs:dateTime $bt,
xs:dateTime $et) as xs:dateTime*
{
for $i in $src
for $e in $i/*
return if (name($e) = "timestamp") or (name($e) = "timeVaryingAttribute")

then {-- timestamp subelement or time-varying attribut--}
for $t in ($e/@vtBegin, $e/@vtEnd)
where ($bt <= $t) and ($t < $et)
return data($t)

else {-- find the time-points recursively --}
tau:all-time-points($e, $bt, $et)

}

• Function tau:apply-timestamp()

This function takes a sequence and makes a copy of the items in the odd posi-

tions with the correct timestamps computed according to the timestamp that
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follows it immediately. It is used only in the in-place per-expression slicing to

compute the final result of the query.

define function tau:apply-timestamp(item* $src) return item*
{
for $v in $src
let $vi := index-of($src, $v)
where ($vi mod 2 = 1) return

tau:copy-restricted-subtree(item-at($src, $vi+1), $v)
}

• Function tau:associate-timestamp()

This function takes a sequence of items and a timestamp element as input and

associates the timestamp representing the input period with each item in the

input sequence. It is used in the maximally-fragmented slicing to compute the

final result of the query.

define function tau:associate-timestamp(rs:vtExtent $p, item* $src)
as xsd:node*
{
for $i in $src
return typeswitch ($i)

case xs:document return
document
{

tau:associate-timestamp($p, $i/child::node())
}

case xs:element return
{-- the item is an element --}
element node-name($i) {

for $a in $i/@*
return attribute node-name($a) {$a} ,
{$p},
$i/child::node()

}
case xs:attribute return
{-- the item is an attribute --}
element timeVaryingAttribute {

attribute name {node-name($i)},
attribute value {xf:data($i)},
attribute vtBegin {$p/@vtBegin},
attribute vtEnd {$p/@vtEnd}

}
case atomic value return
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{-- the item is an atomic value --}
<timeVaryingValue>

{$p}
<value>{$i}</value>

</timeVaryingValue>
default return $e

}

• Function tau:const-periods()

This function takes a time period and a sequence of nodes and as the constant

periods for each of the nodes in the input sequence, not for all the subelements.

It is used in mapping almost every expression in the copy-based per-expression

slicing.

define function tau:const-periods(rs:vtExtent $p, xsd:node* $src)
as rs:vtExtent*
{
{-- get all the time points and sort the list without duplicates --}
let $ts := distinct-values( for $doc in $src

for $t in tau:time-points($doc, $p/@vtBegin, $p/@vtEnd)
order by $t
return $t )

for $index in (1 to count($ts)-1)
let $pbt := item-at($ts, $index)
let $pet := item-at($ts, $index+1)
return <timestamp vtBegin="{$pbt}" vtEnd="{$pet}"/>

}

• Function tau:const-periods2()

This function takes a sequence, including items and their timestamps, and a

period as inputs. It as the constant periods of this sequence of items contained

in the input period. It used in mapping almost every expression in the in-place

per-expression slicing.

define function tau:const-periods2(rs:vtExtent $p, item* $src)
return rs:vtExtent*
{
{-- get all the time points and sort the list without duplicates --}
let $ts := distinct-values(

for $t in tau:time-points2($src, $p/@vtBegin, $p/@vtEnd)
order by $t
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return $t )
for $index in (1 to count($ts)-1)
let $pbt := item-at($ts, $index)
let $pet := item-at($ts, $index+1)
return <timestamp vtBegin="{$pbt}" vtEnd="{$pet}"/>

}

• Function tau:copy-restricted-items

This function takes a sequence of items and their timestamps as inputs and

copies the actual items with the correct timestamps without changing the struc-

ture of these items. It is used in mapping computed constructors in in-place

per-expression slicing.

define function tau:copy-restricted-items(item* $e, rs:vtExtent* $p)
as item*
{
for $i in $e
return

typeswitch ($i)
case xs:document return

document{
tau:copy-restricted-items($i/child::node(), $p)

}
case rs:vtExtent return ()
case rs:attribTS return

for $per in $p
return

if ($i/@vtBegin < $per/@vtEnd) and ($i/@vtEnd > $per/@vtBegin)
then element timeVaryingAttribute {

attribute name {$i/@name},
attribute value {$i/@value},
attribute vtBegin {max($i/@vtBegin, $per/@vtBegin)},
attribute vtEnd {min($i/@vtEnd, $per/@vtEnd)}

}
case xs:element return

let $localps := $i/timestamp return
if (empty($localps))
then let $currentps := $p return

element node-name($i) {
(for $a in $i/@* return

tau:copy-restricted-items($currentps, $a),
if (empty($i/*))
then data($i)
else for $c in $i/child::node() return

tau:copy-restricted-items($currentps, $c))
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}
else let $currentps := tau:time-intersection($localps, $p)

where not empty($currentps) return
element node-name($i) {

(for $a in $i/@* return
tau:copy-restricted-items($currentps, $a),

for $ps in $currentps return $ps,
for $c in $i/child::node() return
tau:copy-restricted-items($currentps, $c))

}
default return $i

}

• Function tau:copy-restricted-subtree

This function takes one or more time periods and a variable as input parameters.

It makes a copy of the input variable and removes the descendants that are not

valid in the input periods. It is used frequently in copy-based per-expression

slicing and is also used to compute the final result of the query in in-place

per-expression slicing.

define function tau:copy-restricted-subtree(rs:vtExtent* $p, xs:node* $e)
as xs:node*
{
for $i in $e
return

typeswitch ($i)
case xs:document return

document{
tau:copy-restricted-subtree($p, $i/child::node())

}
case rs:vtExtent return ()
case rs:attribTS return

for $per in $p
return

if ($i/@vtBegin < $per/@vtEnd) and ($i/@vtEnd > $per/@vtBegin)
then element timeVaryingAttribute {

attribute name {$i/@name},
attribute value {$i/@value},
attribute vtBegin {max($i/@vtBegin, $per/@vtBegin)},
attribute vtEnd {min($i/@vtEnd, $per/@vtEnd)}

}
case xs:element return

let $localps := $i/timestamp
let $currentps := (if empty($localps)

then $p
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else tau:time-intersection($localps, $p))
where not empty($currentps)
return element node-name($i) {

for $a in $i/@*
return tau:copy-restricted-subtree($currentps, $a),

if xf:empty($i/*)
then <value>xf:data($i)</value>
else

for $c in $i/child::node()
return

if (node-name($c) = "value")
then $c
else tau:copy-restricted-subtree($currentps, $c),

for $ps in $currentps
return $ps

}
case xs:attribute return

for $per in $p
return element timeVaryingAttribute {

attribute name {node-name($i)},
attribute value {xf:data($i)},
attribute vtBegin {$per/@vtBegin},
attribute vtEnd {$per/@vtEnd}

}
default return $i

}

• Function tau:element-const-periods()

This function takes a sequence of documents and a sequence of strings repre-

senting node names (elements or attributes) to collect the times appearing at

those nodes (or inherited from ancestor nodes, if not timestamped directly) and

then constructs the constant periods. It is used in the selected node slicing.

define function tau:element-const-periods(rs:vtExtent $p, xsd:node* $src,
item*$nodes) as rs:vtExtent*
{
{-- get all the time points and sort the list without duplicates --}
let $ts := distinct-values( for $doc in $src

for $t in tau:element-time-points($doc, $nodes, $p/@vtBegin,
$p/@vtEnd)

order by $t
return $t )

for $index in (1 to count($ts)-1)
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let $pbt := item-at($ts, $index)
let $pet := item-at($ts, $index+1)
return <timestamp vtBegin="{$pbt}" vtEnd="{$pet}"/>

}

• Function tau:element-time-points()

This function takes a sequence of documents, a sequence of strings representing

node names (elements or attributes), and a time period represented by two

dateTime value. It collects the begin and end time of the nodes whose name

appears in the input sequence. The returned time points must be contained in

the input period. It is called only by the function tau:element-const-

periods().

define function tau:element-time-points(xsd:node* $src, item* $nodes
xs:dateTime $bt, xs:dateTime $et) as xs:dateTime*
{
for $i in $src
for $e in $i/* return

if ((name($e) = "timestamp" and name($i) = $nodes) or
(name($e) = "timeVaryingAttribute" and $e/@name = $nodes))

then {-- timestamp subelement or time-varying attribute --}
for $t in ($e/@vtBegin, $e/@vtEnd)
where ($bt <= $t) and ($t < $et)
return data($t)

else {-- find the time-points recursively --}
tau:element-time-points($e, $nodes, $bt, $et)

}

• Function tau:get-actual-items()

This function takes a sequence and as only the items in the odd position. It is

used in in-place per-expression slicing to seperate the items from their times-

tamps.

define function tau:get-actual-items(item* $src) return item*
{
for $v in $src
where index($src, $v) mod 2 = 1 return

$v
}
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• Function tau:get-periods()

This function takes a sequence and as the timestamps in the even position as

a sequence. It is used in the in-place per-expression slicing to separate the

timestamps from their items.

define function tau:get-periods(item* $src) return rs:vtExtent*
{
for $p in $src
where index($src, $p) mod 2 = 0 return

$p
}

• Function tau:interleave()

This function takes two sequences as inputs and interleaves them as one se-

quence. It is used in the in-place per-expression slicing to combine the items

with their timestamps.

define function tau:interleave(item* $src, rs:vtExtent $ps) return item*
{
for $i in (1 to count($src))
let $v := item-at($src, $i)
let $p := item-at($ps, $i) return

($v, $p)
}

• Function tau:intersection()

This function computes the valid-time intersection of the two input parameters.

It is used in in-place per-expression slicing.

define function tau:intersection(item $src1, item $src2)
return rs:vtExtent
{
let $p1 := typeswitch ($src1)

case rs:vtExtent $p return $p
default $e return

if (empty($e/timestamp))
then tau:period("1000-01-01", "9999-12-31")
else $e/timestamp

let $p2 := typeswitch ($src2)
case rs:vtExtent $p return $p
default $e return
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if (empty($e/timestamp))
then tau:period("1000-01-01", "9999-12-31")
else $e/timestamp

return tau:time-intersection($p1, $p2)
}

• Function tau:overlaps()

The function overlaps() is used to examine if the two input parameters overlap

in term of the valid-time. It is used in in-place per-expression slicing.

define function tau:overlaps(item $src1, item $src2) return xs:boolean
{
let $p1 := typeswitch ($src1)

case rs:vtExtent $p return $p
default $e return

if (empty($e/timestamp))
then tau:period("1000-01-01", "9999-12-31")
else $e/timestamp

let $p2 := typeswitch ($src2)
case rs:vtExtent $p return $p
default $e return

if (empty($e/timestamp))
then tau:period("1000-01-01", "9999-12-31")
else $e/timestamp

return
if (empty(tau:time-intersection($p1, $p2))
then false
else true

}

• Function tau:period()

This function takes two dateTime value as begin time and end time and con-

structs a period represented by an element of the type rs:vtExtent. It is used

in all the slicing approaches.

define function tau:period(xs:dateTime $bt, xs:dateTime $et)
as rs:vtExtent
{
<timestamp vtBegin="{$bt}" vtEnd="{$et}"/>

}

• Function tau:periods-of()
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This function as all the timestamps associated with the input node. It is used

in mapping the 〈ForExpr〉 in copy-based per-expression slicing.

define function tau:periods-of(item $e) as rs:vtExtent*
{
$e/timestamp

}

• Function tau:seq-path()

This function takes a time period, a sequence of nodes as the result of evaluating

a path expression, and a context node of the path expression as inputs. It as

the sequenced query results of a path expression. It is used in idiomatic slicing.

define function seq-path(rs:vtExtent $p, node* $TXQ, node $e)
as xs:node*
{
typeswitch ($e)

case xs:document return
tau:seq-path($p, $TXQ, $e/child::node())

case xs:attribTS return
{-- time-varying attribute --}
if some $i in $TXQ satisfies ($i is $e))
then let $ap := tau:period($e/@vtBegin, $e/@vtEnd)

let $cp := tau:time-intersection($p, $ap)
where not empty($cp) return

element timeVaryingAttribute {
attribute name {$e/@name},
attribute value {$e/@value},
attribute vtBegin {$cp/@vtBegin},
attribute vtEnd {$cp/@vtEnd}

}
else ()

case xs:vtExtent return ()
case xs:attribute return

if some $i in $TXQ satisfies ($i is $e))
then element timeVaryingAttribute {

attribute name {node-name($e)},
attribute value {xf:data($e)},
attribute vtBegin {$p/@vtBegin},
attribute vtEnd {$p/@vtEnd}

}
else ()

case xs:element return
let $localps := $e/timestamp
let $currentps := (if empty($localps)
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then $p
else tau:time-intersection($localps, $p))

where not empty($currentps) return
if some $i in $TXQ satisfies ($i is $e)
then tau:copy-restricted-subtree($currentps, $e)
else for $eachp in $currentps

for $c in $e/child::node() return
tau:seq-path($eachp, $TXQ, $c)

default return
if some $i in $TXQ satisfies ($i is $e)
then $e
else ()

}

• Function tau:sequence-in-period()

This function takes two input parameters, a sequence of items with their times-

tamps and a period. It computes the overlap of the valid period of each item and

the input period. Those items that are not valid in the input period are filtered

out. The rest items with the overlapped periods are returned in a sequence. It

is used in the in-place per-expression slicing.

define function tau:sequence-in-period()(item* $src, rs:vtExtent $p)
return item*
{
for $v in $src
where index-of($src, $v) mod 2 = 1
let $p1 := item-at($src, index-of($src, $v)+1)
where tau:overlaps($p1, $p) return

($v, tau:intersection($p1, $p))
}

• Function tau:snapshot()

This function takes an item n and a time t as the input parameters and as the

snapshot of n at time t. This snapshot item has no valid timestamps; elements

not valid now have been stripped out. It is used in current query, maximally-

fragmented slicing, and copy-based per-expression slicing.

define function tau:snapshot(xsd:item $e, xs:dateTime $time)
as xsd:item
{
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typeswitch $e
case document return

{-- $e is a document node --}
document
{

if (node-name($e/*[1]) = "valueVaryingRoot")
then for $r in $e/valueVaryingRoot/child::node()

return tau:snapshot($r, $time)
else for $r in $e/child::node()

return tau:snapshot($r, $time)
}

case processing-instruction return $e
case comment return $e
case text return $e
case atomic value* return $e

{-- the above four types don’t have valid timestamps --}

case element of type tvv:timeVaryingValueType return
if (every $vt in $e/timestamp satisfies ($vt/@vtBegin > $time or

$vt/@vtEnd <= time))
then ()
else xf:data($e/value)

case element return
if (not(empty($e/timestamp)) and (every $vt in $e/timestamp satisfies

($vt/@vtBegin > $time or $vt/@vtEnd <= time)))
then ()

{-- if $e time varying and its valid time period does not
contain $time --}

else element {node-name($e)}
{

{-- return non-temporal attributes --}
(for $a in $e/@*
return attribute {node-name($a)} {$a},

{-- return the value of the element if it has no subelement --}
if empty($e/*)
then xf:data($e)
else {-- return time-varying attributes that are valid at $time --}
(for $ta in $e/timeVaryingAttribute
where ($ta/@vtBegin <= $time and $ta/@vtEnd > $time)
return attribute {$ta/@name} {$ta/@value},

{-- return the snapshot of all the subelements
except for the timestamps--}

for $s in $e/child::node()
where (node-name($s) != "timestamp" and

node-name($s) != "timeVaryingAttribute")
return if node-name($s) = "value"
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then xf:data($s)
else tau:snapshot($s,$time)))

}
}

• Function tau:special-node()

This function as true when the input node is a special node (e.g., timestamp

and timeVaryingAttribute) for representing the valid periods. It is used in

per-expression slicing.

define function tau:special-node(xsd:node $src) return xs:boolean
{
if (local-name($src) = "timestamp" or

local-name($src) = "timeVaryingAttribute or
local-name($src) = "value")

then true
else false

}

• Function tau:time-intersection This function takes two sequences of times-

tamps and as the intersections between the periods in one sequence and the

periods in the other sequence. It is called by several other auxiliary functions.

define function tau:time-intersection(rs:vtExtent* $localps,
rs:vtExtent* $ps) as rs:vtExtent*
{
for $lp in $localps
for $p in $ps
where ($lp/@vtBegin < $p/$vtEnd) and ($lp/@vtEnd > $p/$vtBegin)
return element timestamp {

attribute vtBegin {max($lp/@vtBegin, $p/@vtBegin)},
attribute vtEnd {min($lp/@vtEnd, $p/@vtEnd)}

}
}

• Function tau:time-points()

This function takes a sequence of nodes and a time period (represented as two

dateTime value) and as the begin and end time of the input nodes (not including

the sub-elements). The returned time points must be contained in the input

period. It is called only by const-periods().
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define function tau:time-points(xsd:node $src, xs:dateTime $bt,
xs:dateTime $et) as xs:dateTime*
{
for $e in $src/timestamp
for $t in ($e/@vtBegin, $e/@vtEnd)
where ($bt <= $t) and ($t < $et)
return $t

}

• Function tau:time-points2()

This function takes a sequence of items and their timestamps, and a time period

(represented as two dateTime value) as the inputs. It as the begin and end time

of the input timestamps. The returned time points must be contained in the

input period. It is called only by tau:const-periods2().

define function tau:time-points2(item* $src, xs:dateTime $bt,
xs:dateTime $et) as xs:dateTime*
{
for $e in $src
where index-of($src, $e) mod 2 = 0 return

(if ($e/@vtBegin >= $bt and $e/@vtBegin <$et)
then $e/@vtBegin
else (),
if ($e/@vtEnd >= $bt and $e/@vtEnd <$et)
then $e/@vtEnd
else ())

}
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Appendix D

Non-Temporal Schema: CRM.xsd

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="http://www.cs.arizona.edu/stratum/CRM"

xmlns:xs="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified" attributeFormDefault="unqualified">

<xs:annotation>
<xs:documentation>

Non-temporal schema for customer relationship management.
</xs:documentation>

</xs:annotation>

<xs:element name="CRMdata">
<xs:complexType mixed="false">
<xs:sequence>

<xs:element ref="customer" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>

</xs:complexType>
</xs:element>

<xs:element name="customer">
<xs:complexType mixed="false">
<xs:sequence>

<xs:element ref="contactInfo"/>
<xs:element ref="directedPromotion" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="supportIncident" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>
<xs:attribute name="supportLevel" type="slType"/>

</xs:complexType>
</xs:element>

<xs:element name="contactInfo">
<!-- Definition of subelements of contactInfo includes name, address, and phone. -->

</xs:element>

<!-- Definition of directedPromotion -->

<xs:element name="supportIncident">
<xs:complexType mixed="false">
<xs:sequence>

<xs:element name="product" type="xs:string"/>
<xs:element name="description" type="xs:string"/>
<xs:element ref="action" minOccurs="0" maxOccurs="unbounded/>
<xs:element ref="resolution"/>
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</xs:sequence>
</xs:complexType>

</xs:element>

<xs:element name="action">
<!-- Definition of subelements of action includes who, what, and handoff. -->

</xs:element>

<!-- Definition of resolution -->

<xs:simpleType name="slType">
<xs:restriction base="xs:string">
<xs:pattern value="platinum|gold|silver|regular"/>

</xs:restriction>
</xs:simpleType>

<xs:schema>
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Appendix E

Temporal Annotations on the CRM
Schema: CRM.tsd

The temporal annotation specifies which nodes are time-varying, whether they are

value-varying or existance-varying, whether they are event data or state data, and

whether they change over valid time, transaction time, or both. In this example,

We annotate three elements and one attribute to be time-varying in term of valid

time. They are all state data. Two of them are existance-varying, the others are

value-varying.

<?xml version="1.0" encoding="UTF-8"?>
<temporalAnnotatedSchema xmlns="http://www.cs.arizona.edu/tau/TXSchema"

xmln:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.cs.arizona.edu/tau/TXSchema TXSchema.xsd"/>

<nonTemporalSchema schemaLocation="http://www.cs.arizona.edu/CRM.xsd"/>
<validTime target="/CRMdata/customer/contactInfo" kind="state"/>
<validTime target="/CRMdata/customer/@supportLevel" kind="state"/>
<validTime target="/CRMdata/customer/supportIncident" kind="state"

existanceVarying="true"/>
<validTime target="/CRMdata/customer/supportIncident/action" kind="state"

existanceVarying="true"/>
</temporalAnnotatedSchema>
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Appendix F

Physical Annotations on the CRM
Schema

The physical annotation indicates which nodes are physically timestamped and what

data type is used to represent the timestamps. It is independent from the temporal

annotation. Given a non-temporal schema and a temporal annotation, multiple phys-

ical annotation strategies can be developed. Here, we provide two different physical

annotations for the CRM example.

F.1 Physical Annotations with Timestamps at The Same
Level as Temporal Annotaions: CRM1.psd

In this example, we annotate the schema with timestamps at the same level as the

temporal annotations. The timestamp type is extent, which is a period represented

by begin time and end time.

<?xml version="1.0" encoding="UTF-8"?>
<physicalAnnotatedSchema xmlns="http://www.cs.arizona.edu/tau/PXSchema"

xmln:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.cs.arizona.edu/tau/PXSchema PXSchema.xsd"/>

<temporalAnnotatedSchema schemaLocation="http://www.cs.arizona.edu/CRM.tsd"/>
<validTime target="/CRMdata/customer/contactInfo" timeStampType="extent"/>
<validTime target="/CRMdata/customer/@supportLevel" timeStampType="extent"/>
<validTime target="/CRMdata/customer/supportIncident" timeStampType="extent"/>
<validTime target="/CRMdata/customer/supportIncident/action" timeStampType="extent"/>

</physicalAnnotatedSchema>

F.2 Physical Annotations with Timestamps at Root: CRM2.psd

In this example, we annotate only the root node of the schema with timestamps.

Whenever a single value changes in the document, a new copy of the whole tree is

created.
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<?xml version="1.0" encoding="UTF-8"?>
<physicalAnnotatedSchema xmlns="http://www.cs.arizona.edu/tau/PXSchema"

xmln:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.cs.arizona.edu/tau/PXSchema PXSchema.xsd"/>

<temporalAnnotatedSchema schemaLocation="http://www.cs.arizona.edu/CRM.tsd"/>
<validTime target="/CRMdata" timeStampType="extent"/>

</physicalAnnotatedSchema>
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Appendix G

Representational Schema for the CRM
Example

The non-temporal schema, the temporal annotation, and the physical annotation

imply a representational schema, which defines the structure of the temporal XML

documents and the data type of each element and attribute. Again, we show the

two different representational schemas that result from the two different physical

annotations for the CRM example.

G.1 Representational Schema for Physical Annotations in
CRM1.psd

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:rs="http://www.cs.arizona.edu/tau/RXSchema"
elementFormDefault="qualified" attributeFormDefault="unqualified">

<xs:import namespace="http://www.cs.arizona.edu/tau/RXSchema"
schemaLocation="RXSchema.xsd"/>

<xs:element name="CRMdata">
<xs:complexType mixed="false">
<xs:sequence>

<xs:element ref="customer" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>

</xs:complexType>
</xs:element>

<xs:element name="customer">
<xs:complexType mixed="false">
<xs:sequence>

<xs:element ref="contactInfo" minOccurs="1" maxOccurs="unbounded"/>
<xs:element ref="directedPromotion" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="supportIncident" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="rs:timeVaryingAttribute" minOccurs="1" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>



189

</xs:element>

<!-- Definition of contactInfo -->
<!-- Definition of directedPromotion -->

<xs:element name="supportIncident">
<xs:complexType mixed="false">
<xs:sequence>

<xs:element name="product" type="xs:string"/>
<xs:element name="description" type="xs:string"/>
<xs:element ref="action" minOccurs="0" maxOccurs="unbounded/>
<xs:element ref="resolution"/>
<xs:element ref="rs:timestamp"/>

</xs:sequence>
</xs:complexType>

</xs:element>

<!-- Definition of action -->
<!-- Definition of resolution -->

</xs:schema>

G.2 Representational Schema for Physical Annotations in
CRM2.psd

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:rs="http://www.cs.arizona.edu/tau/RXSchema"
elementFormDefault="qualified" attributeFormDefault="unqualified">

<xs:import namespace="http://www.cs.arizona.edu/tau/RXSchema"
schemaLocation="RXSchema.xsd"/>

<xs:element name="valueVaryingRoot">
<xs:complexType>
<xs:sequence>

<xs:element ref="CRMdata" maxOccurs="unbounded"/>
</xs:sequence>

</xs:complexType>
</xs:element>

<xs:element name="CRMdata">
<xs:complexType mixed="false">
<xs:sequence>

<xs:element ref="customer" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="rs:timestamp"/>

</xs:sequence>
</xs:complexType>



190

</xs:element>

<xs:element name="customer">
<xs:complexType mixed="false">
<xs:sequence>

<xs:element ref="contactInfo"/>
<xs:element ref="directedPromotion" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="supportIncident" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>
<xs:attribute name="supportLevel" type="slType"/>

</xs:complexType>
</xs:element>

<!-- Definition of contactInfo -->
<!-- Definition of directedPromotion -->

<xs:element name="supportIncident">
<xs:complexType mixed="false">
<xs:sequence>

<xs:element name="product" type="xs:string"/>
<xs:element name="description" type="xs:string"/>
<xs:element ref="action" minOccurs="0" maxOccurs="unbounded/>
<xs:element ref="resolution"/>

</xs:sequence>
</xs:complexType>

</xs:element>

<!-- Definition of action -->
<!-- Definition of resolution -->

<xs:simpleType name="slType">
<xs:restriction base="xs:string">
<xs:pattern value="platinum|gold|silver|regular"/>

</xs:restriction>
</xs:simpleType>

</xs:schema>
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Appendix H

Example Instances

In this chapter, we give two example instances defined by the two representational

schemas. They are different in that the timestamps are placed in different levels.

In CRM1.xml, timestamps are placed in three different levels of the tree, while in

CRM2.xml, timestamps are placed only at the surrogate root element. These two

temporal XML documents are snapshot equivalent.

H.1 Temporal Data for the CRM example based on Physical
Annotations in CRM1.psd: CRM1.xml

<?xml version="1.0" encoding="UTF-8"?>
<CRMdata xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:rs="http://www.cs.arizona.edu/tau/tauXSchema/RXSchema"
xsi:noNamespaceSchemaLocation="repCRM1.xsd"
xsi:schemaLocation="http://www.cs.arizona.edu/tau/RXSchema RXSchema.xsd">

<customer>
<timeVaryingAttribute name="supportLevel" value="gold"

vtBegin="2001-02-15" vtEnd="2002-02-15"/>
<timeVaryingAttribute name="supportLevel" value="platinum"

vtBegin="2002-02-15" vtEnd="forever"/>
<contactInfo>
<name>Tom</name>

</contactInfo>
<directedPromotion>...</directedPromotion>
<supportIncident>
<rs:timestamp vtBegin="2001-03-12" vtEnd="2001-04-05"/>
<product>...</product>
<description>...</description>
<action>

<rs:timestamp vtBegin="2001-03-12" vtEnd="2001-03-20"/>
</action>
<action>

<rs:timestamp vtBegin="2001-03-20" vtEnd="2001-04-05"/>
</action>
<resolution>...</resolution>

</supportIncident>
</customer>
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<customer>
<timeVaryingAttribute name="supportLevel" value="gold"

vtBegin="2001-01-05" vtEnd="forever"/>
<contactInfo>
<name>Bill</name>

</contactInfo>
<directedPromotion>...</directedPromotion>
<supportIncident>
<rs:timestamp vtBegin="2001-04-02" vtEnd="2001-04-10"/>
<product>...</product>
<description>...</description>
<action>

<rs:timestamp vtBegin="2001-04-02" vtEnd="2001-04-05"/>
</action>
<action>

<rs:timestamp vtBegin="2001-04-05" vtEnd="2001-04-10"/>
</action>
<resolution>...</resolution>

</supportIncident>
<supportIncident>
<rs:timestamp vtBegin="2002-09-12" vtEnd="2002-09-14"/>
<product>...</product>
<description>...</description>
<action>

<rs:timestamp vtBegin="2002-09-12" vtEnd="2002-09-14"/>
</action>
<resolution>...</resolution>

</supportIncident>
</customer>

</CRMdata>

H.2 Temporal Data for the CRM example based on Physical
Annotations in CRM2.psd: CRM2.xml

<?xml version="1.0" encoding="UTF-8"?>
<valueVaryingRoot xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:rs="http://www.cs.arizona.edu/tau/tauXSchema/RXSchema"
xsi:noNamespaceSchemaLocation="repCRM2.xsd">

<CRMdata>
<rs:timestamp vtBegin="2001-01-05" vtEnd="2001-02-15"/>
<customer supportLevel="gold">
<contactInfo>

<name>Bill</name>
</contactInfo>
<directedPromotion>...</directedPromotion>

</customer>
</CRMdata>
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<CRMdata>
<rs:timestamp vtBegin="2001-02-15" vtEnd="2001-03-12"/>
<customer supportLevel="gold">
<contactInfo>

<name>Tom</name>
</contactInfo>
<directedPromotion>...</directedPromotion>

</customer>
<customer supportLevel="gold">
<contactInfo>

<name>Bill</name>
</contactInfo>
<directedPromotion>...</directedPromotion>

</customer>
</CRMdata>

<CRMdata>
<rs:timestamp vtBegin="2001-03-12" vtEnd="2001-03-20"/>
<customer supportLevel="gold">
<contactInfo>

<name>Tom</name>
</contactInfo>
<directedPromotion>...</directedPromotion>
<supportIncident>

<product>product1</product>
<description>...</description>
<action>action1</action>
<resolution>...</resolution>

</supportIncident>
</customer>
<customer supportLevel="gold">
<contactInfo>

<name>Bill</name>
</contactInfo>
<directedPromotion>...</directedPromotion>

</customer>
</CRMdata>

<CRMdata>
<timestamp vtBegin="2001-03-20" vtEnd="2001-04-02"/>
<customer supportLevel="gold">
<contactInfo>

<name>Tom</name>
</contactInfo>
<supportIncident>

<product>product1</product>
<description>...</description>
<action>action2</action>
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<resolution>...</resolution>
</supportIncident>

</customer>
<customer supportLevel="gold">
<contactInfo>

<name>Bill</name>
</contactInfo>
<directedPromotion>...</directedPromotion>

</customer>
</CRMdata>

<CRMdata>
<rs:timestamp vtBegin="2001-04-02" vtEnd="2001-04-05"/>
<customer supportLevel="gold">
<contactInfo>

<name>Tom</name>
</contactInfo>
<supportIncident>

<product>product1</product>
<description>...</description>
<action>action2</action>
<resolution>...</resolution>

</supportIncident>
</customer>
<customer supportLevel="gold">
<contactInfo>

<name>Bill</name>
</contactInfo>
<directedPromotion>...</directedPromotion>
<supportIncident>

<product>product2</product>
<description>...</description>
<action>action3</action>
<resolution>...</resolution>

</supportIncident>
</customer>

</CRMdata>

<CRMdata>
<rs:timestamp vtBegin="2001-04-05" vtEnd="2001-04-10"/>
<customer supportLevel="gold">
<contactInfo>

<name>Tom</name>
</contactInfo>
<directedPromotion>...</directedPromotion>

</customer>
<customer supportLevel="gold">
<contactInfo>

<name>Bill</name>
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</contactInfo>
<directedPromotion>...</directedPromotion>
<supportIncident>

<product>product2</product>
<description>...</description>
<action>action4</action>
<resolution>...</resolution>

</supportIncident>
</customer>

</CRMdata>

<CRMdata>
<rs:timestamp vtBegin="2001-04-10" vtEnd="2002-02-15"/>
<!-- The same as CRMdata from "2001-01-15" to "2001-03-12" -->

</CRMdata>

<CRMdata>
<rs:timestamp vtBegin="2002-02-15" vtEnd="2002-09-12"/>
<customer supportLevel="platinum">
<contactInfo>

<name>Tom</name>
</contactInfo>
<directedPromotion>...</directedPromotion>

</customer>
<customer supportLevel="gold">
<contactInfo>

<name>Bill</name>
</contactInfo>
<directedPromotion>...</directedPromotion>

</customer>
</CRMdata>

<CRMdata>
<rs:timestamp vtBegin="2002-09-12" vtEnd="2002-09-14"/>
<customer supportLevel="platinum">
<contactInfo>

<name>Tom</name>
</contactInfo>
<directedPromotion>...</directedPromotion>

</customer>
<customer supportLevel="gold">
<contactInfo>

<name>Bill</name>
</contactInfo>
<directedPromotion>...</directedPromotion>
<supportIncident>

<product>product3</product>
<description>...</description>
<action>action5</action>
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<resolution>...</resolution>
</supportIncident>

</customer>
</CRMdata>

<CRMdata>
<rs:timestamp vtBegin="2002-09-14" vtEnd="forever"/>
<!-- The same as CRMdata from "2002-02-15" to "2002-09-12" -->

</CRMdata>
</valueVaryingRoot>
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Appendix I

Timestamp Schema Generated for
Copy-Based Per-Expression Slicing:

tCRM.xsd

The timestamp schema is generated by the stratum for copy-based per-expression

slicing. In this schema, all the elements and attributes are timestamped so that the

mapping of type related expression is simple.

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="http://www.cs.arizona.edu/stratum/TCRM"

xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:rs="http://www.cs.arizona.edu/tau/RXSchema"
xmlns:tvv="http://www.cs.arizona.edu/tau/Tvv"
elementFormDefault="qualified" attributeFormDefault="unqualified">

<xs:import namespace="http://www.cs.arizona.edu/tau/RXSchema"
schemaLocation="tau/RXSchema.xsd"/>

<xs:import namespace="http://www.cs.arizona.edu/tau/Tvv"
schemaLocation="tau/Tvv.xsd"/>

<xs:element name="CRMdata">
<xs:complexType mixed="false">
<xs:sequence>

<xs:element ref="rs:timestamp"/>
<xs:element ref="customer" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:element name="customer">
<xs:complexType mixed="false">
<xs:sequence>

<xs:element ref="rs:timestamp"/>
<xs:element ref="rs:timeVaryingAttribute" minOccurs="1" maxOccurs="unbounded"/>
<xs:element ref="contactInfo" minOccurs="1" maxOccurs="unbounded"/>
<xs:element ref="directedPromotion" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="supportIncident" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

</xs:element>
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<!-- Definition of contactInfo includes the subelement rs:timestamp -->
<!-- Definition of directedPromotion includes the subelement rs:timestamp -->

<xs:element name="supportIncident">
<xs:complexType mixed="false">
<xs:sequence>

<xs:element ref="rs:timestamp"/>
<xs:element name="product" type="tvv:timeVaryingValueType"/>
<xs:element name="description" type="tvv:timeVaryingValueType"/>
<xs:element ref="action" minOccurs="0" maxOccurs="unbounded/>
<xs:element ref="resolution"/>

</xs:sequence>
</xs:complexType>

</xs:element>

<!-- Definition of action includes the subelement rs:timestamp -->
<!-- Definition of resolution includes the subelement rs:timestamp -->

</xs:schema>
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Appendix J

Mapping Result of In-Place Slicing

{-- validtime avg(for $c in --}
tau:apply-timestamp(
let $tau:par1 :=
(let $tau:s :=
{-- let $tau:sequence:=document("CRM.xml") return --}
(let $tau:s := (document("CRM.xml"), tau:period("1000-01-01", "9999-12-31"))
for $tau:p in tau:const-periods2(tau:period("1000-01-01", "9999-12-31"),

$tau:s)
let $tau:sequence := tau:sequence-in-period($tau:s, $tau:p) return
{-- for $tau:dot in $tau:sequence return --}
let $tau:s1 := tau:sequence-in-period($tau:sequence, $tau:p)
for $tau:i1 in (1 to count($tau:s1) div 2)
let $tau:vi1 := 2 * $tau:i1 - 1
let $tau:v1 := item-at($tau:s1, $tau:vi1)
let $tau:p1 := item-at($tau:s1, $tau:vi1+1)
let $tau:dot := ($tau:v1, $tau:p1) return
{-- for $tau:dot in $tau:dot/descendant-or-self::customer return --}
let $tau:s2 :=
(let $tau:s3 := tau:get-actual-items($tau:dot)
let $tau:p2 := tau:get-periods($tau:dot)
where tau:overlaps($tau:p2, $tau:p1) return
let $tau:p3 := tau:intersection($tau:p2, $tau:p1)
for $tau:step in $tau:s2/descendant-or-self::customer
where tau:overlaps($tau:p3,$tau:step)
return ($tau:step, tau:intersection($tau:p3, $tau:step)))

for $tau:i2 in (1 to count($tau:s2) div 2)
let $tau:vi2 := 2 * $tau:i2 - 1
let $tau:v2 := item-at($tau:s2, $tau:vi2)
let $tau:p2 := item-at($tau:s2, $tau:vi2+1)
let $tau:dot := ($tau:v2, $tau:p2) return
for $tau:c in
(let $tau:s3 := tau:get-actual-items($tau:dot)
let $tau:p3 := tau:get-periods($tau:dot)
where tau:overlaps($tau:p3, $tau:p2) return
let $tau:p4 := tau:intersection($tau:p3, $tau:p2) return
(for $tau:a in $tau:s/attribute::supportLevel return
($tau:a, $tau:p4),
for $tau:ta in $tau:s/timeVaryingAttribute[@name="supportLevel]
where tau:overlaps($tau:ta, $tau:p4) return
($tau:ta, tau:intersection($tau:ta, $tau:p4))))

let $tau:s := (item-at($tau:c, 1) = "gold" or
item-at($tau:c, 1)/@value = "gold", item-at($tau:c, 2))
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for $tau:p in tau:const-periods2($tau:p2, $tau:s) return
if (tau:get-actual-items(tau:sequence-in-period($tau:s, $tau:p)))
then tau:sequence-in-period($tau:dot, $tau:p)
else ())

for $tau:i in (1 to count($tau:s) div 2))
let $tau:vi := 2 * $tau:i - 1
let $tau:v := item-at($tau:s, $tau:vi)
let $tau:p := item-at($tau:s, $tau:vi+1)
let $c := ($tau:v, $tau:p) return
{-- count(let $tau:sequence := $c return --}
let $tau:par2 :=
(let $tau:s1 := tau:sequence-in-period($c, $tau:p)
for $tau:i1 in (1 to count($tau:s1) div 2)
let $tau:vi1 := 2 * $tau:i1 - 1
let $tau:v1 := item-at($tau:s1, $tau:vi1)
let $tau:p1 := item-at($tau:s1, $tau:vi1+1)
let $tau:dot := ($tau:v1, $tau:p1) return
{-- $tau:dot/child::supportIncident --}
let $tau:s3 := tau:get-actual-items($tau:dot)
let $tau:p3 := tau:get-periods($tau:dot)
where tau:overlaps($tau:p3, $tau:p1) return
let $tau:p4 := tau:intersection($tau:p3, $tau:p1)
for $tau:step in $tau:s3/child::supportIncident
where tau:overlaps($tau:p4,$tau:step)
return ($tau:step, tau:intersection($tau:p4, $tau:step)))

for $tau:p1 in tau:all-const-periods2($tau:p, $tau:par2)
let $tau:s1 := tau:sequence-in-period($tau:par2, $tau:p1) return
(count(tau:get-actual-items($tau:s1)), $tau:p1))

for $tau:p in
tau:all-const-periods2(tau:period("1000-01-01","9999-12-31"),$tau:par1)
let $tau:s1 := tau:sequence-in-period($tau:par1, $tau:p) return
avg(tau:get-actual-items($tau:s1)), $tau:p)
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Appendix K

XBench DC/SD Workload

• Q1 Return the item that has matching item id attribute value (I1).

document("catalog.xml")/catalog/:item[@id="I1"]

• Q2 Find the title of the item which has matching author first name (Ben).

for $item in document("catalog.xml")/catalog/:item

where $item/authors/autor/name/first_name = "Ben"

return $item/title

• Q3 Group items released in a certain year (1990), by publisher name and cal-

culate the total number of items for each group.

for $a in distinct-values(document("catalog.xml")/catalog/:item

[date_of_release >= "1990-01-01"]

[date_of_release < "1991-01-01"]/publisher/name)

let $b := document("catalog.xml")/catalog/:item/publisher[name=$a]

return <Output>

<Publisher>{$a/text()}</Publisher>

<NumberOfItems>{count($b)}</NumberOfItems>

</Output>

• Q4 List the item id of the previous item of a matching item with id attribute

value (I2).
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let $item := document("catalog.xml")/catalog/:item[@id="I2"]

for $prevItem in document("catalog.xml")/catalog/:item

[. << $item][position() = last()]

return <Output>

<CurrentItem>{$item/@id}</CurrentItem>

<PreviousItem>{$prevItem/@id}</PreviousItem>

</Output>

• Q5 Return the information about the first author of item with a matching id

attribute value (I3).

for $a in document("catalog.xml")/catalog/:item[@id="I3"]

return $a/authors/author[1]

• Q6 Return item information where some authors are from certain country (Canada).

for $item in document("catalog.xml")/catalog/:item

where some $auth in

$item/authors/author/contact_information/mailing_address

satisfies $auth/name_of_country = "Canada"

return $item

• Q7 Return item information where all its authors are from certain country

(Canada).

for $item in document("catalog.xml")/catalog/:item

where every $add in

$item/authors/author/contact_information/mailing_address

satisfies $add/name_of_country = "Canada"

return $item
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• Q8 Return the publisher of an item with id attribute value I4.

for $a in document("catalog.xml")/catalog/*[@id="I4"]

return $a/publisher

• Q9 Return the ISBN of an item with id attribute value I5.

for $a in document("catalog.xml")/catalog/:item

where $a/@id="I5"

return $a//ISBN/text()

• Q10 List the item titles ordered alphabetically by publisher name, with release

date within a certain time period (from 1990-01-01 to 1995-01-01).

for $a in document("catalog.xml")/catalog/:item

where $a/date_of_release gt "1990-01-01" and

$a/date_of_release lt "1995-01-01"

order by $a/publisher/name

return <Output>

{$a/title}

{$a/publisher}

</Output>

• Q11 List the item titles in descending order by date of release with release date

within a certain time period (from 1990-01-01 to 1995-01-01).

for $a in document("catalog.xml")/catalog/:item

where $a/date_of_release gt "1990-01-01" and

$a/date_of_release lt "1995-01-01"

order by $a/date_of_release descending
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return <Output>

{$a/title}

{$a/date_of_release}

</Output>

• Q12 Get the mailing address of the first author of certain item with id attribute

value (I6).

for $a in document("catalog.xml")/catalog/:item[@id="I6"]

return

<Output>

{$a/authors/author[1]/contact_information/mailing_address}

</Output>

• Q14 Return the names of publishers who publish books between a period of time

(from 1990-01-01 to 1991-01-01) but do not have FAX number.

for $a in document("catalog.xml")/catalog/:item

where $a/date_of_release gt "1990-01-01" and

$a/date_of_release lt "1991-01-01" and

empty($a/publisher/contact_information/FAX_number)

return <Output>

{$a/publisher/name}

</Output>

• Q17 Return the ids of items whose descriptions contain a certain word (”hockey”).

for $a in document("catalog.xml")/catalog/:item

where contains ($a/description, "hockey")

return <Output>{$a/@id}</Output>
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• Q19 Return the item titles related by certain item with id attribute value (I7).

for $item in document("catalog.xml")/catalog/:item[@id="I7"]

$related in document("catalog.xml")/catalog/:item

where $item/related_items/related_item/item_id = $related/@id

return <Output>

{$related/title}

</Output>

• Q20 Retrieve the item title whose size (length * width * height) is bigger than

certain number (500000).

for $size in document("catalog.xml")/catalog/:item/attributes/

size_of_book

where $size/length * $size/width * $size/height > 500000

return <Output>

{$size/../../title}

</Output>
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Appendix L

Temporal Relational Schema

• book

Columns Type

id CHARACTER(10)
ISBN CHARACTER VARYING(20)
title CHARACTER(20)
subject CHARACTER VARYING(200)
number of pages INTEGER
type of book CHARACTER(10)
length FLOAT
length unit CHARACTER(10)
width FLOAT
width unit CHARACTER(10)
height FLOATl
height unit CHARACTER(10)
suggested retail price DECIMAL(10,2)
SRP currency CHARACTER(10)
cost DECIMAL(10,2)
cost currency CHARACTER(10)
when is available DATE
quantity in stock INTEGER
date of release DATE
description CHARACTER(500)
publisher id CHARACTER(10)
begin time DATE
end time DATE

Table L.1. The schema of book
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• author

Columns Type

author id CHARACTER(10)
first name CHARACTER(20)
middle name CHARACTER(20)
last name CHARACTER(20)
date of birth DATE
biography CHARACTER(500)
street address1 CHARACTER VARYING(30)
street address2 CHARACTER VARYING(30)
name of city CHARACTER VARYING(20)
name of state CHARACTER VARYING(20)
zip code CHARACTER(8)
name of country CHARACTER VARYING(20)
phone number CHARACTER VARYING(20)
email address CHARACTER VARYING(30)
begin time DATE
end time DATE

Table L.2. The schema of author

• book author

Columns Type

book id CHARACTER(10)
author id CHARACTER(10)
begin time DATE
end time DATE

Table L.3. The schema of book author
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• publisher

Columns Type

publisher id CHARACTER(10)
name CHARACTER VARYING(40)
street address1 CHARACTER VARYING(30)
street address2 CHARACTER VARYING(30)
name of city CHARACTER VARYING(20)
name of state CHARACTER VARYING(20)
zip code CHARACTER(8)
exchange rate FLOAT
currency CHARACTER(10)
phone number CHARACTER VARYING(20)
web site CHARACTER VARYING(40)
FAX number CHARACTER VARYING(20)
begin time DATE
end time DATE

Table L.4. The schema of publisher

• related book

Columns Type

book id CHARACTER(10)
related id CHARACTER(10)
begin time DATE
end time DATE

Table L.5. The schema of related book
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Appendix M

Non-Temporal SQL Queries with PSMs

• Q1 Find the title of the item which has matching author first name (Ben).

SELECT b.title
FROM book b, book_author ba
WHERE b.id = ba.book_id
AND get_author_name(ba.author_id) = ’Ben’

CREATE FUNCTION get_author_name(aid CHARACTER(10))
RETURNS CHARACTER(20)
LANGUAGE SQL
READ SQL DATA

BEGIN
DECLARE fname CHARACTER(20);
set fname = (SELECT first_name

FROM author
WHERE author_id = aid;

return fname;
END;

• Q2 Group items released in a certain year (1990), by publisher name and cal-

culate the total number of items for each group.

SELECT p.name, SUM(b.quantity_in_stock)
FROM book b, publisher p
WHERE b.publisher_id = p.publisher_id
AND release_date_between(b.id, ’1990-01-01’, ’1991-01-01’)
GROUP BY p.name;

CREATE FUNCTION release_date_between(bid CHARACTER(10), start DATE, end DATE)
RETURNS BOOLEAN
LANGUAGE SQL
READ SQL DATA

BEGIN
DECLARE rd DATE;
CALL get_release_date(bid, rd);
IF (rd >= start) AND (rd < end)
THEN RETURN true;
ELSE RETURN false;

END;
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CREATE PROCEDURE release_date(IN bid CHARACTER(10), OUT rd DATE)
LANGUAGE SQL
READ SQL DATA

BEGIN
SET rd = (SELECT date_of_release

FROM book
WHERE id = bid);

END;

• Q3 Group items released in a certain year (1990), by publisher name and cal-

culate the total number of items for each group.

SELECT p.name, SUM(b.quantity_in_stock)
FROM book b, publisher p
WHERE b.publisher_id = p.publisher_id
AND release_date(b.id) >= ’1990-01-01’
AND release_date(b.id) < ’1991-01-01’
GROUP BY p.name

CREATE FUNCTION release_date(bid CHARACTER(10))
RETURNS DATE
LANGUAGE SQL
READ SQL DATA

BEGIN
DECLARE rd DATE;
SET rd = (SELECT date_of_release

FROM book
WHERE id = bid);

RETURN rd;
END;

• Q4 List the item titles ordered alphabetically by publisher name, with release

date in 1990s.

SELECT b.title, p.name
FROM publisher p, book b
WHERE b.publisher_id = p.publisher_id
AND book_of_90s(b.id)
ORDER BY p.name;

CREATE FUNCTION book_of_90s(bid CHARACTER(10))
RETURNS BOOLEAN
LANGUAGE SQL
READ SQL DATA

BEGIN
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DECLARE rd DATE;

SET rd = (SELECT date_of_release
FROM book
WHERE id = bid);

IF (rd >= ’1990-01-01’) AND (rd < ’2000-01-01’)
THEN RETURN TRUE;
ELSE RETURN FALSE;

END;

• Q5 List the item titles in descending order by date of release with more than

one author and more than two related books.

SELECT title, date_of_release
FROM book
WHERE multi_author_multi_realted(id)
ORDER BY date_of_release DESCENDING;

CREATE FUNCTION multi_author_multi_realted(bid CHARACTER(10))
RETURNS BOOLEAN
LANGUAGE SQL
READ SQL DATA

BEGIN
DECLARE num_a, num_r INTEGER

set num_a = (SELECT COUNT(*)
FROM book_auhor
WHERE book_id = bid);

set num_r = (SELECT COUNT(*)
FROM related_book
WHERE book_id = bid);

IF (num_a > 1) AND (num_r > 2)
THEN RETURN TRUE;
ELSE RETURN FALSE;

END;

• Q6 Return the names of publishers that do not have FAX number and some

books published by it are out of stock.

SELECT p.name
FROM publisher p, book b
WHERE p.publisher_id = b.publisher_id
AND quantity(b.id) = 0
AND p.fax_number IS NULL;
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CREATE FUNCTION quantity(bid CHARACTER(10))
RETURNS INTEGER
LANGUAGE SQL
READ SQL DATA

BEGIN
DECLARE qty INTEGER;
SET qty = (SELECT quantity_in_stock

FROM book
WHERE id = bid);

RETURN qty;
END;

• Q7 Return item information where some authors are from certain country (Canada).

SELECT b.*
FROM book b
WHERE some_author_from_country(b.id, ’Canada’);

CREATE FUNCTION some_author_from_country(bid CHARACTER(10),
country CHARACTER(20))

RETURNS BOOLEAN
LANGUAGE SQL
READ SQL DATA

BEGIN
DECLARE country_name CHARACTER(20);

DECLARE country_cursor CURSOR FOR
SELECT a.name_of_country
FROM author a, book_author ba
WHERE a.author_id = ba.author_id
AND ba.book_id = bid;

DECLARE country_not_found CONDITION FOR SQLSTATE ’02000’;

OPEN country_cursor;
FETCH country_cursor INTO country_name;
WHILE NOT(country_not_found) DO

IF (country_name = country)
THEN

BEGIN
close country_cursor;
RETURN true;

END
ELSE FETCH country_cursor INTO country_name;

END WHILE
CLOSE country_cursor;
RETURN false;

END;
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• Q8 Return item information where all its authors are from certain country

(Canada).

SELECT b.*
FROM book b
WHERE all_author_from_country(b.id, ’Canada’);

CREATE FUNCTION all_author_from_country(bid CHARACTER(10),
country CHARACTER(20))

RETURNS BOOLEAN
LANGUAGE SQL
READ SQL DATA

BEGIN
DECLARE country_name CHARACTER(20);

DECLARE country_cursor CURSOR FOR
SELECT a.name_of_country
FROM author a, book_author ba
WHERE a.author_id = ba.author_id
AND ba.book_id = bid;

DECLARE country_not_found CONDITION FOR SQLSTATE ’02000’;

OPEN country_cursor;
FETCH country_cursor INTO country_name;
WHILE NOT(country_not_found) DO

IF (country_name <> country)
THEN

BEGIN
close country_cursor;
RETURN false;

END
ELSE FETCH country_cursor INTO country_name;

END WHILE
CLOSE country_cursor;
RETURN true;

END;

• Q9 Return the item titles related by certain item with id attribute value (I7).

SELECT b.title
FROM book b, related_book rb
WHERE related_by(b.id, ’I7’);

CREATE FUNCTION related_by(rid CHARACTER(10), bid CHARACTER(10))
RETURNS BOOLEAN
LANGUAGE SQL
READ SQL DATA
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BEGIN
DECLARE related_id CHARACTER(10);

DECLARE related_cursor CURSOR FOR
SELECT related_id
FROM related_book
WHERE book_id = ’I7’;

DECLARE item_not_found CONDITION FOR SQLSTATE ’02000’;

OPEN related_cursor;
FETCH related_cursor INTO related_id;
WHILE NOT(item_not_found) DO

IF (related_id = rid)
THEN

BEGIN
close related_cursor;
RETURN true;

END
ELSE FETCH related_cursor INTO related_id;

END WHILE
CLOSE related_cursor;
RETURN false;

END;

• Q10 Retrieve the item title whose size (length * width * height) is bigger than

certain number (500000).

SELECT b.title
FROM book b
WHERE big_book(b.id);

CREATE FUNCTION big_book(bid CHARACTER(10))
RETURNS BOOLEAN
LANGUAGE SQL
READ SQL DATA

BEGIN
DECLARE size NUMBER;
SET size = (SELECT length * width * height FROM book

WHERE id = bid);
IF (size > 500000)
THEN RETURN true;
ELSE RETURN false;

END;
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