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ABSTRACT be used to help resolve ambiguities. For example, there usu-
ally is no slide change when the camera is zooming. Simi-
ﬁérly, it is more likely that the camera will remain fixed when
Othere is a slide change.
In this work, we extend our previous work [4] that matches
gllides based on visual features alone, and integrates the ca
era cue into a dynamic HMM in which the state transition

performance in more difficult cases. We model slide changgmbélbllltles are dependenton the camera events. The tempo

in a presentation with a dynamic Hidden Markov Model (HMMjI model also captures the notion that slides are usuadly pr

that captures the temporal notion of slide change and whoseenteOI sequentially and not randomly, which as shown later

transition probabilities are adapted locally by using tame In the paper, can greatly improve the ability of the model in

era events in the inference process. Our results show thgtsammguatlng similar slides in the videos.

combining multiple cues in a state model can greatly improve
the performance in ambiguous cases. 2. THE SLIDE-MATCHING FRAMEWORK

We develop a general framework to automatically match ele
tronic slides to the videos of the corresponding presentati
The synchronized slides support indexing and browsing-of e
ucational and corporate digital video libraries. Our ajggio
extends previous work that matches slides based on visu
features alone, and integrates multiple cues to furtherare

Index Terms— Algorithm, Cameras, Image matching  Qur slide-matching framework consists of three phases: key
point matching, camera event detection, and a dynamic HMM
1. INTRODUCTION based on camera events (Fig. 1). In the first phase, frame-
to-slide homographies (i.e the projection transformatibe-
Matching slides to videos provides an attractive way of intween the slides captured by camera and their original pnes)
dexing videos by slides for searching and browsing. It carif available, are found by keypoint matching and all the feam
also improve the quality of the videos through projecting th are classified int@ categories: full-slide (the entire frame
high-resolution slides back into the videos. Recently manghows the slide content)small-slide (the frame contains
approaches have been proposed to automatically matcls slideoth a slide area and a substantial portion of the scene back-
to videos [1, 2, 3, 4,5, 6, 7, 8]. ground), andno-slide (see [4] for more details). The second
Depending on the capturing systems, the slides may agthase detects the camera event between each pair of consec-
pear dramatically differently in the video. A dynamic cap-utive frames by using the homographies computed and the
turing system with one or more cameras that are allowed tffame types classified in the first phase. Finally, in thedthir
pan, zoom and tilt has the flexibility to capture the presente phase, the visual features, temporal information and the ca
the slides and the audience or all of them, thus produce mof¥a events are incorporated into a dynamic HMM to find an
lively and instructional videos. However, the videos capdu  optimal sequence of slides matching the frame sequence.
by such a system present various ambiguities between the
captured slide images and the original slides, making thle ta 3. SLIDE EVENTS AND CAMERA EVENTS
of automating synchronization of slides with videos moffe di
ficult. Complications include zooming-in or zooming-oudiss, In a presentation video there are events initiated by the pre
slides partially occluded by the presenter, and no slidggsa senter and the producer (camera person). These events deter
due to the camera panning to the presenter or audience. In asine the visual appearance of the video frames. For example,
dition to these difficulties, some ambiguities come from theduring a presentation, the presenter may make slide changes
slides themselves such as identical slides and slide aieimat write on the board, play video demonstrations, or browse the
that sometimes generates extremely similar slides. web. Accordingly, the producer may switch cameras, zoom
Although the dynamic nature of presentation video pro-or pan the camera in order to capture informative and mean-
duction poses additional challenges to slide-matching-alg ingful scenes such as the slide content and the gestures of th
rithms, it also yields useful cues on slide change, which capresenter.
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Based on Camera Events Fig. 2. A representation of state transition in our HMM. There is
one null state between each pair of slides,§;) to represent the
Fig. 1. The flow of our framework. no-slide frame.

Interestingly, these two types of events are not indeperﬁraﬁons based on the analysis of the motion vector field (see

dent. For example, a camera zoom may indicate that th] fOr areview). In our case, the previously computed frame
slide remains the same. Similarly, the camera is less likel{?-Slide homographies can be used to spot the slide position
to change during a video demo or slide change. More gerlD the frames. Th|s_ leads us to simply represent each of the
erally, we expect the frame-to-slide homography to remaifiré€ eventszoom-in zoom-ouandstay-zoomthat ensure

across slide changes and the slide to remain unchangedacrdf3€ existence of frame-to-slide homographies by a Gaussian
camera changes. distribution over the ratio of the slide areas of two consecu

An event from the presenter is calledlide eventwhich tive frames. The parameters of the distributions were fitted

describes how slides change in an presentation. We denote B{fectly from a held-out portion of the ground truth dataisTh
Sy a slide change event, when the current slidgis immedi- method yielded ove99% classification accuracy. In the case

ately followed up by slide; . (a k slides “jump”). The sign where no homography is available, we use the frame types
of k indicates the direction of the slide change &né 0 im- classified by the matching algorithm to determine the camera
plies that the current slide stays unchanged. To model svenE/€Nts: For example, a current small-slide frame and a fol-
involving frames with no slides, we usSypan to denote a lowing no-slide frame indicate a slide-out event between th
change from seeing a slide to seeing no slide, fdiqe to WO frames.
denote the case of a two no-slide continuum.

A camera event de_scribes how th_e produc_er operates thes, TEMPORAL MODELING OF SLIDE CHANGE
cameras when capturing a presentation. Basic camera oper-
ations include zooming, staying fixed and panning/tiltifg. e first describe a standard HMM without using camera in-
this paper, we definétypes of camera operations of interest: formation to model slide change. We then extend it to a dy-

zoom-in, zoom-out, stay-fixed, slide-in, slide-ndistay-out  namic HMM in which the model parameters are adjusted lo-
Note that some of our definitions here are slightly differentcajly by using the camera events.

from what a reader may know alreaddoom-inmagnifies the

slide area significantly in the current frame with respect to ) }
the previous frame. It happens when the producer increas@st: A Standard HMM Without Camera Information

the focal length or switches to a camera with a longer focajiges do not change randomly in a presentation. Insteag, th
length. Zoom-outs defined inverselyStay-fixedefers to a g imqst always advance sequentially according to theirrorde
static status of_the camera when it focuses on the slidée(eit ;, ihe presentation file, though sometimes the sequence may
small or full slides) without movement. The otheevents e jnterrupted by shifting to the previous slide or jumping
relate to camera panning or tilting. When the camera moveg, an arbitrary slide. To capture this notion, we model slide
from the slide to capture the presenter/audience only {de sl change by a HMM with slide numbers as hidden states. Since

in the frame), we call islide-out The opposite operation e nymber of slides for each presentation can vary greatly,
is defined aslide-in Stay-outis the camera event between e consider the slide transition atatelessi.e we assume

slide-outandslide-inwhen the slide is not being captured. A ¢ the transition from slide to slide3, for instance, is no
camera irstay-outmay still zoom or move. We do not further itarent from a change from slideto 8. We also introduce
differentiate between them as they provide little inforioat auxiliary staténull’ (Fig. 2) between each pair of slides

about slide change. (si,s;) to represent the no-slide frame. Note that the over-
head for adding anull” node between each pair of slides is
4. DETECTING CAMERA EVENTS negligible as only onénull” node needs to be actually main-

tained in the implementation due to the stateless assumptio
Camera motion can be considered as an optical flow problerof the slide transition. We estimate the stateless slide- tra
Many approaches have been developed to detect camera ition probabilities from held out data. Because the data is



limited, we enforce smoothness using a Poisson distributiotured by three cameras from a corporate confereticé IV

as follows, has3 videos captured by two cameras in a university semi-
nar. We first sample the videos by extracting one frame per
nP(—m,A) m <0 second. Additional keyframes are extracted as determiped b

A(sils;) = ¢ P(0,A) m =0 (1) shot boundary detection algorithm, to avoid missing consec
(I—=n)P(m,A\) m=>0 tive fast changes. We then manually construct a ground truth
wherem — s, — s, is the slide event, ané(z, ) — % matching between frames and inde; and the ca_mera eve_nts.
- We use two evaluation methods in our experiments. First,

is the Poisson distributiom is the frequency of slides going
backwards with respect to going forwards. Bgthnd\ were
fitted from a held-out portion of the ground truth data. Value
for n were between 0.05 and 0.09 and valuesXavere be-
tween 0.04 and 0.05. Table 4 shows the actual distribution

as in previous work [4], we consider the number of mis-
recognized frames over the total number of frames. However,
due to the higher sampling rate used here, the error computa-
jon is biased towards slides that appeared for a longer. time

slide transition in our data. Because of the high frame sathus(’]i we u%e a second tmetzod that et"?"“(j‘t? thg aIgonthdms
pling rate we usel(frame/ sec), there is a very high chance ased on video segments. A segment is detined as a video

that a slide stays unchanged. It also appears, as expect&jéO \;Vith neither sItiFiedct;gngde nor camera change. The error
that slides tend to change forward much more frequently thaff'€ for @ segmentis defined as,
backward. . . " .

We estimate the slide observation probabiltyf;|s;) of e= f# of mcc;rri(itli/ |Idfent|f|ed. fr?r:‘nes n thetsegmen{Z)
aframef; given a slides; by the fraction of the matched key- ottotalirames in the segmen
points of f; to s; over the total number of matched keypoints . . :
of f; to all the slides. When no matching slides are found forSegments with less tharframes ¢ seconds) were ignored in

; . ) . the experiments.
a frame that is marked as a slide frame by the slide matching Wi th ‘ fth lorithms: the k
algorithm, a uniform probability is assigned. € measure the pertormance of three algoriihms. he key-

The optimal sequence of slides matching the frame s point matching algorithm ( BASE ), the standard HMM (

quence is found by the well-known Viterbi algorithm [10]. MM) and the camera-event-based HMM ( CHMM_)'

The results on the two data sets are presented in Table 1
and 2. Both HMMs greatly outperform the base matching al-
gorithm and CHMM performs the best, showing clearly the
In the standard HMM, the model parameters are derived igdvantage of using the temporal and camera information. As
the training data and the parameters remain unchanged duve expected, there was significantimprovementin the match-
ing the entire inference process. The dynamic model can beg performance of small slides. In addition, the matching
regarded as incorporating context dependent informatin i performance for large slides also improved.
the transition probabilities [11]. In our case, the conided On these two data sets CHMM performs slightly better
pendent information is the relationship between slide &enthan HMM (comparable on UNIV and some improvementon
and camera events. For example, camera change is associa®@NF1). The results are consistent with the observation tha
with a higher probability that there is no slide change. the density and complexity of the camera events in UNIV is

More specifically, we condition the state transition prob-relatively low, and even in CONF1 they are far from extreme.
ability through the camera-dependent transition prolitghil We thus expect more improvement on more difficult data.
p(si|sj,c). These probabilities are estimated from the held- We conduct another experiment on CONF1 to see how
out portion of the ground truth data. A trivial modificatioh o much the temporal and camera cues contribute to the perfor-
the Viterbi algorithm, namely replacings;|s;) by p(si|sj,¢) ~ mance improvementin the case of small slides. To do this we
at each time step based on the camera ewgei#t sufficient  ignore the key point matching cues and compute the align-
to find an optimal slide sequence. Nevertheless, becausengent based only on the temporal and camera event model. As
specific camera event may exclude many states that have tecorded in Table 3, there is still more th&d% accuracy
be visited in the standard HMM, we can employ a variant ofon the small slides for both models even if no slide keypoint
Viterbi algorithm such as the one used in [12] to speed up thenatching information is used. This further demonstrates th
inference. For example, if we know a camera is atsteg-  potential contribution of temporal models to a robust slide
out state (not looking at the slide), the algorithm only needsnatching system.

5.2. A Dynamic HMM Based on Camera Events

to visit the“null” node instead of all nodes. Finally, we broke down the results in Table 5 according to
the slide events. The results clearly show that the HMMs can
6. EXPERIMENTS AND RESULTS model the sequential change of slide very well. The HMMs

also showed the potential to handle non-sequential slidegd
The videos used for our evaluation &r®NF1 andUNIV ~ on CONF1, but failed on KUAT due to very limited examples
(see [4] for more details)CON F'1 is a set of6 videos cap-  of no-sequential change in the data.



7. CONCLUSIONS

Data Alg # full-slide | # small-slide | # no-slide Total
BASE | 132 (2.15) | 193 (12.53) | 7(0.09) | 332(2.15) ) ]
CONF1 gHMMMM 19()74&1529;) gi ((gzé)) 191(?(51123) ig%((ll-i%) We present a general framework to automatically matchslide
FFames | 6147 1540 —745 15499 to presentation videos with high accuracy. Our results eslg_g_
BASE | 85(2.37) | 136 (23.00) | 70(1.83) | 291 (3.64) that both the temporal and camera cues are very promising
UNIV | HMM | 28(0.78) | 42(7.13) | 116(3.03) | 186(2.32) ; ; ; ;
CHMM | 28(0.78) | 40(6.79) |120(3.133) | 188 (2.35) sources of mforma'upn to d|samb|gu§t§ the occurrence and
#frames | 3586 589 3830 8005 identity of slides in videos when conditions are challeggin

Further complexity in the inter-relation of these eventsldo

Table 1. Frame-oriented overall error rates of the three algo- pe modeled using coupled HMM’s [13]. We are currently
rithms, marked by the number of mis-recognized frames aaeith exploiting this approach

ror percentage in the brackets on the full-slide , smatlesland

no-slide frames.
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