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Abstract. In the relay placement problem the input is a set of sensors and a number r ≥ 1,
the communication range of a relay. In the one-tier version of the problem the objective is to
place a minimum number of relays so that between every pair of sensors there is a path through
sensors and/or relays such that the consecutive vertices of the path are within distance r if both
vertices are relays and within distance 1 otherwise. The two-tier version adds the restrictions
that the path must go through relays, and not through sensors. We present a 3.11-approximation
algorithm for the one-tier version and a PTAS for the two-tier version. We also show that the
one-tier version admits no PTAS, assuming P 6= NP.

A preliminary version of this work appeared in the Proceedings of the 16th European Symposium
on Algorithms (ESA 2008) [15].



1 Introduction

A sensor network consists of a large number of low-cost autonomous devices, called sensors.
Communication between the sensors is performed by wireless radio with very limited range, e.g.,
via the Bluetooth protocol. To make the network connected, a number of additional devices,
called relays, must be judiciously placed within the sensor field. Relays are typically more
advanced and more expensive than sensors, and, in particular, have a larger communication
range. For instance, in addition to a Bluetooth chip, each relay may be equipped with a WLAN
transceiver, enabling communication between distant relays. The problem we study in this paper
is that of placing a minimum number of relays to ensure the connectivity of a sensor network.

Two models of communication have been considered in the literature [4,7–9,19,20,25,28]. In
both models, a sensor and a relay can communicate if the distance between them is at most 1,
and two relays can communicate if the distance between them is at most r, where r ≥ 1 is a
given number. The models differ in whether direct communication between sensors is allowed.
In the one-tier model two sensors can communicate if the distance between them is at most 1.
In the two-tier model the sensors do not communicate at all, no matter how close they are. In
other words, in the two-tier model the sensors may only link to relays, but not to other sensors.

Formally, the input to the relay placement problem is a set of n sensors, identified with their
locations in the plane, and a number r ≥ 1, the communication range of a relay (by scaling,
without loss of generality, the communication range of a sensor is 1). The objective in the
one-tier relay placement is to place a minimum number of relays so that between every pair of
sensors there exists a path, through sensors and/or relays, such that the consecutive vertices of
the path are within distance r if both vertices are relays, and within distance 1 otherwise. The
objective in the two-tier relay placement is to place a minimum number of relays so that between
every pair of sensors there exists a path through relays such that the consecutive vertices of the
path are within distance r if both vertices are relays, and within distance 1 if one of the vertices
is a sensor and the other is a relay (going directly from a sensor to a sensor is forbidden).

1.1 Previous Work

One-tier relay placement in the special case of r = 1 [4, 9] is equivalent to finding a Steiner
tree with minimum number of Steiner nodes and bounded edge length – the problem that
was studied under the names STP-MSPBEL [18], SMT-MSPBEL [20, 28], MSPT [21], and
STP-MSP [7–9, 19, 25]. Lin and Xue [18] proved that the problem is NP-hard and gave a 5-
approximation algorithm. Chen et al. [7,8] showed that the algorithm of Lin and Xue is actually
a 4-approximation algorithm, and gave a 3-approximation algorithm; Cheng et al. [9] gave a
3-approximation algorithm with an improved running time, and a randomised 2.5-approximation
algorithm. Chen et al. [7, 8] presented a polynomial-time approximation scheme (PTAS) for
minimising the total number of vertices in the tree (i.e., with the objective function being the
number of the original points plus the number of Steiner vertices) for a restricted version of the
problem, in which in the minimum spanning tree of the set the length of the longest edge is at
most constant times the length of the shortest edge.

For the general case of arbitrary r ≥ 1, the current best approximation ratio for one-tier relay
placement is due to Lloyd and Xue [20], who presented a simple 7-approximation algorithm,
based on “Steinerising” the minimum spanning tree of the sensors. In this paper we give an
algorithm with an improved approximation ratio of 3.11.

Two-tiered relay placement (under the assumptions that the sensors are uniformly distributed
in a given region and that r ≥ 4) was considered by Hao, Tang, Sen, and Xue [16, 26] who
suggested constant-factor approximation algorithms for several versions of the problem. Lloyd
and Xue [20, Thm. 4.1] and Srinivas et al. [25, Thm. 1] developed a general framework whereby
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given an α-approximate solution to Disk Cover (finding minimum number of unit disks to cover
a given set of points) and a β-approximate solution to STP-MSPBEL (see above), one may find
an approximate solution for the two-tier relay placement. In more details, the algorithm in [20]
works for arbitrary r ≥ 1 and has an approximation factor of 2α+ β; the algorithm in [25] works
for r ≥ 2 and guarantees an (α + β)-approximate solution. Combined with the best known
approximation factors for the Disk Cover [17] and STP-MSPBEL [7–9], these lead to 5 + ε and
4 + ε approximations for the relay placement respectively. In this paper we present a PTAS
for the two-tiered relay placement; the PTAS works directly for the relay placement, without
combining solutions to other problems.

A different line of research [5, 22] concentrated on a “discrete” version of relay placement, in
which the goal is to pick a minimum subset of relays from a given set of possible relay locations.
In this paper we allow the relays to reside just anywhere in the plane.

1.2 Contributions

We present new results on approximability of relay placement:

• In Section 3 we give a simple O(n log n)-time 6.73-approximation algorithm for the one-tier
version.

• In Section 4 we present a polynomial-time 3.11-approximation algorithm for the one-tier
version.

• In Section 5 we show that there is no PTAS for one-tier relay placement (assuming that r
is part of the input, and P 6= NP).

• In Section 6 we give a PTAS for two-tier relay placement.

Note that the number of relays in a solution may be exponential in the size of the input (number
of bits). Our algorithms produce a succinct representation of the solution. The representation
is given by a set of points and a set of line segments; the relays are placed on each point and
equally-spaced along each segment.

2 Blobs, Clouds, Stabs, Hubs, and Forests

In this section we introduce the notions, central to the description of our algorithms for one-tier
relay placement. We also provide lower bounds.

2.1 Blobs and Clouds

We write |xy| for the Euclidean distance between x and y. Let V be a given set of sensors
(points in the plane). We form a unit disk graph G = (V,E) and a disk graph F = (V, F ) where

E =
{
{u, v} : |uv| ≤ 1

}
,

F =
{
{u, v} : |uv| ≤ 2

}
;

see Figure 1a.
A blob is defined to be the union of the unit disks centered at the sensors that belong to the

same connected component of G. We use B to refer to a blob, and B for the set of all blobs.
Analogously, a cloud C ∈ C is the union of the unit disks centered at the sensors that belong

to the connected component of the graph F . The sensors in a blob can communicate with each
other without relays, while the ones in a cloud might not, even though their disks may overlap.
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C1

C2

(a)

(c)

(b)

Figure 1: (a) Dots are sensors in V , solid lines are edges in E and F , and dashed lines are edges
in F only. There are 5 blobs in B (one of them highlighted) and 2 clouds C1, C2 ∈ C. The wide
grey line is the only edge in MStFN(C), which happens to be equal to MSFN(C) here. (b) Stabs.
(c) Hubs.
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Each cloud C ∈ C consists of one or more blobs B ∈ B; we use BC to denote the blobs that form
the cloud C.

2.2 Stabs and Hubs

A stab is a relay with an infinite communication range (r =∞). A hub is a relay without the
ability to communicate with the other relays (thus hubs can enable communication within one
cloud, but are of no use in communicating between clouds). As we shall see, a solution to stab
or hub placement can be used as the first step towards a solution for relay placement.

If we are placing stabs, it is necessary and sufficient to have a stab in each blob to ensure
communication between all sensors (to avoid trivialities we assume there is more than one blob).
Thus, stab placement is a special case of the set cover problem: the universe is the blobs, and the
subsets are sets of blobs that have a point in common. We use Stab(B′) to denote the minimum
set of stabs that stab each blob in B′ ⊆ B. In the example in Figure 1b small rectangles show an
optimal solution to the stab placement problem; 3 stabs are enough.

If we are placing hubs, it is necessary (assuming more than one blob in the cloud), but not
sufficient, to have a hub in each blob to ensure communication between sensors within one
cloud. In fact, hub placement can be interpreted as a special case of the connected set cover
problem [6,24]. In the example in Figure 1c small rectangles show an optimal solution to the
hub placement problem for the cloud C = C1; in this particular case, 2 stabs within the cloud C
were sufficient to “pierce” each blob in BC (see Fig. 1b), however, an additional hub (marked red
in Fig. 1c) is required to “stitch” the blobs together (i.e., to establish communication between
the blobs). The next lemma shows that, in general, the number of additional hubs needed is less
than the number of stabs:

Lemma 1. Given a feasible solution S to stab placement on BC , we can obtain in polynomial
time a feasible solution to hub placement on BC with 2|S| − 1 hubs.

Proof. Let H be the graph, whose nodes are the sensors in the cloud C and the stabs in S,
and whose edges connect two devices if either they are within distance 1 from each other or
if both devices are stabs (i.e., there is an edge between every pair of the stabs). Switch off
communication between the stabs, thus turning them into hubs. Suppose that this breaks H into
k connected components. There must be a stab in each connected component. Thus, |S| ≥ k.

If k > 1, by the definition of a cloud, there must exist a point where a unit disk covers at
least two sensors from two different connected components of H. Placing a hub at the point
decreases the number of the connected components by at least 1. Thus, after putting at most
k − 1 additional hubs, all connected components will merge into one.

2.3 Steiner Forests and Spanning Forests with Neighbourhoods

Let P be a collection of planar subsets; call them neighbourhoods. (In Section 3 the neighbour-
hoods will be the clouds, in Section 4 they will be “clusters” of clouds.) For a plane graph G, let
GP = (P, E(G)) be the graph whose vertices are the neighbourhoods and two neighbourhoods
P1, P2 ∈ P are adjacent whenever G has a vertex in P1, a vertex in P2, and a path between the
vertices.

The Minimum Steiner Forest with Neighbourhoods on P , denoted MStFN(P), is a minimum-
length plane graph G such that GP = (P, E(G)) is connected. The MStFN is a generalisation of
the Steiner tree of a set of points. Note that MStFN is slightly different from Steiner tree with
neighbourhoods (see, e.g., [27]) in that we are only counting the part of the graph outside P
towards its length (since it is not necessary to connect neighbourhoods beyond their boundaries).
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Consider a complete weighted graph whose vertices are the neighbourhoods in P and whose
edge weights are the distances between them. A minimum spanning tree in the graph is called the
Minimum Spanning Forest with Neighbourhoods on P , denoted MSFN(P). A natural embedding
of the edges of the forest is by the straight-line segments that connect the corresponding
neighbourhoods; we will identify MSFN(P) with the embedding. (As with MStFN, we count
the length of MSFN only outside P.)

We denote by |MStFN(P)| and |MSFN(P)| the total length of the edges of the forests. It is
known that

|MSFN(P )| ≤ 2√
3
|MStFN(P )|

for a point set P , where 2/
√

3 is the Steiner ratio [13]. The following lemma generalises this to
neighbourhoods.

Lemma 2. For any P, |MSFN(P)| ≤ (2/
√

3)|MStFN(P)|.

Proof. If P is erased, MStFN(P) falls off into a forest, each tree of which is a minimum Steiner
tree on its leaves; its length is within the Steiner ratio of minimum spanning tree length.

2.4 Lower Bounds on the Number of Relays

Let R∗ be an optimal set of relays. Let R be the communication graph on the relays R∗ alone,
i.e., without sensors taken into account; two relays are connected by an edge in R if and only
if they are within distance r from each other. Suppose that R is embedded in the plane with
vertices at relays and line segments joining communicating relays. The embedding spans all
clouds, for otherwise the sensors in a cloud would not be connected to the others. Thus, in R
there exists a forest R′, whose embedding also spans all clouds. Let |R′| denote the total length
of the edges in R′. By definition of MStFN(C), we have |R′| ≥ |MStFN(C)|.

Let m, v, and k be the number of edges, vertices, and trees of R′. Since each edge of R′ has
length at most r, we have |R′| ≤ mr = (v − k)r. Since v ≤ |R∗|, since there must be a relay in
every blob and every cloud, and since the clouds are disjoint, it follows that

|R∗| ≥ |MStFN(C)|/r, (1)

|R∗| ≥ |Stab(B)|, (2)

|R∗| ≥ |C|. (3)

3 A 6.73-Approximation Algorithm for
One-Tier Relay Placement

In this section we give a simple 6.73-approximation algorithm for relay placement. We first find
an approximately optimal stab placement. Then we turn a stab placement into a hub placement
within each cloud. Then a spanning tree on the clouds is found and “Steinerised”.

Finding an optimal stab placement is a special case of the set cover problem. The maximum
number of blobs pierced by a single stab is 5 (since this is the maximum number of unit disks that
can have non-empty intersection while avoiding each other’s centers). Thus, in this case the greedy
heuristic for the set cover has an approximation ratio of 1 + 1/2 + 1/3 + 1/4 + 1/5 = 137/60 [10,
Theorem 35.4].

Based on this approximation, a feasible hub placement RC within one cloud C ∈ C can be
obtained by applying Lemma 1; for this set of hubs it holds that

|RC | ≤
137

30
|Stab(BC)| − 1.
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We can now interpret hubs RC as relays; if the hubs make the cloud C connected, surely it holds
for relays.

Let R′ =
⋃
C RC denote all relays placed this way. Since the blobs BC for different C do not

intersect, |Stab(B)| =
∑

C |Stab(BC)|, so

|R′| ≤
∑
C

|RC | ≤
∑
C

(
137

30
|Stab(BC)| − 1

)
=

137

30
|Stab(B)| − |C|. (4)

Next, we find MSFN(C) and place another set of relays, R′′, along its edges. Specifically, for
each edge e of the forest, we place 2 relays at the endpoints of e, and b|e|/rc relays every r units
starting from one of the endpoints. This ensures that all clouds communicate with each other;
thus R = R′ ∪R′′ is a feasible solution. Since the number of edges in MSFN(C) is |C| − 1,

|R′′| = 2(|C| − 1) +
∑
e

⌊
|e|
r

⌋
< 2|C|+ |MSFN(C)|

r
. (5)

We obtain

|R| = |R′|+ |R′′| ≤
(

137

30
+ 1 +

2√
3

)
|R∗| < 6.73|R∗|

from (1)–(5) and Lemma 2.

3.1 Running Time

To implement the above algorithm in O(n log n) time, we construct the blobs (this can be done
in O(n log n) time since the blobs are the union of disks centered on the sensors), assign each
blob a unique colour, and initialise a Union-Find data structure for the colours. Next, we build
the arrangement of the blobs, and sweep the arrangement 4 times, once for each d = 5, 4, 3, 2;
upon encountering a d-coloured cell of the arrangement, we place the stab anywhere in the cell,
merge the corresponding d colours, and continue. Finally, to place the hubs we do one additional
sweep.

As for the last step – building MSFN(C) – it is easy to see that just as the “usual” minimum
spanning tree of a set of points, MSFN(C) uses only the edges of the relative neighbourhood
graph of the sensors (refer, e.g., to [11, p. 217] for the definition of the graph). Indeed, let
pq be an edge of MSFN(C); let p′ and q′ be the sensors that are within distance 1 of p and q,
respectively. If there existed a sensor s′ closer than |p′q′| to both p′ and q′, the edge pq could
have been swapped for a shorter edge (Fig. 2).

s′

q′ p′

q p

p∗
s

Figure 2: Edge pq could be swapped for a shorter edge.

It remains to show how to build and sweep the arrangement of blobs in O(n log n) time. Since
the blobs are unions of unit disks, their total complexity is linear (see, e.g., [11, Theorem 13.9]).
Moreover, the arrangement of the blobs also has only linear complexity (see Lemma 3 below);
this follows from the fact that every point can belong to only a constant number of blobs (at
most 5). Thus, we can use sweep to build the arrangement in O(n log n) time, and also, of
course, sweep the arrangement within the same time bound.
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Lemma 3. The arrangement of the blobs has linear complexity.

Proof. The vertices of the arrangement are of two types – the vertices of the blobs themselves
and the vertices of the intersection of two blobs (we assume that no three blobs intersect in a
single point). The total number of the vertices of the first type is linear, so we focus on the
vertices of the second type.

Let A be a tile in the infinite unit-square tiling of the plane. There is not more than a
constant number K of blobs that intersect A (since there is not more than a constant number of
points that can be placed within distance 1 from A so that the distance between any two of
the points is larger than 1). Let ni be the number of disks from blob i that intersect A. Every
vertex of the arrangement inside A is on the boundary of the union of some two blobs. Because
the union of blobs has linear complexity, the number of vertices that are due to intersection of
blobs i and j is O(ni + nj). Since there is at most K blobs for which ni 6= 0, we have

∑
i,j

(ni + nj) ≤
(
K

2

)
n(A),

where n(A) is the total number of disks intersecting A. Clearly, each unit disk intersects only a
constant number of the unit-square tiles, and only a linear number of tiles is intersected by the
blobs. Thus, summing over all tiles, we obtain that the total complexity of the arrangement is
O(K2n) = O(n).

4 A 3.11-Approximation Algorithm for
One-Tier Relay Placement

In this section we first take care of clouds whose blobs can be stabbed with few relays, and then
find an approximation to the hub placement by greedily placing the hubs themselves, without
placing the stabs first, for the rest of the clouds. Together with a refined analysis, this gives
a polynomial-time 3.11-approximation algorithm. We focus on nontrivial instances with more
than one blob.

4.1 Overview

The basic steps of our algorithm are as follows:

1. Compute optimal stabbings for the clouds which can be stabbed with few relays.
2. Connect the blobs in each of these clouds, using Lemma 1.
3. Greedily connect all blobs in each of the remaining clouds (“stitching”).
4. Greedily connect clouds into clusters, using 2 additional relays per cloud.
5. Connect the clusters by a spanning forest.

Our algorithm constructs a set Ar of “red” relays (for connecting blobs in a cloud, i.e., relays
added in steps 1–3), a set Ag of “green” relays (two per cloud, added in steps 4–5) and a set Ay
of “yellow” relays (outside of sensor range, added in step 5). Refer to Figures 3 and 4. In the
analysis, we compare an optimal solution R∗ to our approximate one by subdividing the former
into a set R∗d of “dark” relays that are within reach of sensors, and into a set R∗` of “light” relays
that are outside of sensor range. We compare |R∗d| with |Ar|+ |Ag|, and |R∗` | with |Ay|, showing
in both cases that the ratio is less than 3.11.
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(a)

(b)

2

3

1

1

1

2

3

4

5

6

Figure 3: Red relays placed by our algorithm (the sensors are the solid circles); the numbers
indicate the order in which the relays are placed within each cloud. (a) Stab the clouds that
can be stabbed by placing few relays; the clouds are then stitched by placing the hubs as in
Lemma 1. (b) Greedily stitch the other clouds.
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(a)

(b)

Figure 4: (a) Green relays connect clouds into clusters – on average, we use at most 2 green
relays per cloud. (b) Green (inside clouds) and yellow (outside clouds) relays interconnect the
cloud clusters by a spanning tree.
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4.2 Clouds with Few Stabs

For any constant k, it is straightforward to check in polynomial time whether all blobs in a
cloud C ∈ C can be stabbed with i < k stabs. (For any subset of i cells of the arrangement of
unit disks centered on the sensors in C, we can consider placing the relays in the cells and check
whether this stabs all blobs.) Using Lemma 1, we can connect all blobs in such a cloud with at
most 2i− 1 red relays. We denote by Ci the set of clouds where the minimum number of stabs
is i, and by Ck+ the set of clouds that need at least k stabs.

4.3 Stitching a Cloud from Ck+

We focus on one cloud C ∈ Ck+. For a point y in the plane, let

B(y) = {B ∈ BC : y ∈ B}

be the set of blobs that contain the point; obviously |B(y)| ≤ 5 for any y. For any subset of
blobs T ⊆ BC , define S(T , y) = B(y) \ T to be the set of blobs not from T containing y, and
define V (T ) to be the set of sensors that form the blobs in T .

Within C, we place a set of red relays ACr = {yj : j = 1, 2, . . . }, as follows:

1. Choose arbitrary B0 ∈ BC .

2. Initialise j ← 1, Tj ← {B0}.

3. While Tj 6= BC :

yj ← arg maxy{|S(Tj , y)| : B(y) ∩ Tj 6= ∅},
Sj ← S(Tj , yj),
Tj+1 ← Tj ∪ Sj ,

j ← j + 1.

That is, yj is a point contained in a maximum number of blobs not from Tj that intersect a
blob from Tj . In other words, we stitch the clouds greedily; the difference from the usual greedy
(used in the previous section) is that we insist that some blob stabbed by yj is already in Tj .

By induction on j, after each iteration, there exists a path through sensors and/or relays
between any pair of sensors in V (Tj). By the definition of a cloud, there is a line segment of
length at most 2 that connects V (Tj) to V (BC \ Tj); the midpoint of the segment is a location
y with S(Tj , y) 6= ∅. Since each iteration increases the size of Tj by at least 1, the algorithm
terminates in at most |BC | − 1 iterations, and |ACr | ≤ |BC | − 1. The sets Sj form a partition of
BC \ {B0}.

We prove the following performance guarantee (the proof is similar to the analysis of greedy
set cover.)

Lemma 4. For each cloud C we have |ACr | ≤ 37|R∗d ∩ C|/12− 1.

Proof. For each B ∈ BC \ {B0}, define the weight w(B) = 1/|Sj |, where Sj is the unique set for
which B ∈ Sj . We also set w(B0) = 1. We have∑

B∈BC

w(B) = |ACr |+ 1. (6)

Consider a relay z ∈ R∗d ∩ C, and find the smallest ` with T` ∩ B(z) 6= ∅, that is, ` = 1 if
B0 ∈ B(z), and otherwise y`−1 is the first relay that pierced a blob from B(z). Partition the
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set B(z) into U(z) = T` ∩ B(z) and V(z) = B(z) \ U(z). Note that V(z) may be empty, e.g., if
y`−1 = z.

First, we show that ∑
B∈U(z)

w(B) ≤ 1.

We need to consider two cases. It may happen that ` = 1, which means that B0 ∈ B(z) and
U(z) = {B0}. Then the total weight assigned to the blobs in U(z) is, by definition, 1. Otherwise
` > 1 and U(z) ⊆ S`−1, implying w(B) = 1/|S`−1| ≤ 1/|U(z)| for each B ∈ U(z).

Second, we show that ∑
B∈V(z)

w(B) ≤ 1

|V(z)|
+

1

|V(z)| − 1
+ · · ·+ 1

1
.

Indeed, at iterations j ≥ `, the algorithm is able to consider placing the relay yj at the location
z. Therefore |Sj | ≥ |S(Tj , z)|. Furthermore,

S(Tj , z) \ S(Tj+1, z) = B(z) ∩ Sj = V(z) ∩ Sj .

Whenever placing the relay yj makes |S(Tj , z)| decrease by a number a, exactly a blobs of V(z)
get connected to Tj . Each of them is assigned the weight w(C) ≤ 1/|S(Tj , z)|. Thus,∑

B∈V(z)

w(B) ≤ a1
a1 + a2 + · · ·+ an

+
a2

a2 + a3 + · · ·+ an
+ · · ·+ an

an
,

where a1, a2, . . . , an are the number of blobs from V(z) that are pierced at different iterations,∑
i ai = |V(z)|. The maximum value of the sum is attained when a1 = a2 = · · · = an = 1 (i.e.,

every time |V(z)| is decreased by 1, and there are |V(z)| summands).
Finally, since |B(z)| ≤ 5, and U(z) 6= ∅, we have |V(z)| ≤ 4. Thus,

W (z) =
∑

B∈U(z)

w(B) +
∑

B∈V(z)

w(B) ≤ 1 +
1

4
+

1

3
+

1

2
+

1

1
=

37

12
. (7)

The sets B(z), z ∈ R∗d ∩ C, form a cover of BC . Therefore, from (6) and (7),

37

12
|R∗d ∩ C| ≥

∑
z∈R∗

d∩C
W (z) ≥

∑
B∈BC

w(B) = |ACr |+ 1.

4.4 Green Relays and Cloud Clusters

At any stage of the algorithm, we say that a set of clouds is interconnected if, with the current
placement of relays, the sensors in the clouds can communicate with each other. Now, when
all clouds have been stitched (so that the sensors within any one cloud can communicate), we
proceed to interconnecting the clouds. First we greedily form the collection of cloud clusters
(interconnected clouds) as follows. We start by assigning each cloud to its own cluster. Whenever
it is possible to interconnect two clusters by placing one relay within each of the two clusters,
we do so. These two relays are coloured green. After it is no longer possible to interconnect 2
clusters by placing just 2 relays, we repeatedly place 4 green relays wherever we can use them to
interconnect clouds from 3 different clusters. Finally, we repeat this for 6 green relays which
interconnect 4 clusters.

On average we place 2 green relays every time the number of connected components in the
communication graph on sensors plus relays decreases by one.
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4.5 Interconnecting the Clusters

Now, when the sensors in each cloud and the clouds in each cluster are interconnected, we
interconnect the clusters by a minimum Steiner forest with neighbourhoods. The forest is slightly
different from the one used in the previous section. This time we are minimising the total
number of relays that need to be placed along the edges of the forest in order to interconnect
the clusters; we denote this forest by MSFN′. The forest can be found by assigning appropriate
weights to the edges of the graph on the clusters – the weight of an edge is the number of relays
that are necessary to interconnect two clusters.

After MSFN′ is found, we place relays along edges of the forest just as we did in the simple
algorithm from the previous section. This time though we assign colours to the relays. Specifically,
for each edge e of the forest, we place 2 green relays at the endpoints of e, and b|e|/rc yellow
relays every r units starting from one of the endpoints. As with interconnecting clouds into
the clusters, when interconnecting the clusters we use 2 green relays each time the number of
connected components of the communication graph decreases by one. Thus, overall, we use at
most 2|C| − 2 green relays.

4.6 Analysis: Red and Green Relays

Recall that for i < k, Ci is the class of clouds that require precisely i relays for stabbing, and Ck+
is the class of clouds that need at least k relays for stabbing. An optimal solution R∗ therefore
contains at least

|R∗d| ≥ k|Ck+|+
k−1∑
i=1

i|Ci|

dark relays (relays inside clouds, i.e., relays within reach of sensors). Furthermore, |R∗d ∩ C| ≥ 1
for all C.

Our algorithm places at most 2i − 1 red relays per cloud in Ci, and not more than
37|R∗d ∩ C|/12− 1 red relays per cloud in Ck+. Adding a total of 2|C| − 2 green relays used for
clouds interconnections, we get

|Ar|+ |Ag| ≤
∑

C∈Ck+

(
37

12
|R∗d ∩ C| − 1

)
+

k−1∑
i=1

(2i− 1)|Ci|+ 2|C| − 2

≤ 37

12

(
|R∗d| −

k−1∑
i=1

i|Ci|
)

+ |Ck+|+
k−1∑
i=1

(2i+ 1)|Ci| − 2

≤ 37

12
|R∗d|+ |Ck+| <

(
3.084 +

1

k

)
|R∗d|.

4.7 Analysis: Yellow Relays

As in Section 2.4, let R be the communication graph on the optimal set R∗ of relays (without
sensors). In R there exists a forest R′ that makes the clusters interconnected. Let R′ ⊂ R∗ be
the relays that are vertices of R′. We partition R′ into “black” relays R∗b = R′ ∩R∗d and “white”
relays R∗w = R′ ∩R∗` – those inside and outside the clusters, respectively.

Two black relays cannot be adjacent in R′: if they are in the same cluster, the edge between
them is redundant; if they are in different clusters, the distance between them must be larger
than r, as otherwise our algorithm would have placed two green relays to interconnect the
clusters into one. By a similar reasoning, there cannot be a white relay adjacent to 3 or more
black relays in R′, and there cannot be a pair of adjacent white relays such that each of them is
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Forbidden

Figure 5: Forbidden configurations and grey relays.

adjacent to 2 black relays. Refer to Figure 5. Finally, the maximum degree of a white relay is 5.
Using these observations, we can prove the following lemma.

Lemma 5. There is a spanning forest with neighbourhoods on cloud clusters that requires at
most (

4√
3

+
4

5

)
|R∗w| < 3.11|R∗w|

yellow relays on its edges.

Proof. Let D be the set of cloud clusters. We partition R′ into edge-disjoint trees induced by
maximal connected subsets of white relays and their adjacent black relays. It is enough to show
that for each such tree T which interconnects a subset of clusters D′ ⊆ D, there is a spanning
forest on D′ such that the number of yellow relays on its edges is at most 3.11 times the number
of white relays in T . As no pair of black relays is adjacent in R′, these edge-disjoint trees
interconnect all clusters in D. The same holds for the spanning forests, and the lemma follows.

Trees with only one white relay (and thus exactly two black relays) are trivial: the spanning
forest needs only one edge with one yellow relay (and one green in each end). Therefore assume
that T contains at least two white relays.

We introduce yet another colour. For each white relay with two black neighbours, arbitrarily
choose one of the black relays and change it into a “grey” relay (Fig. 5). Let w be the number
of white relays, let b be the number of remaining black relays, and let g be the number of grey
relays in T .

First, we clearly have
b ≤ w. (8)

Second, there is no grey–white–white–grey path, and each white relay is adjacent to another
white relay. Therefore the ratio (b+ g)/w is at most 9/5. To see this, let w2 be the number of
white relays with a grey and a black neighbour, let w1 be the number of white relays with a
black neighbour but no grey neighbour, and let w0 be the number of white relays without a black
neighbour. By degree bound, w2 ≤ 4w1 + 5w0 = 4w1 + 5(w−w2−w1); therefore 5w ≥ 6w2 +w1.
We also know that w ≥ w2 + w1. Therefore

9

5
w ≥ 1

5
(6w2 + w1) +

4

5
(w2 + w1) = (w2 + w1) + w2 = b+ g. (9)

(The worst case is a star of 1 + 4 white relays, 5 black relays and 4 grey relays.)
Now consider the subtree induced by the black and white relays. It has fewer than b+ w

edges, and the edge length is at most r. By Lemma 2, there is a spanning forest on the black
relays with total length less than (2/

√
3)(b+ w)r; thus we need fewer than (2/

√
3)(b+ w) yellow

relays on the edges.
Now each pair of black relays in T is connected. It is enough to connect each grey relay to

the nearest black relay: the distance is at most 2, and one yellow relay is enough. In summary,
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the total number of yellow relays is less than

2√
3

(b+ w) + g =

(
2√
3
− 1

)
(b+ w) + b+ g + w

≤
(

2√
3
− 1

)
2w +

9

5
w + w =

(
4√
3

+
4

5

)
w < 3.11w.

The inequality follows from (8) and (9).

Thus, |Ay| < 3.11|R∗w| ≤ 3.11|R∗` |, and the overall approximation ratio of our algorithm is
less than 3.11.

5 Inapproximability of One-Tier Relay Placement

We have improved the best known approximation ratio for one-tier relay placement from 7
to 3.11. A natural question to pose at this point is whether we could make the approximation
ratio as close to 1 as we wish. In this section, we show that no PTAS exists, unless P = NP.

Theorem 1. It is NP-hard to approximate one-tier relay placement within factor 1 + 1/687.

The reduction is from minimum vertex cover in graphs of bounded degree. Let G = (V,E) be
an instance of vertex cover; let ∆ ≤ 5 be the maximum degree of G. We construct an instance I
of the relay placement problem which has a feasible solution with k + 2|E|+ 1 relays if and only
if G has a vertex cover of size k.

Figure 6 illustrates the construction. Figure 6a shows the vertex gadget ; we have one such
gadget for each vertex v ∈ V . Figure 6b shows the crossover gadget ; we have one such gadget
for each edge e ∈ E. Small dots are sensors in the relay placement instance; each solid edge has
length at most 1. White boxes are good locations for relays; there is one good location in each
vertex gadget, and two good locations per crossover gadget. Dashed line shows a connection for
relays in good locations in a crossover.

We set r = 16(|V | + 1), and we choose |E| + 1 disks of diameter r such that each pair of
these disks is separated by a distance larger than |V |r but at most poly(|V |). One of the disks is
called S(0) and the rest are S(e) for e ∈ E. All vertex gadgets and one isolated sensor, called p0,
are placed within disk S(0). The crossover gadget for edge e is placed within disk S(e). There
are noncrossing paths of sensors that connect the crossover gadget e = {u, v} ∈ E to the vertex
gadgets u and v; all such paths (tentacles) are separated by a distance at least 3. Good relay
locations and p0 cannot be closer than 1 unit to a disk boundary.

Figure 6c is a schematic illustration of the overall construction in the case of G = K5; the
figure is highly condensed in x direction. There are 11 disks. Disk S(0) contains one isolated
sensor and 5 vertex gadgets. Each disk S(e) contains one crossover gadget. Outside these disks
we have only parts of tentacles.

There are 4|E|+ 1 blobs in I. The isolated sensor p0 forms one blob. For each edge there
are 4 blobs: two tentacles from vertex gadgets to the crossover gadget, and two isolated sensors
in the crossover gadget.

Theorem 1 now follows from the following two lemmata.

Lemma 6. Let C be a vertex cover of G. Then there is a feasible solution to relay placement
problem I with |C|+ 2|E|+ 1 relays.

Proof. For each v ∈ C, place one relay at the good location of the vertex gadget v. For each
e ∈ E, place two relays at the good locations of the crossover gadget e. Place one relay at the
isolated sensor p0.
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p0

S(e) for each e ∈ ES(0)

1

3

← u

← v

(c)

(a) (b)

(d)

Figure 6: (a) Vertex gadget for v ∈ V . (b) Crossover gadget for {v, u} ∈ E. (c) Reduction for
K5. (d) Normalising a solution, step 1.
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Lemma 7. Assume that there exists a feasible solution to relay placement problem I with
k + 2|E|+ 1 relays. Then G has a vertex cover of size at most k.

Proof. If k ≥ |V |, then the claim is trivial: C = V is a vertex cover of size at most k. We
therefore focus on the case k < |V |.

Let R be a solution with k + 2|E|+ 1 relays. We transform the solution into a canonical
form R′ of the same size and with the following additional constraints: there is a subset C ⊆ V
such that at least one relay is placed at the good relay location of each vertex gadget v ∈ C; two
relays are placed at the good locations of each crossover gadget; one relay is placed at p0; and
there are no other relays. If R′ is a feasible solution, then C is a vertex cover of G with |C| ≤ k.

Now we show how to construct the canonical form R′. We observe that there are 2|E|+ 1
isolated sensors in I: sensor p0 and two sensors for each crossover gadget. In the feasible solution
R, for each isolated sensor p, we can always identify one relay within distance 1 from p (if there
are several relays, pick one arbitrarily). These relays are called bound relays. The remaining
k < |V | relays are called free relays.

Step 1. Consider the communication graph formed by the sensors in I and the relays R.
Since each pair of disks S(i), i ∈ {0} ∪ E, is separated by a distance larger than |V |r, we know
that there is no path that extends from one disk to another and consists of at most k free relays
(and possibly one bound relay in each end). Therefore we can shift each connected set of relays
so that it is located within one disk (see Figure 6d). While doing so, we do not break any
relay–relay links: all relays within the same disk can communicate with each other. We can also
maintain each relay–blob link intact.

Step 2. Now we have a clique formed by a set of relays within each disk S(i), there are
no other relays, and the network is connected. We move the bound relay in S(0) so that it
is located exactly on p0. For each e ∈ E, we move the bound relays in S(e) so that they are
located exactly on the good relay locations. Finally, any free relays in S(0) can be moved to a
good relay location of a suitable vertex gadget. These changes may introduce new relay–blob
links but they do not break any existing relay–blob or relay–relay links.

Step 3. What remains is that some disks S(e), e ∈ E, may contain free relays. Let x be one
of these relays. If x can be removed without breaking connectivity, we can move x to the good
relay location of any vertex gadget. Otherwise x is adjacent to exactly one blob of sensors, and
removing it breaks the network into two connected components: component A which contains p0,
and component B. Now we simply pick a vertex v ∈ V such that the vertex gadget v contains
sensors from component B, and we move x to the good relay location of this vertex gadget; this
ensures connectivity between p0 and B.

Proof of Theorem 1. Let ∆, A,B,C ∈ N, with ∆ ≤ 5 and C > B. Assume that there is a factor

α = 1 +
C −B

B + ∆A+ 1

approximation algorithm A for relay placement. We show how to use A to solve the following
gap-vertex-cover problem for some 0 < ε < 1/2: given a graph G with An nodes and maximum
degree ∆, decide whether the minimum vertex cover of G is smaller than (B + ε)n or larger than
(C − ε)n.

If n < 2, the claim is trivial. Otherwise we can choose a positive constant ε such that

α− 1 <
C −B − 2ε

B + ε+ ∆A+ 1/n

for any n ≥ 2. Construct the relay placement instance I as described above.

16



If minimum vertex cover of G is smaller than (B + ε)n, then by Lemma 6, the algorithm A
returns a solution with at most b = α((B + ε)n+ 2|E|+ 1) relays. If minimum vertex cover of
G is larger than (C − ε)n, then by Lemma 7, the algorithm A returns a solution with at least
c = (C − ε)n+ 2|E|+ 1 relays. As 2|E| ≤ ∆An, we have

c− b ≥ (C − ε)n+ 2|E|+ 1− α
(
(B + ε)n+ 2|E|+ 1

)
≥
(
C −B − 2ε− (α− 1)(B + ε+ ∆A+ 1/n)

)
n > 0,

which shows that we can solve the gap-vertex-cover problem in polynomial time.
For ∆ = 4, A = 152, B = 78, C = 79, and any 0 < ε < 1/2, the gap-vertex-cover problem is

NP-hard [3, Theorem 3].

Remark 1. We remind that throughout this work we assume that radius r is part of the problem
instance. Our proof of Theorem 1 heavily relies on this fact; in our reduction, r = Θ(|V |). It is
an open question whether one-tier relay placement admits a PTAS for a small, e.g., constant, r.

6 A PTAS for Two-Tier Relay Placement

In the previous sections we studied one-tier relay placement, in which the sensors could commu-
nicate with each other, as well as with the relays. We gave a 3.11-approximation algorithm, and
showed that the problem admits no PTAS (for general r). In this section we turn to the two-tier
version, in which the sensors cannot communicate with each other, but only with relays.

The two-tier relay placement problem asks that we determine a set R of relays such that
there exists a tree T whose internal nodes are the set R and whose leaves are the n input points
(sensors) V , with every edge of T between two relays having length at most r and every edge of
T between a relay and a leaf (sensor) having length at most 1.

We give a PTAS for this version of the problem, summarized in the following theorem.

Theorem 2. The two-tier relay placement problem has a PTAS.

We give an overview of the method here; details and proofs appear in the Appendix. Let
m be a (sufficiently large) positive integer constant; we will give a (1 +O(1/m))-approximate
solution. We distinguish between two cases: the sparse case in which diam(V ) ≥ mnr, and the
dense case, in which diam(V ) < mnr.

In the sparse case, a solution can consist of long chains of relays, with a number of relays
not bounded by a polynomial in n; thus, we output a succinct representation of such chains,
specifying the endpoints (which come from a regular grid of candidate locations). The algorithm,
then, is a straightforward reduction to the Euclidean minimum Steiner tree problem. See
Appendix A.2.

In the dense case, we compute and output an explicit solution. In this case, the set of possible
locations of relays that we need to consider is potentially large (but polynomial); we employ
an “iterated circle arrangement” to construct the set, G, of candidate locations. Analysis of
this set of candidates is done in Appendix A.4, where we prove the structure lemma, Lemma 8.
Armed with a discrete candidate set, we then employ the m-guillotine method ( [23]) to give
a PTAS for computing a set of relays (a subset of G) that is within factor 1 + O(1/m) of
being a minimum-cardinality set. The main idea is to optimize over the class of “m-guillotine
solutions”, which can be done using dynamic programming. An m-guillotine solution has a
recursive property determined by “guillotine cuts” of the bounding box of the optimal solution
(axis-parallel cuts of constant (O(m)) description complexity). We prove that an optimal solution
that uses k∗ relays can be augmented with a set of O(k∗/m) additional relays so that it has the
m-guillotine property.
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Figure 7: Unit disks centered on the sensors are shown. The optimum has 1 relay per blob
(hollow circles). Our algorithm may place 1 red relay in every blob plus 2 green relays in (almost
every) blob.

7 Discussion

In Section 3 we presented a simple O(n log n)-time 6.73-approximation algorithm for the one-tier
relay placement. If one is willing to spend more time finding the approximation to the set cover,
one may use the semi-local optimisation framework of Duh and Furer [14], which provides an
approximation ratio of 1 + 1/2 + 1/3 + 1/4 + 1/5− 1/2 for the set cover with at most 5 elements
per set; hence we obtain a 5.73-approximation.

One can form a bipartite graph on the blobs and candidate stab locations as follows. Pick a
point within each maximal-depth cell of the arrangement of the blobs (maximal w.r.t the blobs
that contain the cell); call these points “red”. Pick a point within each blob; call these points
“blue”. Connect each blue point to the red points contained in the blob, represented by the blue
point. It is possible to pick the points so that the bipartite graph on the points is planar. Then
the stab placement is equivalent to the Planar Red/Blue Dominating Set Problem [12] – find
fewest red vertices that dominate all blue ones. We believe that the techniques of Baker [2] can
be used to give a PTAS for the problem. Combined with the simple algorithm in Section 3, this
would result in a 4.16-approximation for the relay placement.

A more involved geometric argument may improve the analysis of yellow relays in Section 4,
bringing the constant 3.11 in Lemma 5 down to 3, which would improve the approximation
factor to 3.09. Combining this with the possible PTAS for the Planar Red/Blue Dominating Set
would yield an approximation factor of 3 + ε. We believe that a different, integrated method
would be needed for getting below 3: various steps in our estimates are tight with respect to 3.
In particular, as the example in Figure 7 shows, our algorithm may find a solution with (almost)
3 times more relays than the optimum.
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A Appendix

Here, we give details of the PTAS that was outlined in Section 6.

A.1 Preliminaries

Let m be a (sufficiently large) positive integer constant. We present an algorithm that computes
an approximate solution to the two-tier relay placement problem, with approximation factor
1 +O(1/m) and running time that is polynomial in n = |V |. We focus on nontrivial instances in
which at least 2 relays are required (i.e., there is no single point that is within distance 1 from
all sensors).

We rephrase the statement of the two-tier relay placement problem: Determine a set R of
relays such that there exists a tree T whose internal nodes are the set R and whose leaves are
the n input points (sensors) V , with every edge of T between two relays having length at most
r and every edge of T between a relay and a leaf (sensor) having length at most 1. We refer
to edges of length at most r between two relays as blue edges and edges of length at most 1
between a relay and a sensor as red edges; we refer to relays that are incident on red edges as
red relays and all other relays as blue relays. Our objective is to minimize |R|.

Let D = diam(V )− 1. We say that an instance of the two-tier relay placement problem is
sparse (with respect to the constant m) if D ≥ mnr, and dense if D < mnr. We treat sparse
and dense instances with different techniques:

(i) A solution of a sparse instance typically consists of long chains of relays. The number
of relays is not necessarily polynomial in n, and the algorithm must output a succinct
representation that specifies the endpoints of such chains. However, the set of possible
endpoints that we need to consider is relatively small, and we can use a simple regular
grid to construct the set of candidate locations.

(ii) A solution of a dense instance can be given explicitly. However, the set of possible locations
of relays that we need to consider is large, and we must use an iterated circle arrangement
to construct the set of candidate locations.

We first show how to solve sparse instances in Section A.2; the algorithm is a straightforward
reduction to the Euclidean minimum Steiner tree problem.

A.2 Sparse Instances

We first discretize the problem by using a regular grid. Let s = D/(nm); note that s ≥ r ≥ 1.
Let G be the regular square grid of spacing s that covers the bounding rectangle of V ; the
number of points in G is O(n2m2).

We round the coordinates of each sensor v ∈ V to the nearest grid point G(v) ∈ G; let
G(V ) = {G(v) : v ∈ V } be the set of the rounded sensor coordinates. Then we use a polynomial-
time approximation algorithm [1, 23] to find a Steiner tree S for G(V ) with Steiner points in G
such that the total length |S| of the edges is within factor 1 + 1/m of the smallest such tree.
Without loss of generality, we can assume that S has O(n) edges.

Then we construct a feasible solution R of the two-tier relay placement problem as follows:

(i) Replace each edge {a, b} of S by a chain of relays with spacing r that connects a to b.
(ii) Connect each sensor v ∈ V to the point G(v) by a chain of relays.

Clearly the solution R is feasible and a compact representation of it can be constructed in
polynomial time. Let us now analyze the approximation factor. To this end, consider an optimal
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solution R∗ of the two-tier relay placement problem. Given R∗, we can construct a Steiner tree
S∗ for V such that there are at most n− 2 Steiner points. Each Steiner point is a relay of R∗

with degree larger than 2, and each v ∈ V is a leaf node of S∗; moreover, |S∗| ≤ n+ |R∗|r.
If we round the coordinates of the vertices of S∗ to the nearest grid points in G, we obtain

a Steiner tree S1 for G(V ) with |S1| ≤ O(ns) + |R∗|r. By construction, S is at most 1 + 1/m
times larger than S1; hence

|S| ≤ O(ns) + (1 + 1/m)|R∗|r.

In step (i), we add at most O(n) + |S|/r relays in total, and in step (ii), we add O(ns/r+ n)
relays in total. Hence,

|R| ≤ O(n+ ns/r) + |S|/r ≤ O(ns/r) + (1 + 1/m)|R∗|.

Now observe that |R∗| ≥ D/r, as we must connect the pair of sensors that are at distance
diam(V ) from each other. Hence,

ns/r = D/(mr) ≤ (1/m)|R∗|,

and we conclude that |R| is within factor 1 +O(1/m) of |R∗|.

A.3 Dense Instances

In Section A.4 we prove the following lemma showing that we can focus on a polynomial-size set
G of candidate relay positions.

Lemma 8. For any fixed positive integer m and a given dense instance of the two-tier relay
placement problem, we can construct in polynomial time a (polynomial-size) set of points G such
that there exists a feasible, (1 +O(1/m))-approximate solution R1 with R1 ⊆ G.

Lemma 8 implies that, in our quest for a PTAS for our two-tier relay placement problem, it
suffices for us to consider sets of relays on the grid G.

Our PTAS method is based on the m-guillotine framework of [23]. We review a few definitions.
Let A be a connected set of line segments with endpoints in G. A window W is an axis-aligned
rectangle whose defining coordinates are x- and y-coordinates of the grid points G. A cut is a
horizontal or vertical line `, through a point of G, that intersects int(W), the interior of window
W . The intersection, `∩ (A∩ int(W)), of a cut ` with A∩ int(W) consists of a discrete (possibly
empty) set of crossing points where an edge from A crosses `. Let the crossing points be denoted
by p1, . . . , pξ, in order along `. We define the m-span, σm(`), of ` (with respect to W ) to be
the empty set if ξ ≤ 2(m − 1), and to be the (possibly zero-length) line segment pmpξ−m+1

otherwise.
A cut ` is m-perfect with respect to W if σm(`) ⊆ A. The edge set A is m-guillotine with

respect to window W if either

(1) A ∩ int(W) = ∅, or

(2) there exists an m-perfect cut, `, with respect to W , such that A is m-guillotine with respect
to windows W ∩H+ and W ∩H−, where H+, H− are the closed halfplanes defined by `.

We say that A is m-guillotine if A is m-guillotine with respect to the axis-aligned bounding box
of A.

Let R∗G denote an optimal solution to the two-tier relay placement problem restricted to
points of the grid G. Associated with R∗G is a tree T ∗ whose internal nodes are the set R∗G
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(a) (b)

Figure 8: Optimal solution R∗G and tree T ∗. (a) Red and blue disks. (b) Red and blue squares.

and whose leaves are the n input points (sensors) V , with every edge of T ∗ between two relays
having length at most r and every edge of T ∗ between a relay and a leaf (sensor) having length
at most 1; see Figure 8. Some edges of T ∗ are blue (those of length at most r between two
relays), and some edges are red (those of length at most 1 between a red relay and a sensor).
Relays that are incident on red edges are red and all other relays are blue. We place red disks of
radius 1 centered at each red relay and place blue disks of radius r centered at every relay (blue
or red). Each red disk (resp., blue disk) has an associated bounding box, which we call a red
square (resp., blue square). We observe that each blue relay has constant degree in T ∗ (in fact,
at most 5, based on the degree bound of Euclidean minimum spanning trees in the plane), and
no point in the plane lies in more than a constant number of blue squares (for the same basic
reasons as the degree bound – otherwise, the set of relays could be reduced, while maintaining
communication connectivity). Further, we observe that the union of the edges bounding all blue
squares is connected (since the blue edges of T ∗ form a subtree of T ∗, and any two relays joined
by a blue edge must have their corresponding blue squares intersecting).

The m-guillotine method is typically applied to a set of edges of some network. We now
define a related concept, that of a set of relays being “m-guillotine”. Let R ⊆ G be a set of relays
that is feasible for V , meaning that there is an associated tree T with leaves at V , blue edges
of lengths at most r and red edges of lengths at most 1. Let Eblue be the set of (axis-parallel)
edges bounding the blue squares associated with R, and let Ered be the set of (axis-parallel)
edges bounding the red squares associated with R. Consider a window W (on the grid induced
by the points G) and a horizontal/vertical cut ` intersecting int(W).

The intersection, ` ∩ (Eblue ∩ int(W)), of a cut ` with Eblue ∩ int(W) consists of a discrete
(possibly empty) set of crossing points where an edge from Eblue crosses `. Without loss of
generality, consider a vertical cut `, and let ab = `∩W denote its intersection with the window W .
We now define the blue m-span, σbluem (`), of ` (with respect to W ), as follows. As we walk along
ab from a towards b, we enter various blue squares; let pm be the mth entry point, if it exists; if
we enter fewer than m blue squares, then we define the blue m-span to be empty. (Note that
the point a may lie within more than one blue square; however, we can always assume that no
point lies within more than a constant number of blue squares.) Similarly, as we walk along ab
from b towards a, we enter various blue squares; let qm be the mth entry point, if it exists; if we
enter fewer than m blue squares, then we define the blue m-span to be empty. Then, if pm is
closer to a than qm, and the length of pmqm is at least 2r (implying that pmqm fully crosses at
least one blue square, entering and exiting it), we define the blue m-span, σbluem (`), of ` (with
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Figure 9: A horizontal cut ` (dashed line) and the blue m-span σbluem (`) for m = 2 (thick line).

(a) (b)

Figure 10: (a) Regular square grid Gblue
0 of spacing r/2. (b) A relay-dense m-span σbluem (`).

respect to W ), to be the segment pmqm, a subsegment of `; otherwise, we define the blue m-span
to be empty. See Figure 9 for an illustration. Note that, if nonempty, by definition the blue
m-span has length at least 2r, the side length of a blue square; further, if the blue m-span is
empty, then ab intersects O(m) blue squares. We similarly define the red m-span, σredm (`), of `
(with respect to W ) based on the entry points along ` of red squares. Note that, if nonempty,
by definition the red m-span has length at least 1; further, if the red m-span is empty, then ab
intersects O(m) red squares.

We say that a nonempty blue m-span σbluem (`) is relay-dense if R includes relays at all points
of Gblue

0 that are corners of (r/2)-by-(r/2) grid cells intersected by σbluem (`); the corresponding
relays are called a relay-dense bridge; see Figure 10. (G includes the points Gblue

0 of the regular
square grid of spacing r/2 that covers the bounding rectangle of V ; see Section A.4.) Similarly,
we say that a nonempty red m-span is relay-dense if R includes relays at all points of Gred

0 that
are corners of (1/2)-by-(1/2) grid cells that contain points of V (which implies that it includes at
least one (red) relay within each disk of radius 1, centered at V , that is intersected by σredm (`));
the corresponding red relays are called a (red) relay-dense bridge. (G includes the points Gred

0

at the corners of the cells of the regular square grid of spacing 1/2 that contain points V ; see
Section A.4.)

A cut ` is m-perfect with respect to R if the nonempty m-spans (red and blue) along ` are
relay-dense. The set R of relays is m-guillotine with respect to window W if either

(1) there are no blue squares of R interior to W , or

(2) there exists an m-perfect cut, `, with respect to W , such that R is m-guillotine with respect
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to windows W ∩H+ and W ∩H−, where H+, H− are the closed halfplanes defined by `.

We say that R is m-guillotine if R is m-guillotine with respect to the axis-aligned bounding box
of R.

Lemma 9. Let m be a fixed positive integer, and let V be a given dense instance of the two-tier
relay placement problem. Then, for any set R′ of relays that is feasible for the instance, there
exists an m-guillotine set R of relays, also feasible for the instance, with |R| ≤ (1 +O(1/m))|R′|.

Proof. We argue that we can add a small number, at most O(1/m) · |R′|, of relays to R′ to make
it m-guillotine, if it is not already.

First, consider the set of blue and red squares associated with R′; these are the bounding
boxes of the disks of radius r centered at all relays and disks of radius 1 centered at red relays.
Let Eblue and Ered be the (axis-parallel) edges bounding the blue and red squares, respectively.

By the standard m-guillotine arguments [23], we know that Eblue can be augmented by
“blue” bridges (m-spans) of length totalling O(1/m) · |Eblue|, so that the resulting set of edges is
m-guillotine (in the usual sense). A similar statement holds for the set Ered of red edges, which
can be augmented by “red” bridges to make the set m-guillotine if it is not already m-guillotine.
In fact, by a slight modification of the usual argument, we can claim that we can augment
Eblue ∪Ered by a set of red and blue bridges so that the resulting set is collectively m-guillotine,
with a common recursive partitioning by cuts: For each cut ` in the recursive decomposition, we
can choose ` (horizontal or vertical, in an appropriate position) so that the red m-span (with
respect to Ered) and the blue m-span (with respect to Eblue) can each be charged off to the red
and blue lengths of the input, charging the input with a factor of O(1/m). In more detail, we
define the cost of a vertical cut at position x to be fred(x) + (1/r)fblue(x), where fred(x) is the
length of the m-span at position x of the red edges Ered, and fblue(x) is the length of the m-span
at position x of the blue edges Eblue. The union of m-spans over all x defines a “red region” and
a “blue region” with respect to vertical cuts, and the integral,

∫
x[fred(x) + (1/r)fblue(x)]dx gives

the weighted sum of the areas of these regions, weighting the length of the blue m-span by 1/r
(this is to reflect the fact that the blue squares are r times as large as the red squares, and our
goal is to count the cardinality of squares). Similarly, we can define red and blue regions with
respect to horizontal cuts, and functions, gred(y) and gblue(y), that define the cost of such cuts.

The (weighted) areas of the red/blue regions with respect to horizontal cuts are given by
the integrals

∫
y gred(y)dy and

∫
y(1/r)gblue(y)dy; equivalently they are given by the integrals,∫

y hred(x)dx and
∫
x(1/r)hblue(x)dx, of the lengths hred(x) and hblue(x) of the vertical sections of

the regions. These lengths (hred(x) and hblue(x)) represent the “chargeable length” of vertical cuts
at position x. Then, assuming that the weighted sum of the areas of the red and blue regions with
respect to horizontal cuts is greater than that with respect to vertical cuts, we get that there must
be a vertical cut at some position x∗ where fred(x∗) + (1/r)fblue(x

∗) ≤ hred(x∗) + (1/r)hblue(x
∗).

A vertical cut through x∗ can then have its red m-span charged to O(1/m) of the length of
edges bounding red squares (i.e., O(1/m) times the number of red squares) and its blue m-span
charged to O(1/mr) times the length of edges bounding blue squares (i.e., O(1/m) times the
number of blue squares/relays).

Next, consider each blue bridge (m-span) that the above argument shows we can afford to add
(charging O(1/m) times the number of relays), to make Eblue m-guillotine (as a network). We
can convert any such blue bridge of length λ into O(dλ/re) relays on or near the corresponding
cut `, in order to make the cut relay-dense (i.e., to include relays at all points of Gblue

0 that are
corners of (r/2)-by-(r/2) grid cells intersected by the blue bridge). Similarly, each red bridge
(m-span), of length λ, that is added in order to make Ered m-guillotine (as a network) can be
converted into O(dλe) red relays that stab all disks of radius 1, centered at points of V , that
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are intersected by the red bridge. Similarly, we say that a nonempty red m-span is relay-dense
if R includes at least one (red) relay from the set G within each disk of radius 1, centered at
V , that is intersected by σredm (`). The purpose of relay-dense bridges of red relays is to ensure
that sensors within distance 1 of the boundary of W are covered by the unit disks of the red
relay-dense bridge, if they are not covered by the unit disks associated with the O(m) unbridged
red relays. This allows for “separation” between subproblems in the dynamic program.

Finally, we conclude that the total number of relays added is O(1/m) times |R|. If we let the
lengths of blue bridges be λbluei and let the lengths of red bridges be λredj , then we know, from the

charging scheme for making Eblue and Ered m-guillotine, that (1/r)
∑

i λ
blue
i +

∑
j λ

red
j is at most

O(1/mr) times the total perimeters of all blue squares plus O(1/m) times the total perimeters of
all red squares. This implies that (1/r)

∑
i λ

blue
i +

∑
j λ

red
j is at most O(1/m) times the number

of relays of R. By construction, we know that if λbluei is nonzero, then λbluei ≥ r, and that if λredj
is nonzero, then λredj ≥ 1. Thus, the total number of relays added, O(

∑
idλbluei /re+

∑
jdλredj e)

is at most O(1/m) times the number of relays of R.

Applying Lemma 9 and Lemma 8 yields the following

Corollary 1. Let m be a fixed positive integer, and let V be a given dense instance of the
two-tier relay placement problem. Then, there exists an m-guillotine set R ⊆ G of relays with
|R| ≤ (1 +O(1/m))|R∗|.

We now describe the algorithm that yields the claimed PTAS for computing R∗ approximately.
The algorithm is based on a dynamic program to compute a minimum-cardinality m-guillotine
set, R, of relays that obeys certain connectivity and coverage constraints. A subproblem is
specified by a window W (with coordinates from the grid G), together with a constant (depending
on m) amount of boundary information:

(1) A set of O(m) (unbridged) blue relays (from G) whose blue squares intersect the boundary
of W , and a set of O(m) red relays (from G) whose red squares intersect the boundary
of W .

(2) The blue m-spans, which determine the set of relays forming the relay-dense bridge; in
order to describe the relay-dense bridge, we have only to specify the endpoints of the blue
m-span, as this gives a succinct encoding of the relays that form the relay-dense bridge.
There are up to 4 blue m-spans, one per side of W .

(3) The red m-spans, which determine the set of red relays forming the relay-dense bridge; in
order to describe the relay-dense bridge, we have only to specify the endpoints of the red
m-span, as this gives a succinct encoding of the relays that form the relay-dense bridge.

(4) Connectivity requirements among the relays specified along the boundary. Specifically,
there are O(m) entities specified along the boundary of W : O(m) unbridged relays per
side of W , and up to two m-spans per side of W , which encode the relay-dense bridges.
The connectivity requirements are specified as a collection of (disjoint) subsets of these
O(m) entities, with the understanding that each such subset of entities must be connected
within W by edges of the communication graph that connects two relays if and only if
they are at distance at most r from each other.

We require that the solution to a subproblem gives a set of red relays whose unit disks cover all
sensors interior to W that are not covered by the relays specified along the boundary (either the
O(m) unbridged red relays or the relay-dense bridges of red relays), together with a set of blue
relays within the subproblem that enable connectivity. The dynamic program optimizes over all
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r/2

R∗: R1:
z

y
x x

y

∈ E′

Figure 11: Construction of R1 for dense instances. Each edge in the set E′ is replaced by a path
of length 2. The grey area shows one of the subtrees. The leaf nodes of the subtree are now
pinned at points of C0, and there are at most m internal nodes. Figure 12 shows how we can
“pin” the internal nodes of the subtree to points of G.

choices of cuts ` (horizontal or vertical) of W , and all choices of boundary information along the
cut ` that are compatible with the boundary information for W . Since, for fixed m, there are a
polynomial number of different subproblems, and a polynomial number of choices of cuts and
boundary information within the dynamic programming recursion, we have completed the proof
of the main result, Theorem 2.

A.4 Proof of Lemma 8

Construction of G. Let Gblue
0 be the regular square grid of spacing r/2 that covers the

bounding rectangle of V ; the points of Gblue
0 are the corners of (r/2)-by-(r/2) squares that form

a regular grid. By construction, the grid Gblue
0 has O((D/r)2 + 1) = O(n2m2) points.

Consider now the regular square grid of spacing 1/2 that covers the bounding rectangle of V .
Let Gred

0 be the subset of these grid points that are within distance 1 of one of the n input
points V . Then, Gred

0 are the corners of (1/2)-by-(1/2) squares of a regular grid, and there are
only O(n) such corner points.

We construct an iterated circle arrangement C0, C1, . . . , Cm recursively as follows. As the
base case, let C0 = Gblue

0 ∪ V . Then, for each i = 1, 2, . . . ,m, the arrangement Ci is constructed
as follows: For each point p ∈ Ci−1, add p to Ci, as well as the special points located 1 unit below
p and r units below p. Then draw circles of radii 1, r, r + 1, 2r, 2r + 1, 3r, 3r + 1, . . . ,mr,mr + 1
centered at each point of Ci−1. Finally, add the vertices (crossing points) of this arrangement
to Ci.

Finally, let G = Cm ∪Gred
0 . The size of G is polynomial in n, for a constant m.

Construction of R1. Consider an optimal solution R∗ and the minimum-length communica-
tion tree T ∗ associated with it; let B∗ be the blue subtree of T ∗. Since B∗ is an MST of R∗, the
maximum degree of any relay in B∗ is 5. Hence there is a set E′ of O(|R∗|/m) blue edges whose
removal breaks B∗ into subtrees, each having at most m relays.

We construct a new solution R1 that conforms to G as follows; see Figure 11 for an illustration.
First, for each edge {x, y} ∈ E′, we add a new relay z at a point of Gblue

0 that is within distance
r from x and y; then we replace the edge {x, y} by two edges, {x, z} and {z, y}. The new blue
edge {x, z} becomes part of the same subtree as x, and the edge {z, y} becomes part of the same
subtree as y.

So far we have added O(|R∗|/m) new relays, and we have partitioned the communication
tree into edge-disjoint subtrees. The leaf nodes of the subtrees are sensors or newly added relays;
both of them are located at points of C0. There are at most m internal nodes in each subtree.
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To prove Lemma 8, it is sufficient to show that we can move the internal relays so that they
are located at points of G, and while doing so we do not break any sensor–relay or relay–relay
connections.

We say that a relay is pinned if it is located at a point of G. We show how to pin all relays
in m iterations. In the beginning, we have partitioned the communication tree into edge-disjoint
subtrees where the leaf nodes are pinned at C0 and there are at most m internal nodes in each
subtree. In what follows, we will show that we can move the internal nodes and refine the
partition so that after iteration i, we have partitioned the communication tree into edge-disjoint
subtrees where the leaf nodes are pinned at Ci and there are at most m− i internal nodes in
each subtree. Hence after m iterations, we have pinned all nodes at Cm = G.

Observe that it is sufficient to show that if T is a subtree where leaf nodes are pinned at Ci,
then we can move the internal nodes so that at least one node x becomes pinned at Ci+1. Then
we can partition the subtree T into smaller, edge-disjoint subtrees that share the leaf node x.
Each of the new subtrees has all leaf nodes pinned at Ci+1 and they also have fewer internal
nodes than T .

Consider a subtree T . Start translating (in any direction) the internal nodes of T , while
keeping the leaf nodes in place. This translation will cause some edge e linking a leaf node p
to an internal node u to reach its maximum length (r for blue edges or 1 for red edges). At
this moment, the point u lies on a circle c of radius r or 1 centered at p; see Figure 12 for an
illustration.

Now slide the point u along circle c until some other constraint becomes binding. We now
do not consider T to be a rigid structure; rather, we allow the internal nodes to move arbitrarily,
subject to the upper bound constraints on each edge. The edges serve as “cables”, which readily
shorten, but cannot extend beyond their maximum length.

If we can slide u along c to the special point located below p, then we have pinned u at a
point of Ci+1. Otherwise some edges of T reach their upper bound of length while we slide u
along c; i.e., one or more cables becomes taut. At this moment, some subset of the edges of T
are taut (at their length upper bound); this subset of edges forms a tree, T ′. There are two
cases:

(i) T ′ is a path. Then T ′ is a path linking u to a leaf node p′ of T . Further, T ′ is a straight
path of edges, each at its upper length bound; in fact, all edges of T ′ will be of length r,
the upper bound for relay–relay edges, except, possibly, the edge incident on p′ (if p′ is a
sensor). Thus, in this position, u lies at the intersection of circle c with a circle centered
at a point of P of radius jr or jr + 1, for some integer j ≤ m. As we had p′ ∈ Ci, we will
have now u ∈ Ci+1.

(ii) T ′ is not a path. Then, T ′ has some node, w (possibly equal to u) that is connected to
leaves of T by two (or more) straight paths, each of length jr or jr + 1, for some integer
j ≤ m; see Figure 12b. This implies that w lies at a point of Ci+1.

In both cases we have moved the internal nodes of T so that one of them becomes pinned at
Ci+1; moreover, none of the communication links are broken, leaf nodes are held in place, and
no new relays are added.
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p

p

special point

Figure 12: Pinning a subtree. Black dots are sensors and white boxes are relays. The leaf nodes
are pinned at points of Ci. Straight lines denote “taut” edges, i.e., red edges of length 1 or blue
edges of length r; other edges are shown with winding lines. (a) We have translated the internal
nodes until the edge between a leaf node p and an internal node u becomes taut. Then we try
to slide u along circle c towards the special point. If we succeed, we have pinned u at the special
point, which is in Ci+1. (b) In this case we cannot slide u to the special point. However, from
the subtree of taut edges, we can find a node w that is now located at a point of Ci+1 – in this
case at the intersection of a circle of radius r + 1 centered at a sensor, and a circle of radius r
centered at a pinned relay.
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