Touring a Sequence of Polygons

Moshe Dror(1) Alon Efrat(1) Anna Lubiw(2) Joe Mitchell(3)

(1)University of Arizona
(2)University of Waterloo
(3)Stony Brook University
Problem:

Given a sequence of k polygons in the plane, a start point s, and a target point, t, we seek a shortest path that starts at s, visits in order each of the polygons, and ends at t.
Related Problem: TSPN:

If the order to visit \(\{P_1, P_2, \ldots, P_k\} \) is not specified, we get the NP-hard TSP with Neighborhoods problem.

TSPN: \(O(\log n) \)-approx in general

\(O(1) \)-approx, PTAS in special cases
The Fenced Problem:

Here that part of the path connecting P_i to P_{i+1} must lie inside a simple polygon F_i, called the fence.
Applications: Safari Problem:

Previous result — $O(n^3 \log n)$. [Tan 2001]
Applications: Zookeeper Problem:

Optima result — $O(n \log n)$ [Bespamyatnikh 2001].
Applications: Watchman Route Problem:

Previous result — $O(n^4 \log n)$ [Tan, Hirata and Inagaki 99].

Fact: The optimal path visits the essential cuts in the order they appear along ∂P.
Summary of Results:

- Disjoint convex polygons:
 \[O(kn \log(n/k)) \] time, \(O(n) \) space to find \(\pi_k(t) \).

- Full combinatorial map: worst-case size \(\Theta((n - k)2^k) \)
 Output-sensitive algorithm; \(O(k + \log n) \)-time shortest path queries.

- TPP for nonconvex polygons: \(\text{NP-hard} \)
 FPTAS, as special case of 3D shortest paths.
Applications:

- Safari: $O(n^2 \log n)$ vs. $O(n^3)$
- Watchman: $O(n^3 \log n)$ vs. $O(n^4)$

 floating watchman: $O(n^4 \log n)$ vs. $O(n^5)$

We avoid use of complicated path “adjustments” arguments

- Parts cutting: $O(kn \log(n/k)$)
Unconstrained TPP: Disjoint Convex Polygons:

Given: s, t, sequence of disjoint convex polygons $\{P_1, \ldots, P_k\}$
Goal: Find a shortest k-path, $\pi_k(t)$ from $s = P_0$ to t.
Local Optimality Conditions: Assume that optimal path bounces from P_i.

Can bounce from an edge (incoming angle = bouncing angle) or bounce from a vertex.

Conclusion: If we know the orientations at which shortest paths edges leave the vertices of P_i, we know from which edge/vertex of P_i the last segment of $\pi_i(q)$ leaves P_i, (for every $q \in \mathbb{R}^2$).
Lemma: For any $t \in \mathbb{R}^2$ and any $i \in \{0, \ldots, k\}$, there exists a unique shortest i-path, $\pi_i(p)$, from $s = P_0$ to t.

Thus, local optimality is equivalent to global optimality.
General Approach: Build a Shortest Path Map:

SPM\(_k(s)\): a decomposition of the plane into cells according to the combinatorial type of a shortest \(k\)-path to \(t\)

Bad news: worst-case size can be huge:

Theorem: The worst-case complexity of SPM\(_k(s)\) is \(\Omega((n - k)2^k)\)
s

2^i

2^{i+1}
Good (?) news: worst-case size cannot be *bigger* than “huge”:

Theorem: The worst-case complexity of $SPM_k(s)$ is $O((n - k)2^k)$

Size m_i satisfies $m_i \leq 2m_{i-1} + O(|P_i|)$.

Output-sensitive algorithm to build SPM:

Theorem: One can compute $SPM_k(s)$ in time $O(k \cdot |SPM_k(s)|)$, after which a shortest k-path from s to a query point t can be computed in time $O(k + \log 2^n)$.
Some facts:

Lemma: In the TPP for disjoint convex polygons \(\{P_1, \ldots, P_k\} \), each first contact set \(T_i \) is a (connected) chain on \(\partial P_i \).

Lemma: For any \(p \in \mathbb{R}^2 \) and any \(i \), there is a unique point \(p' \in T_i \) such that \(\pi_i(p) = \pi_{i-1}(p') \cup \overline{pp'} \).
The Last Step Shortest Path Map:

S_i = the last step shortest path map, subdivision according to the **combinatorial type** of the last rays of shortest paths passing through points $p \in \mathbb{R}^2$

S_i decomposes the plane into cells σ of two types:

1. cones with an apex at a vertex v of T_i, whose bounding rays are reflection rays from v, and v is the source of cell σ

2. unbounded 3-sided regions associated with edge e of T_i, classified as *reflection cells* or *pass-through cells*. e is the source of cell σ
Using S_i to find a shortest i-path to query point q:

- cell σ rooted at vertex v of T_i

 \[\pi_i(q) \text{ is } \sigma \]

 recursively compute $\pi_{i-1}(v)$ (locate v in S_{i-1}, etc)

- cell σ rooted at edge e of T_i

 \[\pi_i(q) = \pi_{i-1}(q) \]

 so recursively compute shortest $(i - 1)$-path to q

- σ is pass-through: recursively compute shortest $(i - 1)$-path to q', the reflection of q wrt e
Using the Last Step Shortest Path Map:

Note that Locating q in S_i takes $O(\log |P_i|)$, hence:

Lemma: Given S_1, \ldots, S_i, $\pi_i(q)$ can be determined in time $O(k \log(n/k))$
Algorithm:

Construct each of the subdivisions S_1, S_2, \ldots, S_i iteratively:

For each vertex v_j of P_{i+1}, we compute $\pi_i(v_j)$.

- If this path arrives at v_j from the inside of P_{i+1}, then v_j is not a vertex of T_{i+1}.
- Otherwise it is, and the last segment of $\pi_i(v_j)$ determines the rays $r_{ib}^i(v_j)$ and $r_{is}^i(v_j)$ that define the subdivision S_{i+1}.

Theorem: For a given sequence $\{P_1, \ldots, P_k\}$ of k disjoint convex polygons having a total of n vertices, a data structure of size $O(n)$ can be constructed in time $O(kn \log(n/k))$ that enables shortest i-path queries to any query point q to be answered in time $O(i \log(n/k))$.
TPP on Nonconvex Polygons:

Proposition: The TPP in the L_1 metric is polynomially solvable (in $O(n^2)$ time and space) for arbitrary rectilinear polygons P_i and arbitrary fences F_i. The result lifts to any fixed dimension d if the regions P_i and the constraining regions F_i are orthohedral.

Theorem: The touring polygons problem (TPP) is NP-hard, for any L_p metric ($p \geq 1$), in the case of nonconvex polygons P_i, even in the unconstrained ($F_i = \mathbb{R}^2$) case with obstacles bounded by edges having angles 0, 45, or 90 degrees with respect to the x-axis.

Open Problem: What is the complexity of the TPP for disjoint non-convex simple polygons?