A Network Calculus for Multi-Hop Fading Channels

Hussein Al-Zubaidy
Jörg Liebeherr
Almut Burchard

University of Toronto
Intermediate nodes are store and forward relays
A fading channel is characterised by its channel capacity
Fading Channel Capacity

- Channel capacity [Shannon 1948]
 \[C(\gamma) = W \log(1 + \gamma) \]
- \(\gamma = \bar{\gamma}|h|^2 \) for fading channels
- Channel gain \(h \) is a complex r.v.

Q: How do fading channel properties affect multihop network performance?
Network Model

- Fluid-flow traffic, discrete time
- Arrival and service are independent
- I.i.d. cross traffic at each node
- Time-varying random service that is equal to the instantaneous channel capacity

\[C(\gamma_t) = W \log (g(\gamma_t)), \quad \gamma_t = \bar{\gamma}|h_t|^2 \]

- Computing this service distribution is hard!
Related Work: Multihop network performance analysis

- **Simplified channel models**
 - FSMC model [Wang and Moayeri 1995][Sadeghi et al 2008]
 - more than two states models may not be tractable
 - not easily extended to multihop networks
 - ON-OFF model
 - tractable but very simplified model
 - used in queuing theory [Ishizaki 2007], network calculus [Ciucu 2011], effective bandwidth [Hasan, Krunz, Matta 2004]

- **Effective capacity** [Wu and Negi 2003]
 - log-MGF of the channel capacity
 - tractable only for low SNR where $\log(1 + \gamma) \approx \gamma$

- **Physical layer models** [Hasna and Alouini 2003]
 - outage probability for AF wireless relay network
 - expression for MGF of end-to-end SNR
 - not suitable for network analysis
Network Calculus

- \((\min, +)\) dioid algebra
- Backlog: \(B(s) = A(0, s) - D(0, s)\)
- Delay: \(W(s) = \inf\{u \geq 0 : A(0, s) \leq D(0, s + u)\}\)

- Dynamic server [Chang 2000]
 \[D(0, t) \geq \inf_{u \leq t} \{A(0, u) + S(u, t)\}\]
 \[= A \ast S(0, t)\]

- Network service:
 \[S_{\text{net}}(\tau, t) = S_1 \ast S_2 \ast \cdots \ast S_N(\tau, t)\]
Bit domain

- Arrivals and departures are measured in bits
- For fading channels, service is given in terms of $\log(g(\gamma_t))$
- Distribution of S is not easy to work with
- Service in terms of $g(\gamma_t)$ rather than $\log(g(\gamma_t))$ – more tractable
- SNR service $S(\tau, t) = \prod_{i=\tau}^{t-1} g(\gamma_i)$ resides in the SNR domain
Service in terms of $g(\gamma_t)$ rather than $\log(g(\gamma_t))$ – more tractable

SNR service $S(\tau, t) = \prod_{i=\tau}^{t-1} g(\gamma_i)$ resides in the SNR domain
Our Approach

- SNR domain is governed by (min, ×) dioid algebra
- Network SNR server

\[S_{\text{net}}(\tau, t) = S_1 \otimes S_2 \otimes \cdots \otimes S_N(\tau, t) \]
Network Calculus

- Service: $S(\tau, t) = \prod_{i=\tau}^{t-1} g(\gamma_i)$
- Arrival: $A(\tau, t) = \prod_{i=\tau}^{t-1} e^{ai}$
- Departure: $D(0, t) \geq A \otimes S(\tau, t) = \inf_{\tau \leq u \leq t} \{ A(\tau, u) \cdot S(u, t) \}$
- Backlog: $B(t) = \log \left(\frac{A(0,t)}{D(0,t)} \right)$
- Delay: $W(t) = \inf \{ u \geq 0 : A(0, t) \leq D(0, t + u) \}$
Computation of $S_1 \otimes S_2$

- Mellin transform: $\mathcal{M}_X(s) = E[X^{s-1}]$
- For two independent servers
 \[
 \mathcal{M}_{S_1 \otimes S_2}(s, \tau, t) \leq \sum_{u=\tau}^{t} \mathcal{M}_{S_1}(s, \tau, u) \cdot \mathcal{M}_{S_2}(s, u, t)
 \]
- For N i.i.d. fading channels
 \[
 \mathcal{M}_{S_{\text{net}}}(s, \tau, t) \leq \binom{N - 1 + t - \tau}{t - \tau} \cdot (\mathcal{M}_{g(\gamma)}(s))^{t-\tau}, \quad \forall s < 1
 \]
- Moment bound: $\Pr(X \geq a) \leq a^{-s} \mathcal{M}_X(1 + s), \quad \forall a, s > 0$
Main Result: Statistical Performance Bounds

Define

\[M(s, \tau, t) = \min(\tau, t) \sum_{u=0}^{\min(\tau, t)} M_A(1 + s, u, t) \cdot M_S(1 - s, u, \tau) \]

- **Backlog:** \(Pr(B(t) > b^\varepsilon) \leq \varepsilon \), where

 \[b^\varepsilon = \inf_{s > 0} \left\{ \frac{1}{s} (\log M(s, t, t) - \log \varepsilon) \right\} \]

- **Delay:** \(Pr(W(t) > w^\varepsilon) \leq \varepsilon \), where

 \[\inf_{s > 0} \left\{ M(s, t + w^\varepsilon, t) \right\} \leq \varepsilon \]
Cascade of N i.i.d. Rayleigh Channels

- Service for Rayleigh channels
 - $g(\gamma) = 1 + \gamma = 1 + \bar{\gamma}|h|^2$
 - $|h| \sim \text{Rayleigh r.v.}$
 - For i.i.d. Rayleigh fading channel

 $M_S(s, \tau, t) = \left(e^{1/\bar{\gamma}\bar{\gamma}^{-1}} \Gamma(s, \bar{\gamma}^{-1}) \right)^{t-\tau}$

- Arrivals: $(\sigma(s), \rho(s))$ bounded arrivals [Chang 2000]

 $M_A(s, \tau, t) \leq e^{(s-1)\cdot(\rho(s-1)\cdot(t-\tau)+\sigma(s-1))}, \quad s > 1$

- This traffic class includes Markov-modulated processes, effective bandwidth, etc.
Performance Bounds of N Rayleigh Channels

Define:

$$V(s) \triangleq e^{s \rho(s)} e^{1/\bar{\gamma}} \bar{\gamma}^{-s} \Gamma(1 - s, \frac{1}{\bar{\gamma}})$$

- **BACKLOG**: $\Pr(B(t) > b_{\text{net}}^\varepsilon) \leq \varepsilon$, where

$$b_{\text{net}}^\varepsilon = \inf_{s > 0} \left\{ \sigma(s) - \frac{1}{s} (N \log(1 - V(s)) + \log \varepsilon) \right\}$$

- **DELAY**: $\Pr(W(t) > w^\varepsilon) \leq \varepsilon$, where

$$\inf_{s > 0} \left\{ \frac{e^{s(-\rho(s)w^\varepsilon + \sigma(s))}}{(1 - V(s))^N} \cdot \min \left\{ 1, (V(s))^{w^\varepsilon} (w^\varepsilon)^{N-1} \right\} \right\} \leq \varepsilon$$
Numerical Results for N Rayleigh Channels

Model parameters

- $\Delta t = 1$ ms
- $W = 20$ kHz
- (σ, ρ) bounded traffic
- $\sigma = 50$ kb
- $\rho = 0$ to 60 kbps
- $\bar{\gamma} = 0$ to 40 dB
- $N = 1$ to 100

We used deterministically bounded traffic, hence, the only source of randomness is the fading channel!
Backlog Bounds for N Rayleigh Channels

- $b^\varepsilon_{\text{net}}$ vs. $\bar{\gamma}$
 - $\rho = 30$ kbps
 - $\varepsilon = 10^{-4}$

- $b^\varepsilon_{\text{net}}$ vs. ρ
 - $\bar{\gamma} = 10$ dB
 - $\varepsilon = 10^{-4}$
Backlog and Delays

(i) $\varepsilon(b)$ vs. $\bar{\gamma}$
- buffer size = 400kb

Waterfall curves for loss probability

(ii) $\varepsilon(w)$ vs. $\bar{\gamma}$
- $N = 10$
- $\rho = 20$ kbps

Tighter delay bounds at higher SNR
Conclusions

- New approach to analyze cascade of fading channels
- Analysis in SNR domain using \((\min, \times)\) dioid algebra
- Use Mellin transform and moment bound to compute end-to-end bounds
- Application to cascade of i.i.d. Rayleigh channels
 - Explicit bounds in terms of the physical channel parameters
 - Bounds scale linearly in \(N\)
- \((\min, \times)\) dioid algebra has potential applications in models with time varying channel models
Thank you
Q & A
Delay bounds

(iii) $\varepsilon(w)$ vs. EtoE delay
- $\rho = 20$ kbps
- Effect of N on the violation prob. at low SNR is huge!

(iv) $w_{\text{net}}^\varepsilon$ vs. $\bar{\gamma}$
- $\rho = 30$ kbps
- $\varepsilon = 10^{-4}$
Fading Channels With Cross Traffic

- Leftover SNR service:
 \[S_o(\tau, t) = \frac{S(\tau, t)}{A_c(\tau, t)} \]

- Dynamic SNR server:
 \[M_{S_o}(s, \tau, t) = M_{S/A_c}(s, \tau, t) = M_S(s, \tau, t) \cdot M_{A_c}(2 - s, \tau, t) \]

- N-node:
 \[M_{S_{o,net}}(s, \tau, t) \leq e^{(1-s) \cdot N \sigma_c(1-s) \left(N - 1 + t - \tau \right)} \cdot \left(M_{g(\gamma)}(s) e^{(1-s) \cdot \rho_c(1-s)} \right)^{t-\tau}, \quad s < 1 \]
Bounds of Rayleigh Channels With Cross Traffic

1. End-to-end Backlog of the through flow

\[
b_{o,\text{net}}^\varepsilon(t) \leq \inf_{s>0} \left\{ \sigma_o(s) + N\sigma_c(s) - \frac{1}{s} \left[N \log (1 - V_o(s)) + \log \varepsilon \right] \right\}
\]

2. Delay bound, we estimate for \(w^\varepsilon \geq 0 \)

\[
\inf_{s>0} \left\{ \frac{e^{s(-\rho_o(s)w+\sigma_o(s)+N\sigma_c(s))}}{(1 - V_o(s))^N} \cdot \min \left\{ 1, (V_o(s))^{w^\varepsilon} (w^\varepsilon)^{N-1} \right\} \right\} \leq \varepsilon
\]

where,

\[
V_o(s) = e^{s(\rho_o(s)+\rho_c(s))} e^{s \gamma^{-1}} \Gamma(1 - s, \gamma^{-1})
\]
Numerical results

- $\varepsilon = 10^{-4}$
- $W = 20$ kHz
- $\Delta t = 1$ msec.
- (σ, ρ) bounded through and cross traffic
- $\sigma_o = \sigma_c = 50$ kb

(i) $b_{o,\text{net}}^\varepsilon$ vs. $\bar{\gamma}$
- $\rho_o = 30$ kbps

(ii) $b_{o,\text{net}}^\varepsilon$ vs. ρ_o
- $\bar{\gamma} = 10$ dB
L. Le and E. Hossain.
Tandem queue models with applications to QoS routing in multihop wireless networks.

L. Le, A. Nguyen, and E. Hossain.
A tandem queue model for performance analysis in multihop wireless networks.

N. Bisnik and A. A. Abouzeid.
Queuing network models for delay analysis of multihop wireless ad hoc networks.

F. Kelly.
Notes on effective bandwidths.

D. Wu and R. Negi.
Effective capacity: a wireless link model for support of quality of service.

C.-S. Chang.
Performance guarantees in communication networks.
Springer Verlag, 2000.

F. Ciucu.
Non-asymptotic capacity and delay analysis of mobile wireless networks.

M. Fidler.
An end-to-end probabilistic network calculus with moment generating functions.

Y. Jiang and Y. Liu.
Stochastic network calculus.
On the flow-level delay of a spatial multiplexing MIMO wireless channel.

G. Verticale.
A closed-form expression for queuing delay in Rayleigh fading channels using stochastic network calculus.

G. Verticale and P. Giacomazzi.
An analytical expression for service curves of fading channels.

D. Wu and R. Negi.
Effective capacity: a wireless link model for support of quality of service.