
System Call Clustering:
A Profile-Directed Optimization Technique

Mohan Rajagopalan Saumya K. Debray
Department of Computer Science

University of Arizona
Tucson, AZ 85721, USAfmohan, debrayg@cs.arizona.edu

Matti A. Hiltunen Richard D. Schlichting
AT&T Labs-Research

180 Park Avenue
Florham Park, NJ 07932, USAfhiltunen, rickg@research.att.com

Abstract

Techniques for optimizing system calls are potentially
significant given the typically high overhead of the mech-
anism and the number of invocations found in many pro-
grams. Here, a profile-directed approach to optimizing a
program’s system call behavior calledsystem call clus-
tering is presented. In this approach, profiles are used
to identify groups of systems calls that can be replaced
by a single call, thereby reducing the number of kernel
boundary crossings. The number and size of clusters that
can be optimized is maximized by exploiting correctness
preserving compiler transformations such as code mo-
tion, function inlining, and loop unrolling. This paper
describes the algorithmic basics of system call cluster-
ing and presents initial experimental results performed
on Linux using a new mechanism calledmulti-calls. The
sample programs include a simple file copy program and
the well-knownmpeg play video software decoder. Ap-
plying the approach to the latter program yielded an av-
erage 25% improvement in frame rate, 20% reduction in
execution time, and 15% reduction in the number of cy-
cles, suggesting the potential of this technique.

1 Introduction

Minimizing the overhead of system calls is one of the
most fundamental goals in the design and implementa-
tion of operating systems. Not only are system calls
expensive—more than 20 times the cost of regular pro-
cedure calls by one measure [11]—they are also widely
used. This combination of cost and ubiquity means that
optimization of system calls—both individually and for a
program as a whole—can potentially have a large impact
on overall program performance.

This paper describessystem call clustering, a profile-
directed approach to optimizing a program’s system call

behavior. In this approach, execution profiles are used
to identify groups of systems calls that can be replaced
by a single call implementing their combined function-
ality, thereby reducing the number of kernel boundary
crossings. A key aspect of the approach is that the opti-
mized system calls need not be consecutive statements in
the program or even within the same procedure. Rather,
we exploit correctness preserving compiler transforma-
tions such as code motion, function inlining, and loop
unrolling to maximize the number and size of the clus-
ters that can be optimized. The single combined system
call is then constructed using a newmulti-call mecha-
nism that is implemented using kernel extension facili-
ties such as loadable kernel modules in Linux.

System call clustering is useful for many types of pro-
grams, especially those that exhibit repetitive system call
behavior such as Web and FTP servers, media players,
and utilities like copy, gzip, and compress. Moreover,
this technique can be exploited in different ways de-
pending on the ability or desire to customize the ker-
nel. At one level, once the basic multi-call mechanism
has been installed in a kernel, it can be used directly by
programmers to optimize sequences of system calls in
a straightforward way. However, multi-calls themselves
can also be customized, specialized, and optimized, es-
sentially resulting in the ability to automatically extract
collections of systems calls and associated well-defined
pieces of code and insert them in the kernel. This could
be used, for example, to highly optimize the performance
of a device dedicated to a given application or small set
of applications, such as a mobile video device. Note also
that the approach has value beyond simple performance
improvement, including as a technique for optimizing
power usage in battery-powered devices such as laptops
and PDAs.

The primary goals of this paper are to describe the al-

1

gorithmic basics of system call clustering and to present
initial experimental results that suggest the potential of
the approach. While the technique generalizes across a
wide variety of operating system platforms, the concrete
focus here is on describing its realization for Linux and
its application to sample programs that include a simple
file copy program and the well-knownmpeg play video
software decoder [21]. As an example of the value of
the approach, applying system call clustering to the lat-
ter program resulted in an average 25% improvement in
frame rate, 20% reduction in execution time, and 15%
reduction in the number of cycles. We also highlight
a number of other attributes of our solution, including
simplicity and the ability to be easily automated. This
work complements existing techniques for system call
optimization, which tend to focus on optimizing the per-
formance of calls in isolation rather than across multiple
calls as done here [12, 16, 18, 19].

The remainder of the paper is organized as follows. Sec-
tion 2 provides background on systems calls and intro-
duces multi-calls as the basic mechanism for implement-
ing system call clustering. This is followed in section
3 by a description of our basic approach, including the
profiling scheme, clustering strategies, and compiler op-
timization techniques. Section 4 gives experimental re-
sults that demonstrate the improvement that can result
from application of our approach. This is followed by
discussion and related work in section 5. Finally, section
6 offers conclusions.

2 Clustering Mechanisms

This section describes the mechanisms used to realize
system call clustering, and in particular, the multi-call
mechanism that allows multiple calls to be replaced by a
single call in a traditionally structured operating system
such as Linux. It also provides background on system
calls and their specifics in Linux. For the sake of con-
creteness, the discussion here considers the implementa-
tion of Linux on the Intel Pentium architecture.

2.1 Background

A system call provides a mechanism for crossing the
user/kernel protection boundary in a controlled manner.
The steps used to do this are typically as follows. First,
the parameters required by the system call are stored on
the stack or in pre-defined registers. These parameters
include the user-level parameters, as well as the iden-
tity (number) of the system call to be invoked. Next,
the processor is switched into kernel mode using a soft-
ware interrupt or a trap instruction. The interrupt handler

User

Kernel

SAVE_ALL
syscall[EAX]
RESTORE_ALL

system_call_table
entry.s

write()

read()

Application

library routines

sys_read()

sys_open()

sys_gettimeofday()

sys_write()

int x80

Figure 1: System calls in Linux

in the kernel then simply locates the correct system-call
handler—a procedure stored in kernel space—based on
the system call number and invokes this handler. The
system-call handler typically first checks the call param-
eters for validity and then executes its task. Any results
are propagated back to the caller the same way as the
parameters (i.e., through the stack or registers). If an er-
ror occurs, an error number describing the error is passed
back to the caller.

System calls in Linux are similar to the above. The map-
ping between system call names and numbers is provided
simply by defining for each system callsyscall name a
unique constant value of the form ofNR syscall name
(in file asm/unistd.h). Within the kernel, all handlers are
procedures that are named assys syscall name by con-
vention. These handlers can be accessed through an ar-
ray of function pointerssystem call table that is indexed
by the system call number. The actual number of sys-
tem calls varies between Linux versions, but the Redhat
Linux 2.4.2-2 version used here includes 221 predefined
calls.

Figure 1 illustrates the sequence of events that occurs
during a system call on Linux. The application pro-
gram simply makes a function call to thelibc library
with the appropriate parameters. The library call is re-
sponsible for marshaling arguments, loading registers,
and issuing the trap instruction (int x80) that transfers
control to the kernel. Parameters are passed either by
value or by reference. By convention, register EAX is
used to store the system call number. All the kernel en-

2

try procedures for Intel x86 architectures are stored in a
file namedarch/arch-type/kernel/entry.S. The entry pro-
cedure for system calls involves saving the state of the
caller using the macroSAVE ALL, followed by a call to
the system call handler throughsystem call table[EAX]().
Upon completion, the caller’s context is restored and re-
sults returned using theRESTORE ALL macro.

Linux also provides support for Loadable Kernel Mod-
ules that allow code to be added to the kernel without
recompilation [9]. We use this functionality to add the
new customized system calls needed by our clustering
approach. Note that the use of loadable modules is com-
parable to compiling new system calls into the kernel as
far as performance is concerned.

2.2 Multi-Calls

While system calls provide significant advantages related
to protection, transparency, and portability, they also in-
cur considerable execution overhead resulting from the
steps outlined above. For example, on Solaris the latency
of system calls is 22 times greater than that of procedure
calls [11]. Our experiments indicate that the system call
overhead relative to procedure calls is similar on Linux
(see section 4).

A multi-call is a mechanism that allows multiple system
calls to be performed on a single kernel crossing, thereby
reducing the overall execution overhead. Multi-calls can
be implemented as a kernel-level stub that executes a se-
quence of standard system calls, as shown in figure 2.
The multi-call has two arguments, the number of basic
system calls in this invocation (count) and an array of
structures (sys params), where each entry describes one
system call. Each entry consists of the system call num-
ber, parameters, a field for the return value of the sys-
tem call (result), and a field indicating if the system call
should be checked for an error (i.e., return value< 0)
(check return value). Both the parameters and the return
value are passed by reference.get params is a macro that
retrieves the system call parameters from the parameter
list.

The multi-call function iteratescount times execut-
ing each system call in the order it is entered in the
sys params structure. If a system call returns an er-
ror, the multi-call either returns or continues execution
depending on whether the specific system call is to be
checked for errors or not. Note that not checking for er-
rors corresponds to the case where the original program
issuing the original system call did not check for errors
after the call. The multi-call returns the number the first

struct sys paramsf
int sys call no; // identity of the syscall
void *params[]; // parameters of the syscall
int * result; // return value of the syscall
int checkreturn value; // syscall be checked for errors?g

int multi call(int count,struct sys params* args)f
int i = 1; booleanerror occurred = false;
while (i � count)f

sys call = syscall table[args[i].syscall no];
result = syscall(getparams(args[i]));
*(args[i].result) = result;
if (result< 0 and args[i].checkreturn value)f

error occurred = true;
break;g

i++;g
if error occurredreturn (i);
else return(count + 1);g

Figure 2: Multi-call Stub

system call that failed (and was checked) or, in case no
system call fails,count + 1. In our Linux experiments, a
multi-call is implemented using a loadable kernel mod-
ule and was assigned the unused system call number 240.

Note that the basic multi-call mechanism can be ex-
tended to handle more complicated combinations of sys-
tem calls, including cases where there are conditional
branches with different system calls in each. The algo-
rithms in section 3 precisely define the limitations on the
type of functionality that can be included in multi-calls.

The modifications to a program to replace a simple se-
quence of system calls by a multi-call are conceptually
straightforward. Figure 3 provides a simple example of
an original code segment and one where a two system
call sequence is replaced by a multi-call. The result of
the multi-call indicates which, if any, original system call
returned an error value, and thus it can be used to deter-
mine what error handling code is to be executed. The
return value of the corresponding system call is returned
in the result field of the parameter structure. Note that
the details of the transformation depend on the specifics
of the original program (see section 3). Our implementa-
tion uses a simple user-level wrapper function that takes
care of marshaling arguments into the parameter struc-
ture, simplifying the modified code.

3

Original:
res = write(out,buff,writesize);
if res< 0 f

error handling of write with error code res;g elsef
res = read(in,buff,readsize);
if res< 0 f

error handling of read with error code res;gg
Same program segment using multi-call:

sys params args[2]; int results[2];
args[1].syscall no = NR write;
args[1].params = [&out, &buff, &writesize];
args[1].checkreturnvalue = true;
args[1].result = &results[1];
args[2].syscall no = NR read;
args[2].params = [&in, &buff, &readsize];
args[2].checkreturnvalue = true;
args[2].result = &results[2];
res = multi call(2,args);
if (res == 1)f

error handling of write with error code results[1];g else if(res == 2)f
error handling of read with error code results[2];g
Figure 3: Original and Optimized Program

3 Profiling and Compilation Techniques

This section describes how profiling and compiler tech-
niques can be used to optimize system call clustering
using the multi-call mechanism. First, we describe the
profiling technique that is used to identify frequently oc-
curring system call sequences in a program. We then de-
scribe how to identify which portions of a program can
be moved into a multi-call. This is followed by a discus-
sion of compiler techniques that can be used to transform
the program to enhance the applicability of our optimiza-
tion by clustering system calls together, so that they can
be replaced by a multi-call. Finally, we discuss the use
of compiler techniques for specializing multi-calls and
optimizing their execution.

3.1 Profiling

Profiling characterizes the dynamic system call behavior
of a program. Operating system kernels typically have
a single point of entry that can be instrumented to log
an entry each time a call occurs to obtain the required
profile. The Linux operating system provides a utility,
strace, that provides this information. The output of

SysCallGraph =;;
prev syscall = syscallTrace!firstsyscall;
while not (end of syscallTrace)f

syscall = syscallTrace!nextsyscall;
if (prev syscall,syscall)not in SysCallGraphf

SysCallGraph += (prevsyscall,syscall);
SysCallGraph(prevsyscall,syscall)!weight = 1;g else
SysCallGraph(prevsyscall,syscall)!weight++;

prev syscall = syscall;g
Figure 4:GraphBuilderalgorithm.

strace includes the system call name, arguments and its
return value. The system call trace of aprogram can be
generated using the following command:

strace -e signal=none program args

The system call trace produced bystrace provides the
sequence of system calls executed in a run of the pro-
gram, but this data must be further analyzed to iden-
tify frequently occurring system call sequences that are
candidates for optimization. We perform this analysis
by constructing asyscall graph that indicates how fre-
quently some system callsi is immediately followed by
some other system callsj in the system call trace. Each
system call along with select arguments is represented
as a unique node in the graph. Directed edges connect-
ing nodessi andsj are weighted by the number of timessi is immediately followed bysj in the trace. The fre-
quently occurring system call sequences, the candidates
for optimization, can then simply be identified based on
edge weights.

The algorithm for graph creation is described in figure 4.
The algorithm simply traverses the trace and adds new
edges (and the corresponding nodes, if necessary) or in-
creases the weight of an existing edge, as appropriate. A
detailed description of this technique is given in [20].

Figure 5 shows the source code for a simple file copy
program, its control flow graph, and the syscall graph
resulting from a typical execution of the program.

3.2 Identifying Multi-Call Code

This section address the question of how we determine
which portions of the program can be implemented using
multi-calls and which portions remain in user code. In-
tuitively, we want to identify a fragment of the program
that can be pulled out into a function that can be exe-
cuted within the kernel without compromising either the

4

#include <stdio.h>
#include <fcntl.h>

#define N 4096

void main(int argc, char* argv[])
{

int inp, out, n;
char buff[N];

inp = open(argv[1],O_RDONLY);
out = creat(argv[2],0666);

while ((n = read(inp,&buff,N)) > 0) {
write(out,&buff,n);

}
}

(a) Source code

B3
write(out, &buff, 4096)

B4
return

n = read(inp, &buf, 4096)

B0

B1

B2

inp = open(argv[1], ...)

out = creat(argv[2], ...)

if (n <= 0) goto B4

(b) Control flow graph

Loader system calls

1

1

open(in,...)

read(3,...)

write(4...)

557557

1

close(3,...)

1

close(4,..)

open(out,...)

(c) Syscall graph

Figure 5: Example: a copy program

correctness of the program, or the security of the overall
system. In order for a piece of code to be made into a
function, it must have a well-defined entry point. In or-
der to ensure that this code can be safely executed within
the kernel, we have to make sure arbitrary user code can-
not slip into a multi-call. We also have to guarantee that
pulling out such code from an application program into
a multi-call will not change the behavior of the program.

Based on this intuition, we define aclusterable region R
in a program to be a portion of the program that satis-
fies the five conditions listed below. The first three are
straightforward:

1. Dominance. There is a statement inR that dominates
all statements inR.1

2. Safety.R contains only code that(i) sets up (e.g.,
evaluates arguments) and makes system calls;(ii)
retrieves the return values of system calls; and(iii)
makes control flow decisions based on such return
values.

3. Convexity. Suppose the program contains statementsA,B, andC such thatA dominatesB andB domi-
natesC, then ifA andC are inR thenB must also
be inR.

The first condition specifies thatR has a well-defined en-
try point. The second condition precludes the possibility

1A nodex dominates a nodey in the control flow graph of a func-
tion if every path from the entry node of the function toy passes
throughx. Algorithms for computing dominators may be found in
standard texts on compiler design (e.g., see [1]).

of arbitrary user code executing in the kernel. The third
conditions ensures that abstractingR into a function that
executes within the kernel will not unacceptably alter the
order in which program statements executed.

The fourth condition involves a subtlety involving argu-
ment evaluation. Consider a pair of system calls

n = read(infp, &buf, 4096); write(outfp, &buf, n);

that we want to replace with a multi-call. In the orig-
inal code, the arguments of each of these system calls
are evaluated just prior to the call itself, so the value
of the third argument in the callwrite(outfp, &buf, n)
is that computed by the immediately preceding call to
read. Now if we use a multi-call, and evaluate all of
the arguments to these calls before making the multi-call,
we will evaluaten before the execution of theread sys-
tem call, and thereby obtain a potentially incorrect value.
This suggests that the arguments of the system calls in
the multi-call should somehow be evaluated after enter-
ing the multi-call, rather then beforehand. However, if
system call arguments are allowed to be arbitrary expres-
sions, then the only way to allow this is to either have an
interpreter within the multi-call to evaluate arguments,
or pass into the multi-call a code snippet for evaluat-
ing each argument; moreover, these expressions have to
be evaluated in the caller’s environment rather than the
multi-call’s environment. This means that to handle ar-
bitrary expressions, we need a parameter-passing mech-
anism involving closures rather than simple values. Not
only is this cumbersome and expensive, it also opens up
a back door to allowing the execution of arbitrary user
code within the kernel. For this reason, we disallow the
use of arbitrary expressions as system call arguments in

5

Notation: Given an edgea! b in a syscall graph, we useBetween(a; b) to denote the following collection of code:(i) the code
to set up and make the system callsa andb; (ii) the code to retrieve the return values of these system calls; and(iii) any
program statementx such thata dominatesx andx dominatesb in the control flow graph for the program.

Algorithm:C = ;;
for (each edgee � ‘a! b’ in the syscall graph of the program, in descending order of weight)f

if (Between(a; b) violates any of the five conditions listed)continue;
if (a is in an existing clusterable regionC) f

if (Between(a; b) can be added toC without violating the five conditions listed)f
expand regionC by addingBetween(a; b) to it;gg

else if(b is in an existing clusterable regionC) f
. . . analogous to the previous case . . .g

elsef /* neithera nor b is part of an existing cluster */
create a new regionC consisting of justBetween(a; b);gg

Figure 6: An algorithm for identifying multi-call fragments

clusterable regions, limiting ourselves instead to a class
of expressions that covers most situations commonly en-
countered in practice while permitting simple and effi-
cient implementation. This is made explicit in our fourth
condition:

4. Argument Safety. Each of the arguments of any sys-
tem call inR is either a constant, a variable whose
value is defined outside the regionR, or a value
computed by a previous system call inR.

A code regionR satisfying these conditions can be ab-
stracted into a function that can be executed within the
kernel without compromising either the safety of the sys-
tem or the correctness of the program. For reasons of
simplicity, general applicability, and efficiency of imple-
mentation, however, the multi-call mechanism described
in section 2.2 (see figure 2) accommodates only straight-
line sequences of system calls. Our final condition on
clusterable regions captures this:

5. Linearity. Control flow between the system calls inR is linear.

Relaxing this restriction is discussed in Section 3.4.

Figure 6 gives an algorithm for identifying code frag-
ments in a program that can be converted to multi-calls.

3.3 System Call Clustering

The fact that two system calls are adjacent in the syscall
graph does not, in itself, imply that they can be replaced
by a multi-call. This is because even if two system calls
follow one another in the syscall graph, the system calls
in the program code may be separated by arbitrary other
code that does not include system calls. If we replace
these calls by a multi-call, we would have to move the in-
tervening code into the multi-call as well, which would
cause them to execute in the kernel, which may not be
safe. To increase the applicability of multi-calls, we pro-
pose simple correctness-preserving transformations that
enhance the applicability of our optimization. Although
rearrangement of code is a common compiler transfor-
mation, to our knowledge it has not been used to opti-
mize system calls.

Note that two adjacent system calls in the syscall graph
may actually reside in different procedures. However,
they can be brought together using simple techniques
such as function inlining. Here, we assume function
inlining has been performed if necessary and focus on
more powerful transformations that actually change the
order of statements in the program code.

3.3.1 Interchanging Independent Statements

A correctness preserving code motion transformation
must ensure that dependencies between statements are

6

not violated. Two statementsS1 andS2 in a program
areindependent if (i) S1 does not read from, or write to,
any variable or object that is written to byS2; and(ii)S2 does not read from, or write to, any variable or object
that is written to byS1. Independence of statements can
make it possible to rearrange code in a way that opens
up avenues for system call clustering. Consider a code
fragment of the form

syscall 1(); stmt1; . . .stmtk�1; stmtk; syscall 2();

If stmtk andsyscall 2() are independent, andstmt k has
no side effects,2 then they can be interchanged. The re-
sulting code is of the form

syscall 1(); stmt1; . . .stmtk�1; syscall 2(); stmt k;

This transformation can be used to bring system calls
closer together, in effect moving out of the way user
code that cannot be allowed to execute in the kernel. An
analogous transformation can be defined to interchange
syscall 1() and stmt1 when they are independent andstmt1 has no side effects.

The following code segment illustrates this transforma-
tion. This example includes three system calls:read,
write, andsendto. In the simplest case, two system calls
follow one another in the program code, statements 1
(read) and 2 (write). A more common case is when
system calls are separated by a series of statements, in
this example,sendto follows write directly in the syscall
graph, but these system calls are separated by other state-
ments (statements 3 and 4).

1. n = read(infd, buff, 4096);
2. write(outfd, buff, n);
3. read bytes += n;
4. block sent++;
5. sendto(sock no, buff, n, 0, sock addr, sock len);

Statement 5 can be seen to be independent of statements
3 and 4, so it can be safely moved upwards to the point
immediately after statement 2. This results in the follow-
ing code segment, where statements 1, 2, and 5 may be
replaced with a multi-call.

1. n = read(infd, buff, 4096);
2. write(outfd, buff, n);
5. sendto(sock no, buff, n, 0, sock addr, sock len);
3. read bytes += n;
4. block sent++;

2Strictly speaking we also require thatstmtk be guaranteed to ter-
minate.

3.3.2 Restructuring Mutually Exclusive State-
ments

Our second transformation involves restructuring mutu-
ally exclusive code fragments. Consider code of the formn = syscall 1();

if (n < 0)
error handler

syscall 2();

If error handler can have side effects, we cannot in-
terchange theif statement containing this code with
syscall 2(). This is true even if the two statements are
independent, since system calls typically have side ef-
fects, and iferror handler also has side effects, changing
the order of side effects can potentially alter the behavior
of the program. This is a problem, because we cannot
moveerror handler—which may contain arbitrary user
code—into a multi-call; however, if we do not do so,
then since the statementif . . .error handler dominates
syscall 2(), this code fragment will not satisfy the con-
vexity criterion of section 3.2, and as a result this code
will not be optimized to a multi-call.

We can get around this problem if the two statements
are mutually exclusive, i.e., one will be executed if and
only if the other is not (this may be, e.g., becauseer-
ror handler eventually callsexit() or abort()). If mutual
exclusion can be guaranteed, the program can be trans-
formed ton = syscall 1();

if (n < 0)
error handler

else
syscall 2();

Bringing syscall 2() into the scope of theif statement,
by incorporating it into itselse-branch, changes the con-
trol structure of the program in such a way thater-
ror handler no longer dominatessyscall 2(). This can
allow syscall 2() to be incorporated into a clusterable re-
gion together withsyscall 1() and part of theif statement.

Identifying statements that are mutually exclusive is non-
trivial. As a result, this transformation is more difficult to
automate than that described in section 3.3.1. However,
it may be implemented manually by a programmer who
understands the high-level semantics of the code.

7

Comment: Given a tuple of arguments�a to a system call, the functionset params(�a) creates an array of pointers corresponding
to the arguments�a, as follows. For each argumentai in �a, if ai is a constant
, set params allocates a memory wordw
whose value is initialized to
 and sets theith element of this array to point tow. If ai is a variable or a value computed by a
preceding system call,set params this array element is set to point to the corresponding location.

Algorithm:

letK = the maximum number of system calls in any clusterable region;
add the following global declarations to the program

struct sys params mcall args[K];
int rval;

for (each clusterable regionC) f
letC consist of the sequence of system calls ‘x0 = s0(�a0); � � � ; xk = sk(�ak);’ [0 � k < K℄
replace the code fragmentC with the following code fragment:

mcall args[0].sys call no = system call number fors0;
mcall args[0].params = set params(�a0);
. . .
mcall args[k].sys call no = system call number forsk;
mcall args[k].params = set params(�ak);
rval = multi call(k, mcall args);
if (rval � k) f /* an error occurred */x0 = mcall args[0].result;

. . .xk = mcall args[k].result;

. . . error handling code . . .g
Figure 7: Transforming a program to use multi-calls

3.3.3 Loop Unrolling

System call sequences very often occur inside a loop,
where they may be separated by application code that
processes—and therefore depends on—the data from the
system calls. This is illustrated by the computation struc-
ture of an application such as gzip:

while ((n = read(in, buff0, size) > 0) f
compress the data in buff0 into buff1
write(outfd, buff1, n);g

Loop unrolling can sometimes be applied in such cases
to eliminate dependencies. Specifically, if we unroll the
loop once and merge the footer of the current loop itera-
tion with the header of the next iteration the dependency
is eliminated. The following code segment shows the
unrolled version of the program. The footer, thewrite
statement, is prelude to theread system call, the header
for the next iteration. This transformation is similar to
shifting the loop window by half the loop length. Notice
that this transformation eliminates the conditional depen-

dency that exists in the original code. The loop condition
remains the same and the semantics of the program do
not change. However, instead of theread-write grouping,
the program now has awrite-read grouping, where the
write call is always followed by aread, that is, the inter-
vening test has been eliminated. The resulting code has
the following structure:

n = read(in, buff0, size);
while (n > 0) f

compress the data in buff0 into buff1
write(outfd, buff1, n);
n = read(in, buff0, size);g

The write-read cluster can now be replaced by a single
multi-call.

3.3.4 Overall Approach

Our overall approach to multi-call optimization is as fol-
lows. We repeatedly apply the following steps until there
is no change to any clusterable region:

8

1. Apply the algorithm of figure 6 to identify cluster-
able regions.

2. Apply the code transformations described in section
3.3 to create further opportunities for clustering.

The resulting clusterable regions can then be replaced by
multi-calls using the algorithm of figure 7. Notice that
this code uses the value returned by the multi-call to de-
termine whether any of the system calls produced an er-
ror, as illustrated by the example in figure 3. If an er-
ror is found to have occurred, the value returned by the
multi-call identifies the source of the error; in this case
the return values from the individual system calls are re-
trieved from themcall args array, after which the original
error-handling code is invoked.

3.4 Further Optimizations

While multi-calls reduce the number of jumps into the
kernel, further optimizations may be carried out within
the kernel. This is appropriate, for example, for a sys-
tem vendor who desires to improve the efficiency of spe-
cific software components, e.g., a file transfer program
or an MPEG player. Specifically, we can develop spe-
cialized and optimized versions of multi-calls for popu-
lar sequences of system calls. Popular sequences of sys-
tem calls can be specialized in two phases. First, spe-
cialized multi-calls can be created and installed for such
sequences. These new system calls are simply installed
as loadable modules with unique system call numbers
greater than 240. Then, these specialized multi-calls can
be optimized using well-known compilation techniques.
Going back to the copy example, we can now replace the
multi-call with a read-write system call with the follow-
ing signature:

int read write(int in, out fd, char* buff, int size);

Internally theread write system call would simply con-
tain calls to the original file system read and write func-
tion pointers. Its parameters are a union of the parame-
ters passed to the individual read and write calls.

Recall that the linearity requirement of section 3.2 was
motivated by the fact that the general multi-call mech-
anism handled only straight-line sequences of system
calls. This is no longer the case when we consider
specialized multi-calls. When creating such specialized
multi-calls, therefore, the linearity requirement of sec-
tion 3.2 may be omitted.

Another optimization opportunity that is encountered in
the course of such specialization occurs when the en-
tire body of a loop in the program becomes a cluster-

able region. In such cases, the performance of the multi-
call may be enhanced further by considering the entire
loop—instead of just its body—as a multi-call, so that
the entire execution of the loop can be accomplished us-
ing just one kernel boundary crossing instead of a cross-
ing per iteration. This can be achieved by adding one
more rule to the main loop of the algorithm in figure 6:
if a clusterable region C comprises the entire body of a
loop in the program, then C is expanded to include the
loop itself.

Value profiles can be used for value-based specialization
by analyzing frequently occurring argument values for
popular multi-calls. For example, in the file copying ex-
ample, value profiling reveals that the size argument al-
most always takes value 4096. When creating the new
read write system call, this information can be used to
generate code where the critical path is optimized for the
case where this argument is 4096; other values for this
argument are handled by unspecialized code away from
the critical path through this call [14].

Once specialized system calls are introduced into the sys-
tem, the final optimization is to use various compiler op-
timizations to fine tune the performance. Examples of
such optimizations includecode inlining, i.e., inlining
code from the constituent system call pointers; andcon-
stant propagation, which propagates the values of con-
stant arguments into the bodies of new system call. These
optimizations pave the way for other compiler optimiza-
tions such as strength reduction and dead and unreach-
able code elimination.

4 Experimental Results

4.1 Overview

This section describes the results of experiments run to
test the effectiveness of the system call clustering ap-
proach on various applications. It also includes con-
trol experiments that measure the costs of system calls.
The primary setup included Pentium 2-266Mhz laptops
with 64 MB RAM running Linux 2.4.2-2. Other plat-
forms used for control experiments included Solaris 7
on a 4-processor Sun Enterprise 450 with 2 GB RAM,
Linux 2.4.18-rmk3 on a StrongARM-based Compaq
iPAQ, Linux 2.4.4-2 on a Pentium 3-650 Mhz desktop,
and Linux 2.4.0-test1-ac1-rmk7-crl2 on the StrongARM-
based Compaq Personal Server prototype (skiffs [10]).

Optimization results and system call costs are reported in
terms of execution time and, when possible, in terms of
clock cycles. Intel Pentium processors provide a 64 bit

9

Entry Exit

System Call 140 (173-33) 189 (222-33)
Procedure Call 3 (36-33) 4 (37-33)

Table 1: CPU cycles for entry and exit

hardware counter (Read Time Stamp Counter, RDTSC)
that allow for cycle-level timing thought therdtsc and
rdtscl calls. rdtsc returns the whole value of the counter,
while rdtscl returns the lower half of the counter. This
counter is incremented with each clock tick and is com-
monly used for performance benchmarking. The cost of
performing two consecutiverdtscl calls is 33 cycles.

4.2 Control Experiments

The first set of experiments measures the cost of switch-
ing into the kernel mode and back to the user mode on
Linux running on a Pentium 2 laptop and compares this
cost to the cost of performing a simple user-space pro-
cedure call. The measurement was performed by intro-
ducing a dummy system calljump cost that takes one pa-
rameter and simply calls therdtscl macro and returns this
value. We enclose thejump cost call within two rdtscl
calls in the user program. The cost of entry into the sys-
tem call is computed as the difference between the first
rdtscl and the value returned by the system call. The
value returned by the system call minus the following
rdtscl gives the exit cost. The cost of a user-space pro-
cedure call was measured by converting thejump cost
system call into an equivalent user-space procedure.

Table 1 gives the results of the experiments. Note that
the cost ofrdtscl calls (33 cycles) is subtracted from the
measured result. These results indicate that clustering
even two system calls and replacing them with a multi-
call can result in a savings of over 300 cycles every time
this pair of system calls is executed.

Although system calls are conceptually similar across
hardware and operating system platforms, implementa-
tions differ. The second set of experiments compare the
costs of typical system calls on different platforms. Tim-
ing for this experiment was obtained by enclosing var-
ious different system calls includinggetpid, gettimeof-
day, read, andwrite within two gettimeofday instructions.
read andwrite were given null parameters.

Table 2 gives the results of the experiments. The mea-
surement overhead (column 6) was computed by execut-
ing two consecutivegettimeofday system calls and cal-
culating the difference. Note that the measurement over-

head has not been deducted from the numbers. These
results indicate that the system call overhead on our pri-
mary test platform (Pentium 2 laptops running Linux) is
comparable, or even lower, than the cost on many other
typical platforms. This implies that system call cluster-
ing has potential for considerable improvements on these
platforms as well.

4.3 Optimization Experiments

System call clustering was applied to a number of differ-
ent programs on the Pentium 2 laptop. Profiling as de-
scribed above provided sufficient information on a sig-
nificant portion of program behavior and provided can-
didate system call sequences for the optimization. Not
all sequences are easily optimized, however; for exam-
ple, system calls within libraries such as the X-window
library are more difficult to handle. Thus, the results are
not optimal, but rather can be viewed as a lower bound
that demonstrate the potential of this technique.

Copy. The first example is the copy program that has
been used throughout the paper. Although simple, this
program is representative of a larger class of programs
(e.g., Web and FTP servers, gzip, compress) that could
benefit from this approach. System call clustering was
applied by using a specializedwrite read multi-call and
its looped variant. The numbers reported in figure 3 were
calculated by taking the average of 10 runs on files of 3
sizes ranging from a small 80 K file to large files with
size around 2 MB. The maximum benefit of this type of
optimization are seen in the small and medium sized files
since the time to perform disk and memory operations
become dominate for larger files.

The given results are for block size 4096, which is the
page size on Linux and also the optimal block size for
both the optimized and unoptimized copy program. Fig-
ure 8 illustrates the effects of optimization with different
block sizes ranging from 512 bytes to 16K bytes. The
results with smaller block sizes show larger relative im-
provement since the copy program must execute a larger
number of the read and write operations to copy the same
file. As a result, the optimized multi-call will be executed
a larger number of times and thus, the relative improve-
ment is larger.

Media Player. The second example is thempeg play
video software decoder [21]. Several frequent system
call sequences were revealed by profiling, but upon in-
spection, many of these existed partially or completely

10

getpid gettimeofday read write Overhead

Solaris 12 1 22 22 1
Linux-arm: iPAQ 4 4 24 24 3
Linux-arm: Skiff 42 13 71 73 11
Linux-x86: Laptop 12 4 17 12 3
Linux-x86: Desktop 7 1 7 6 1

Table 2: System call timing across various platforms (microseconds)

File Size Original Multi-call Looped Multi-Call
Cycles (106) Cycles (106) % Savings Cycles (106) % Savings

80K 0.3400 0.3264 4% 0.3185 6.3%
925K 4.371 4.235 3.1% 4.028 7.8%
2.28M 10.93 10.65 2.6% 10.37 5.2%

Table 3: Optimization of a copy program with block size of 4096.

4e+06

4.5e+06

5e+06

5.5e+06

6e+06

6.5e+06

7e+06

7.5e+06

8e+06

512 1024 2048 4096 8192 16384

C
P

U
 C

Y
C

LE
S

BLOCK SIZE(multiples of 1k)

Effect of block size on optimization

Using Simple Multi Calls
Using Standard System Calls

Using Looped Variant of Multi-Calls

Figure 8: Effect of clustering as a function of block size.

in the X-windows libraries used by the player. Nonethe-
less, we were able to optimize the second most frequent
sequence, consisting of aselect call followed by aget-
timeofday. Theselect system call takes 5 parameters, 4
of which always appeared as constants in the strace pro-
file. The 5th was a pointer tostruct timeval data type.
The gettimeofday system call takes two parameters, the
first being the pointer passed to the precedingselect. The
second parameter was alwaysNULL. This sequence was
replaced by a simple multi-call, which was specialized
to a singleselect time(struct timeval *) call. No further
compiler optimizations were performed on the multi-
call. Figure 4 provides the results of the optimization
in terms of program execution time (seconds), frame rate
(frames/second), and the number of CPU cycles required
to execute the program. The program was executed using
different input files with sizes varying from 4.7Mb to 15

Mb taken from [15].

Other programs. Additional experiments are cur-
rently underway, and results will be included in the fi-
nal version of the paper. Specifically, system call clus-
tering is being applied to a Web server and the Dillo
Web browser for PDAs [17]. The Web server is a fully
MIME compliant single threaded Web server in which a
sequence ofread andsendto system calls has been iden-
tified as a candidate for optimization. We also intend
to repeat these tests on a StrongARM-based iPAQ, since
this machine is representative of a platform where such
optimization could be useful as a way to reduce power
usage. Other promising optimization targets that will be
explored are utility programs such as gzip and library
calls such asprintf that contain deterministic sequences
of system calls.

5 Discussion and Related Work

5.1 Correctness Issues

Creation of a multi-call results in replacing a sequence
of system calls by a single system call. In order for the
transformation to be correct, the transformed program
must be equivalent to the original program. All user-
level transformations as described in section 3 are cor-
rect in the sense they do not introduce new side-effects.
Within the kernel, the basic multi-call algorithm (figure
2) ensures that all system calls are executed in the or-
der in which they appear in the user-level sequence and
thus, the multi-call guaranteesorder preservation. An-

11

File Size Execution Time (sec) Frame Rate (frames/sec) CPU Cycles (109)
Orig Opt % Impr Orig Opt % Impr Orig Opt % Impr

DG-1 10.3M 98.51 78.43 20.38 27.93 35.09 25.6 51.51 41.12 20.17
DG-2 9.5M 107.71 82.60 23.31 27.47 35.82 30.4 63.65 52.09 18.17
DG-3 9.5M 59.51 44.13 25.84 27.12 36.59 34.9 31.00 21.70 30.00
DG-4 4.7M 34.50 25.87 25.01 28.14 37.54 33.4 23.75 21.74 8.47
DG-5 15.1M 111.25 82.65 25.07 28.01 37.70 34.6 60.18 52.10 13.42

Table 4: Optimization ofmpeg play

other important criterion for correctness iserror han-
dling preservation. User programs may respond to errors
encountered during a system call. The implementation of
multi-calls as described in figure 2 ensures that programs
with multi-calls can replicate the error handling behavior
seen in the original programs. Customizing multi-calls,
which is the last phase of optimization, is also performed
through correctness preserving transformations.

Use of multi-call also does not compromise existing sys-
tem security and protection boundaries. Multi-calls are
themselves implemented as system calls. This retains the
explicit boundary between user and kernel spaces. Since
the multi-call stub uses the original system call handlers,
permissions and parameters are checked as in the origi-
nal system. Attacks that use parameters to the multi-call
such as buffer overflows can be avoided by explicit ver-
ification of handlers using routines provided by the host
kernel. The general policy is to trust the user who installs
the multi-call mechanism in the kernel.

5.2 Application to Power Management

In the context of small mobile devices, power is an im-
portant concern. The standard approach to power opti-
mization has been to reduce the number of CPU cycles
consumed by the program. We believe that system call
clustering should yield significant energy savings. In-
struction level power analysis performed as part of the�-Amps project [13, 24] indicates that Load and Store
instructions are more power intensive than other instruc-
tions. Almost all instructions in the boundary crossing
path that accounts for system call overhead are either
Load or Store instructions. Hence, a desirable side-effect
of reducing the number of boundary crossings will be a
reduction of the number of Load and Store instructions,
which implies that the power saving may be even greater
than the reduction in CPU cycles would imply.

5.3 Related Work

There have been several previous attempts to minimize
the cost of user/kernel boundary crossing. The straight-
forward approach is to optimize the system call frame-
work to reduce the overhead of each system call. Opti-
mizations made in Linux and Solaris are good examples.
Linux uses registers for parameter passing when possi-
ble to reduce the cost. Solaris includes Fast Trap system
calls [12] that incur less overhead than conventional sys-
tem calls by storing (and restoring) less state when the
kernel functionality does not modify the original state
(registers and stack). This latter restriction means that
only a few system calls can utilize its functionality (see
gettimeofday in Table 1). Moreover, while Fast Trap sys-
tem calls are about 5 times faster than standard system
calls, they are still 5 times slower than regular procedure
invocations.

Another approach to optimizing system calls is the
ECalls mechanism [16]. ECalls, a bi-directional
lightweight kernel/user event delivery facility, provides
a system call equivalent that does not always perform all
the operations that are performed by a standard system
call, such as invoking the scheduler and signal handlers
before returning from the call. Similar to Fast Trap sys-
tem calls, ECalls can speed up simple system calls. Other
efforts have addressed the related issue of reducing the
cost associated with data copying when crossing protec-
tion domains [4].

More sophisticated approaches rely on dynamic cus-
tomization of system calls or their counterparts. The
Synthesis Kernel [19] performs value based specializa-
tion and synthesizes new copies for frequent system calls
based on runtime profiling of system calls. Synthesis, as
well as all the above system call optimization techniques,
optimize individual system calls and could potentially
benefit further from system call clustering as described
here. Conversely, some of these techniques could be used
to make multi-calls more efficient.

12

A number of experimental operating system provide fa-
cilities for moving user-level functionality into the ker-
nel. SPIN [2] and Synthetix [18] propose solutions based
on an extensible kernel structure. Partial evaluation tech-
niques are used to generate specialized code (called Ex-
tensions in SPIN), which can be dynamically plugged
into the kernel. SPIN relies on type safety and language
based features provided through the MODULA 3 pro-
gramming language.

The�-Choices operating system uses interpretedagents
constructed as TCL scripts within the kernel to con-
trol system-level processing of multi-media streams [3].
These agents provide a mechanism that could be used to
implement multi-calls. However, in contrast with multi-
calls,�-Choices uses a TCL interpreter within the kernel,
something that can lead to significant performance over-
head. The Jetstream system uses a similar scripting ap-
proach, but for directly controlling a device driver from a
user-level protocol rather than making traditional system
calls [5]. Jetstreams allows scripts of up to 64 operations
consisting of 6 different device control operations to be
passed through the kernel to the device driver using one
ioctl system call.

Grafting kernel extensions as found in Vino [23] andpor-
tals in Pebble [8] are similar approaches to adding spe-
cialized system calls into a kernel. While the mecha-
nisms provided by these experimental extensible oper-
ating systems can be used to implement multi-calls, the
mechanism can also easily be implemented on conven-
tional operating systems such as Linux. Furthermore,
our clustering techniques go beyond simple mechanisms
to provide a fundamental foundation for merging system
calls regardless of the operating system platform.

The Exokernel operating system takes the opposite ap-
proach to these extensible operating systems. That is,
rather than moving functionality into the kernel, the Ex-
okernel approach moves the majority of the kernel func-
tionality into user-level libraries [6]. This approach re-
duces the number of system calls that actually need to
access the kernel and thus, reduces the system call over-
head. In contrast with our approach, however, the Ex-
okernel approach cannot be used directly in conventional
operating systems.

Finally, system call profiling has been used successfully
for intrusion detection and prevention [7, 22]. In [7],
short patterns of normal system call sequences are col-
lected in a program. These sequences are then analyzed
offline for pattern creation and anomaly detection. More
recent work performs anomaly detection online. For ex-

ample, [22] uses profiles to derive patterns that represent
the normal execution of a program. At runtime, system
calls are intercepted and matched with good behavior. If
the sequences do not match, the offending program can
be terminated. This work is similar in the sense that it
relies on profiling and detection of patterns, but the mo-
tivation is different.

6 Conclusions

System call clustering is an optimization approach that
allows multiple system calls to be coalesced to reduce
kernel boundary crossings. Multi-calls are the mecha-
nism used to provide a single kernel entry point for a col-
lection of calls, while execution profiling and compiler
techniques are used to identify optimization opportuni-
ties and to expand their scope, respectively. Initial ex-
perimental results are encouraging, ranging up to a 20%
reduction in execution time for programs such as media
players that exhibit repetitive system call behavior. Im-
provements of this magnitude argue persuasively for the
value of considering a program’s entire system call be-
havior such as done here, not just the performance of in-
dividual calls.

Acknowledgments

P. Bridges and C. Ugarte provided excellent suggestions
that improved the paper. The work of S. Debray was
supported in part by NSF under grants CCR-0073394,
EIA-0080123, and CCR-0113633. The work of the
other authors was supported in part by DARPA under
grant N66001-97-C-8518 and by NSF under grants ANI-
9979438 and CCR-9972192.

References

[1] A. Aho, R. Sethi, and J. Ullman.Compilers: Prin-
ciples, Techniques, and Tools. Addison-Wesley
Publishing Company, 1986.

[2] B. Bershad, S. Savage, P. Pardyak, E. Sirer, M. Fi-
uczynski, D. Becker, C. Chambers, and S. Eggers.
Extensibility, safety, and performance in the SPIN
operating system. InProceedings of the 15th ACM
Symposium on Operating Systems Principles, pages
267–284, Copper Mountain Resort, CO, Dec 1995.

[3] R. Campbell and S. Tan.�-Choices: An object-
oriented multimedia operating system. InFifth
Workshop on Hot Topics in Operating Systems, Or-
cas Island, WA, May 1995.

13

[4] P. Druschel and L. Peterson. Fbufs: A high-
bandwidth cross-domain transfer facility. InPro-
ceedings of the 14th ACM Symposium on Operating
Systems Principles, pages 189–202, Dec 1993.

[5] A. Edwards, G. Watson, J. Lumley, D. Banks, and
C. Dalton. User space protocols delive high per-
formance to applications on a low-cost gb/s lan. In
SIGCOMM, Aug 1994.

[6] D. Engler, M. Kaashoek, and J. O’Toole. Ex-
okernel: An operating system architecture for
application-level resource management. InPro-
ceedings of the 15th ACM Symposium on Operating
Systems Principles, pages 251–266, Copper Moun-
tain Resort, CO, Dec 1995.

[7] S. Forrest, S. Hofmeyr, A. Somayaji, and
T. Longstaff. A sense of self for Unix processes. In
Proceedings of the 1996 IEEE Symposium on Se-
curity and Privacy, pages 120–128, Oakland, CA,
May 1996.

[8] E. Gabber, C. Small, J. Bruno, J. Brustoloni, and
A. Silberschatz. The Pebble component-based op-
erating system. InProceedings of the 1999 USENIX
Annual Technical Conference, Monterey, CA, USA,
June 1999.

[9] B Henderson. Linux loadable kernel module,
HOWTO. http://www.tldp.org/HOWTO/Module-
HOWTO/, Aug 2001.

[10] Compaq Cambridge Research Lab. Skiffcluster
project,
http://www.handhelds.org/projects/skiffcluster.html.

[11] J. Mauro and R. McDougall. Solaris Internals-
Core Kernel Architecture. Sun Microsystems Press,
Prentice Hall, 2001.

[12] J. Mauro and R. McDougall.Solaris Internals-Core
Kernel Architecture, pages Section 2.4.2 (Fast Trap
System Calls), 46–47. Sun Microsystems Press,
Prentice Hall, 2001.

[13] MIT �AMPS Project. SA-1100 instruction current
profiling experiment. http://www-mtl.mit.edu/-
research/icsystems/uamps/pubs/sinhadac01.html.

[14] R. Muth, S. Watterson, and S. K. Debray. Code spe-
cialization based on value profiles. InProc. 7th. In-
ternational Static Analysis Symposium, pages 340–
359. Springer-Verlag, June 2000.

[15] Technical University of Munich.
http://www5.in.tum.de/forschung/visualisierung/-
duennegitter.html.

[16] C. Poellabauer, K. Schwan, and R. West.
Lightweight kernel/user communication for real-
time and multimedia applications. InNOSS-
DAV’01, Jun 2001.

[17] Dillo Project. http://dillo.cipsga.org.br/.

[18] C. Pu, T. Autrey, A. Black, C. Consel, C. Cowan,
J. Inouye, L. Kethana, J. Walpole, and K. Zhang.
Optimistic incremental specialization: Streamlin-
ing a commercial operating system. InProceed-
ings of the 15th ACM Symposium on Operating Sys-
tems Principles (SOSP’95), pages 314–324, Cop-
per Mountain, CO, Dec 1995.

[19] C. Pu, H. Massalin, and J. Ioannidis. The Synthesis
kernel.Computing Systems, 1(1):11–32, 1988.

[20] M. Rajagopalan, S. Debray, M. Hiltunen, and
R. Schlichting. Profile-directed optimization of
event-based programs. InProceedings of the ACM
SIGPLAN 2002 Conference on Programming Lan-
guage Design and Implementation (PLDI), Berlin,
Germany, Jun 2002.

[21] L. Rowe, K. Patel, B. Smith, S. Smoot, and
E. Hung. Mpeg video software decoder, 1996.
http://bmrc.berkeley.edu/mpeg/mpegplay.html.

[22] R. Sekar and P. Uppuluri. Synthesizing fast intru-
sion prevention/detection systems from high-level
specifications. InProceedings of the 8th USENIX
Security Symposium, pages 63–78, Berkeley, CA,
Aug 1999. Usenix Association.

[23] M. Seltzer, Y. Endo, C. Small, and K. Smith. Deal-
ing with disaster: Surviving misbehaved kernel ex-
tensions. InOperating Systems Design and Imple-
mentation, pages 213–227, 1996.

[24] A. Sinha and A. Chandrakasan. Joule-track- a web
based tool for software energy profiling. InDesign
Automation Conference, Jun 2001.

14

