Computer Networks 55 (2011) 636-649

2 |

Contents lists available at ScienceDirect
mtt' ter
Computer Networks L",.h.»,}”"

journal homepage: www.elsevier.com/locate/comnet

Identifying BGP routing table transfers

Pei-chun Cheng**, Beichuan Zhang®, Daniel Massey ¢, Lixia Zhang ?

2 Department of Computer Science, University of California at Los Angeles, CA 90095, United States
b Department of Computer Science, University of Arizona, AZ 85721, United States
€ Department of Computer Science, Colorardo State University, CO 80523, United States

ARTICLE INFO

ABSTRACT

Article history:

Received 21 February 2010

Received in revised form 19 July 2010
Accepted 7 September 2010

Available online 17 September 2010
Responsible Editor: T. Korkmaz

Keywords:

BGP

Session reset

Routing table transfer

BGP routing updates collected by monitoring projects such as RouteViews and RIPE have
been a vital source to our understanding of the global routing system. However the col-
lected BGP data contains both the updates generated by actual route changes, and the
updates of BGP routing table transfers resulted from BGP session resets between opera-
tional routers and the data collection stations. Since the latter is caused by measurement
artifact, it is important to accurately separate out the latter from the former. In this paper,
we present the design and evaluation of the minimum collection time (MCT) algorithm.
Given a BGP update stream, MCT can identify the start and duration of each routing table
transfer in the stream with high accuracy. We evaluated MCT performance by using three
months of BGP data from all RIPE collectors. Our results show that out of the total 1664 BGP
resets with 166 monitors, MCT can identify BGP routing table transfers with over 95%
accuracy, and pinpoint the exact starting time of the detected table transfers in 83% of such
cases. Accurate detection of BGP table transfers enables users to separate out real BGP
routing changes and measurement artifacts, and can be used to measure and diagnose
the BGP session failures.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Internet exchange point and set up single-hop BGP ses-
sions to collect BGP data, or may be far away from the

The Border Gateway Protocol (BGP) [2] is the de facto in-
ter-domain routing protocol on the Internet. Numerous
projects use BGP update data collected by Oregon Route-
Views [3] and RIPE RIS [4], the two best known BGP mon-
itoring projects, to monitor Internet routing, diagnose
routing problems, and evaluate improvements to BGP.
RouteViews and RIPE RIS deploy a number of data collec-
tors around the world. These collectors establish BGP peer-
ing sessions with routers in many operational networks.
They receive and log BGP routing updates from their oper-
ational peers, which we call monitors. As shown in Fig. 1, a
data collector may co-locate with monitors in the same

* Corresponding author. Tel.: +1 3107950801.
E-mail addresses: pccheng@cs.ucla.edu (P.-c. Cheng), bzhang@cs.
uarizona.edu (B. Zhang), massey@cs.colostate.edu (D. Massey), lixia@
cs.ucla.edu (L. Zhang).

1389-1286/$ - see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.comnet.2010.09.002

monitors and establish multi-hop BGP sessions to collect
the data. In both cases, a data collector is configured to
be a passive listener which receives all BGP updates from
its peers but does not announce any routing information
itself.

Generally speaking, BGP updates can be divided into
two categories, table transfer updates and incremental up-
dates. When a BGP peering session is established, a router
advertises to the new peer all the routes that are currently
in its routing table and match its export policy. We call
these updates table transfer updates. After the initial table
transfer, the router sends out incremental route changes
only, which we call incremental updates.

In BGP data analysis it is important to be able to distin-
guish these two types of updates. For example, suppose on
a typical day a BGP collector usually records a few tens of
thousands of BGP updates, but one day it logs well over a

http://dx.doi.org/10.1016/j.comnet.2010.09.002
mailto:pccheng@cs.ucla.edu
mailto:bzhang@cs.uarizona.edu
mailto:bzhang@cs.uarizona.edu
mailto:massey@cs.colostate.edu
mailto:lixia@cs.ucla.edu
mailto:lixia@cs.ucla.edu
http://dx.doi.org/10.1016/j.comnet.2010.09.002
http://www.sciencedirect.com/science/journal/13891286
http://www.elsevier.com/locate/comnet

P.-c. Cheng et al./ Computer Networks 55 (2011) 636-649 637

Internet

Single-hop
X BGP Session

Multi-hop
BGP Session

Data Collector

Fig. 1. BGP monitoring.

p3 p1 p2 p1p2 p3p4p5 p3
10 14 17 2122 232425 30 time
j s(10)=15
fe— s(14)=11 ——»|
je— 5(17)=8 —>|
fe-s(21)=4»
I s(22)

Fig. 2. Update stream and collection time.

few hundreds of thousands of BGP updates. The implica-
tion of such a ten-fold increase in daily update counts
heavily depends on whether the updates are mainly due
to table transfers or incremental changes. At the time of
this writing, a typical full BGP routing table today contains
over 330,000 routes, thus a single BGP session reset be-
tween a collector and a monitor results in over 300,000 up-
dates. If the observed ten-fold increase in data logs is due
to table transfers, it may suggest the need to improve the
stability of peering session with the monitors, because fail-
ures of monitoring sessions not only lead to the overhead
of session re-establishment on the monitors, but more
importantly they can result in missing BGP updates during
the session downtime. On the other hand, If the update
jump is the result of large spikes of incremental updates,
it indicates high dynamics in the global routing system
that one needs to pay close attention immediately.

The exact impacts of such data ambiguity on the re-
search results depend on the nature of individual research
problem. For example, missed updates during the session
downtime may not necessarily affect the results of infer-
ring the Internet topology over a long period of time. How-
ever, for analyzing routing dynamics, the results may be
highly questionable if the downtime is correlated with
routing dynamics. Worse yet, mixing table transfer up-
dates with incremental updates can lead to wrong conclu-
sions. In [5], by observing the large update surges at BGP
collectors during worm attacks, Cowie et al. conjectured
that worm attacks caused BGP routing instability. However
Wang et al. [6] showed later that the observed update
surges were mostly due to table transfer updates resulted
from the monitoring session resets, and the global routing
system did not show significant instability during the
worm attack. Had the table transfer updates been identi-
fied, the misinterpretation would have been avoided.

Unfortunately, despite the importance to distinguish ta-
ble transfer and incremental updates, there has been no

effective and efficient way to accurately identify table
transfers in BGP data. RouteViews data collectors do not
log session reset information; RIPE data collectors only
have information on when a BGP session reset occurs,
but not when a table transfer finishes. Therefore, many re-
search works simply ignore table transfers as [5] did. For
those that do attempt to clean up BGP data before use,
the methods are developed discretionarily to meet their
specific needs [7,8], but may not suite for other projects.

In this paper, we present the minimum collection time
(MCT) algorithm that can detect the start and duration of
table transfers from a stream of BGP updates with high
accuracy. MCT works with all BGP data regardless of
whether data collectors log or do not log session reset
information. Our goal is to provide a general tool that can
accurately differentiate the monitoring artifacts from the
operational updates, so that all researchers can make in-
formed decisions regarding monitoring session failures
and/or how to treat table transfer updates. Depending on
their specific goals, researchers may decide to simply live
with the noisy data if the goal is AS-level topology mea-
surement, remove all table transfer updates if the goal is
to measure routing dynamics, or even avoid any time per-
iod with BGP session failures if the work has stringent
requirement on data completeness since there can be
missed updates during session downtime.

To evaluate MCT’s effectiveness, we utilize the fact that
RIPE collectors log session resets and applied MCT to three
months of BGP data collected by all RIPE peers, and com-
pared the MCT results against the collector logs. Our re-
sults show that MCT can identify routing table transfers
with over 95% accuracy, and can pinpoint the exact starts
of table transfers in 83% of these cases. Furthermore,
MCT can identify the end of table transfers, an important
piece of information which has not been available previ-
ously. We have made available at nhttp://bgpre-
set.cs.arizona.edu/ the MCT source code and the list
of detected session resets in RouteViews and RIPE data,
so that BGP data users can easily identify table transfer up-
dates and take corresponding measures.

The remainder of this paper is organized as follows. Sec-
tion 2 presents the basic intuition behind the MCT design
and describes the algorithm. Section 3 verifies the detec-
tion results against software logs and session state mes-
sages, and then applies MCT to RouteViews data.
Section 4 discusses possible applications based on the
detection results. Section 5 compares MCT with previous
approaches, and Section 6 concludes the paper.

2. The minimum collection time algorithm

In this section, we first introduce the intuition behind
the basic minimum collection time algorithm, and then ad-
dresses a few practical issues in processing real BGP data.

2.1. MCT basic approach

Given a stream of BGP updates, our objective is to detect
the existence of all table transfers that may have occurred
in the update stream. If a transfer does occur, we want to

http://bgpreset.cs.arizona.edu/
http://bgpreset.cs.arizona.edu/

638 P.-c. Cheng et al./ Computer Networks 55 (2011) 636-649

identify its starting time (i.e., timestamp of the first update
of the table transfer) and its duration (i.e., how long it takes
to finish the transfer). In [6], Wang et al. use session state
messages in RIPE data to identify the start of a BGP session
re-establishment and thus the beginning of a table trans-
fer, but this method does not tell the duration of a table
transfer. Moreover, RouteViews data do not even include
BGP state messages. The MCT algorithm aims to identify
session resets using only BGP update messages, so that it
can be applied to both RIPE and RouteViews data.

The main characteristic of a table transfer is that, in the
update stream, all the prefixes in the routing table appear
within a short period of time. Fig. 3 shows the number of
prefixes contained in update messages in 30-s bins based
on one-months update from a router. One can notice the
interesting spikes which indicate the potential occurrence
of table transfers. In [8], Andersen et al. propose a heuristic
method to remove table transfer updates by discarding up-
date spikes. However, although one can easily identify up-
date spikes, it is difficult to pin down their exact starting
and ending times. Besides, it is unclear how to tell spikes
that correspond to table transfers versus those caused by
routing dynamics. In order to automatically and accurately
identify table transfers, we developed the following
approach.

Assume a stream of updates is received from an estab-
lished BGP session as shown in Fig. 2, and also assume that
the entire routing table consists of routes to five prefixes
only, p1, p2, p3, p4, and p5. The updates at time 10, 14,
and 17 are incremental updates announcing a change in
the route to prefix p3, pl, and p2, respectively. A table
transfer happens at time 21 and ends at time 25, during
this period the routes to all five prefixes are announced.
The resulting updates are table transfer updates and this
table transfer lasts 25 — 21 = 4 s. The update at time 30 is
an incremental update again.

For an update received at time t, we define its collection
time, s(t), as the time it takes to see the announcements for
all prefixes. For example, consider the update for p3 that ar-
rives at time 10. Starting at time 10, it takes until time 25
for all five (unique) prefixes to be announced, and thus
s(10)=25-10=15. Similarly, s(14)=25-14=11,
s(17) = 8, and s(21) = 4. For updates arriving later than time
21, there is no time for which all five prefixes have ap-
peared in updates, i.e., s(t)=occ. As updates occur closer
to the beginning of the table transfer, s(t) decreases stea-

30000 T T

25000 1

20000 1

15000 1

10000 | 1

Number of Prefixes

5000 ‘
mir

AL\J AT iedbabl L\LLJ |

0 n
0 1e+06 2e+06
30-second bins

Fig. 3. Number of prefixes in every 30s.

8000

7000
6000
5000 |
4000
3000
2000

Collection time s(t) (second)

1000

0

375000 380000
Time t (second)

Fig. 4. Sample s(t) ~ t.

dily until reaching a minimum value at s(21) = 4. Note that
the table transfer begins at time t=21 and lasts exactly
s(21)=4s. After this minimum value, s(t) steadily
increases.

In general, we expect a trend of decreasing s(t) as the
update under consideration approaches the start of a table
transfer and increasing s(t) as we move past the start of a
table transfer. Calculated from real data, Fig. 4 illustrates
the trend of s(t) versus t.! Based on this observation, we de-
vise the following basic algorithm to detect table transfers
given a stream of updates:

(1) For each update, calculate its collection time, s(t).

(2) Find all local minima of s(t).

(3) Each local minimum is considered a table transfer.
Its time t is the starting time of a table transfer,
and its collection time s(t) is the duration of the
transfer.

If s(t) monotonically decreases prior to the beginning of
a table transfer and then monotonically increases after
passing the beginning of a table transfer as shown in
Fig. 4, then the basic algorithm works perfectly. In BGP
data that we have processed, majority of the time this is
the case. However, sometimes the monotonicity does not
hold depending on the timing and order of which updates
are received. In the following, we introduce some simple
tune-ups to adapt the basic algorithm to handle the vaga-
ries of real BGP data.

2.2. Practical tune-ups

The basic minimum collection time approach needs to
be adjusted to address a few issues that arise in real BGP
data, which is the focus of this section.

2.2.1. Reducing computation load

Incremental updates that are not part of any table
transfer can have very long collection times (e.g., on the or-
der of many hours or days). Recall that we are looking for
minimum s(t) values and these minimum values corre-
spond to table transfer durations. Computing very large
s(t) values requires certain computational cycles but serves

1 The upper limit of 7200 s on s(t) is explained in the next section.

P.-c. Cheng et al./ Computer Networks 55 (2011) 636-649 639

very little purpose if we are certain that these values can-
not be a minimum.

To reduce computation load, we put an upper bound U
on the maximum s(t) value. Once s(t) reaches this upper
bound, we are certain the update under consideration can-
not be part of a table transfer and we set its s(t) to U. In our
implementation, we set U=7200s (i.e., 2 h). That is, for
any s(t)> 7200 s, we set it to 7200 s. Since we are looking
for the minimum of s(t), the value of U does not affect
the result, as long as it is larger than any whole table trans-
fer duration. It is very unlikely that any table transfer will
last up to 2 h. From our experiments, we observed that
over 95% of table transfers were completed in 600 s (i.e.,
10 min). Therefore, the 7200 s upper bound seems a rea-
sonable choice. Note that the use of U is simply a compu-
tational convenience. If no safe estimate of the maximum
table transfer duration can be inferred, we can simply set
U to infinity.

2.2.2. Expected table size

In calculating collection times, the basic approach as-
sumes that the set of prefixes to be announced in the table
transfer is known in advance. We can collect this set of pre-
fixes by observing updates sent by the router. A typical
full-feed router from RIPE or RouteViews announces routes
to over 330,000 prefixes at the time of this writing. How-
ever this is not a static set. For example, suppose the BGP
session between the router R1 and R2 goes down. During
the session downtime, R2’s route to prefix p is withdrawn
by one of its other neighbors. When the session between
R1 and R2 is re-established, R2 will send its current routing
table to R1, but prefix p will not be part of this transfer.
Thus, the table transferred after the session re-establish-
ment may not have exactly the same size as the one before
the session breakdown. Therefore we cannot simply expect
all the prefixes observed so far when calculating the collec-
tion time. However, we expect that most of the prefixes
will still be present in the table transfer. The number of un-
ique prefixes needed to constitute a full table is a parame-
ter denoted as N. If N is too high, we may miss some table
transfers; if N is too low, we may falsely classify a surge of
incremental updates as a table transfer.

To derive a reasonable setting of N, we process one year
RIPE data in 2008. By utilizing the fact that RIPE collectors
log session resets, we calculate the table transfer ratio as
the routing table size before the reset divided by the table
size after the reset. For total 5772 recorded session resets,
Fig. 7 shows the cumulative distribution (CDF) of table
transfer ratio, We observe that the ratio is very close to 1
for the majority of session resets. Since prefixes might be
withdrawn or announced during the session downtime,
there are cases in which the ratio is slightly lower or higher
than 1. Based on Fig. 7, we choose N =0.99 as the default
threshold, which is low enough to include most real ses-
sion resets, but still high enough to exclude false positives.
There are also 10% cases whose ratio is low (i.e., less than
95%). This is due to partial table transfers, where a BGP ses-
sion goes down again before an on-going table transfer
completes. We discuss partial table transfers in Sec-
tion 2.2.4. Last, note that this algorithm does not require
routers to export a full BGP routing table. The minimum

collection time is calculated with respect to each router’s
individual table size.

2.2.3. Dealing with trend noise

The basic MCT approach assumes that the collection
time s(t) decreases monotonically prior to the beginning
of a table transfer, and then increases monotonically after
passing the beginning of a table transfer. However, some-
times this monotonicity can be violated. For example, sup-
pose the update stream in Fig. 2 is modified slightly as
shown in Fig. 5. We again assume the full routing table
consists of prefixes p1, p2, p3, p4 and p5. The resulting
s(t) values are now s(10)=14, s(14)=10, s(15)=12,
s(21) =6, s(22) = co. In this case, s(t) still follows a decreas-
ing trend as we approach the table transfer at time 21, but
there is a slight increase between the updates at time 14
and 15. Thus the basic MCT approach will find two local
minima, one at time 14, and one at time 21, although only
the latter corresponds to a real table transfer.

One may notice that the falsely perceived table transfer
at time 14 and the actual table transfer at time 21 have an
interesting relation. The falsely perceived table transfer
starts at time 14 and ends at time 14 +s(14)=14+
10 =24 (see Fig. 5). This conflicts with the second local min-
imum, which says a table transfer starts at time 21. In
other words, a table transfer is starting at the same time
when another table transfer is still in progress. Given two
local minima s(t;) and s(t,) of the collection times, we
say they are conflicting if t; + s(t;) > t,. In the event of such
a conflict, the shorter transfer time is taken to be the real
table transfer. In our example, there is a conflict between
s(14) and s(21). Since s(21) <s(14), we discard s(14) and
keep s(21) as the real table transfer.

More formally, assume we have computed s(t) for all
updates and have found all local minima in the resulting
s(t) values. We then check for and resolve conflicts as
follows.

(1) Set t,, to the first local minimum.

(2) Check all other local minima. If there is another local
minimum at t, which conflicts with the local mini-
mum at t,,, and s(t) < s(t;,), discard this local mini-
mum tp,.

(3) Otherwise, report that a table transfer starts at t,
and lasts s(t,;;) seconds.

(4) Set t,, to the next local minimum, repeat step 2, until
all local minima have been either reported as table
transfers or discarded.

p3 p5p2 p1p2 p3p4 p5 p3
10 1415 21222324 27 30 time
I s(10)=14

|
le—— s(14)=10 —>|

fe— s(15)=12
|<—s(21)=6::]

j— s(22) ———»

Fig. 5. Trend noise and conflicting transfers.

640 P.-c. Cheng et al./ Computer Networks 55 (2011) 636-649

8000

7000
6000
5000
4000
3000
2000

Collection time s(t) (second)

1000

0 . L
25000 30000 35000
Time t (second)

Fig. 6. Multiple table transfers.

2.2.4. Multiple table transfers

In the event that multiple table transfers occur close to
each other in time, as long as one table transfer completes
before another one starts, MCT can still correctly identify
each of them. Fig. 6 shows an example from real BGP data
where four table transfers happened within 35 min (from
32,900 to 34,500 s), and they are correctly identified by
four local minima in s(t).

A table transfer may not necessarily completes before
another one starts. Suppose a BGP session goes down be-
fore an on-going table transfer completes. When the ses-
sion is up again, a new table transfer will start. In this
case, we will see two local minima in the collection time,
s(t;) for the partial transfer and s(t;) for the complete
transfer. These two will conflict with each other,
t1 +5(t1) > t, since the partial transfer’s collection time
must extend into the complete transfer in order to include
all prefixes. This is the same characteristic of trend noise,
and we handle it by the same technique of choosing the
one with shorter collection time as a true table transfer.
Thus, MCT can correctly identify complete table transfers
even in the presence of multiple partial table transfers
close in time. In addition, note that for updates within a
partial table transfers, their measured collection times
would be similar and form a plateau. As the result, our tool
could also mark these potential partial table transfers to-
gether with the detected complete table transfers.

100

9 1
80 1
70+ 1
60 1
50 1
40t 1
30+ 1

Cumulative Percentage (%)

20 | R

0.95 0.96 0.97 0.98 0.99 1 1.01
Table Transfer Ratio

Fig. 7. Table transfer ratio.

ts th t ty te time
— s(ts) ——>
fe—s(ty) ——
fe—s(t) ———

Fig. 8. Bottom searching.

2.2.5. Bottom searching

The basic algorithm assumes that a local minimum s(t;,)
(after removing trend noises and partial transfers) corre-
sponds to the start of a full table transfer. As a result of
imprecise estimate of expected table size, t,;, may not be
the exact starting time, and the true starting time could
be earlier than t,,. As illustrated in Fig. 8, the table transfer
starts at ts and ends at tz. But s(ts) ends earlier at t,, be-
cause we have already seen 99% of the table. A similar early
end occurs for s(tp) and s(t;). These collection times, s(ts),
s(to), and s(t;), will have similar values, and all appear at
the bottom of the valley in s(t) ~ t plot. Depending on the
timing of updates, any one of the three can potentially be
the local minimum, but only s(ts) is the true start of the ta-
ble transfer.

To accommodate this situation, we apply a bottom
searching threshold, E. After finding the minimum collection
time s(t,;) and identifying the potential start t,, and end ¢,
of table transfer, we look backward in time starting from t,,
to include more updates into the table transfer until there
is a gap of more than E seconds between the next earlier
update. Where we stop will be regarded as the true start
of the table transfer. Similarly, to find the true end of the
table transfer, we look forward in time starting from ¢, to
include more updates into the table transfer until there is
a gap of more than E seconds between the next later up-
date, and where we stop will be the true end of the table
transfer. From our experience of real data, the true start
ts is usually only a few seconds before t,, when t;s itself is
not the detected local minimum. When ts is the actual de-
tected local minimum, our bottom searching would not
find a false start, since right before the table transfer there
must be a relatively large time gap with no update in it.

The gaps before table transfers are due to the fact that,
in BGP, there exist timers to regulate the consecutive ses-
sion establishments: ConnectRetryTimer and IdleHold-
Time, during which the BGP connections are held in
silence to suppress unstable sessions. The default value
of these timers are vendor specific, but the suggested value
are in the order of tens of seconds. In this work, we conser-
vatively choose E depending on the inter-arrival time of
updates within table transfers. From our data, we found
that over 99% of updates (11,160,383 cases) in a table
transfer are associated with zero inter-arrival time, which
means most updates are sent together in the same second.?
This confirms the bursty nature of table transfers. For the 1%
of non-zero inter-arrival times (31,336 cases), Fig. 9 shows

2 The time granularity of RIPE/RouteViews’ BGP data is 1. Therefore,

zero inter-arrival time means the elapsed time between two BGP messages
is less than 1.

P.-c. Cheng et al./ Computer Networks 55 (2011) 636-649 641

100000
10000 |
1000 - X
€
3 X % X
© o0} X
X
X
10|
X X x
8x X
X XK X X X
1 R DRI R8¢
1 10 100

Update Inter-arrival Time (seconds)

Fig. 9. Non-zero inter-arrival time of table transfer updates.

the distribution of inter-arrival times. We choose E=10s,
which is effective in our experiments to locate the more pre-
cise start and end of a table transfer. Note that the setting of
E gap does not affect the accuracy of identifying table trans-
fers, but incrementally fine-tune the estimated transfer
start-time and end-time.

2.3. Summary of the algorithm

After applying the tune-ups mentioned above, the final
MCT algorithm and can be summarized as follows.

(1) Calculate collection time s(t) for all updates. Use
U=7200s as the upper limit of s(t), and use
N = 99% of the last known table size as the expected
table size.

(2) Find all local minima of s(t).

(3) Resolve conflicts, which can be caused by trend
noises or incomplete table transfers.

(4) For each local minimum, search for the true start and
end of the table transfer using bottom searching
threshold E=10s.

3. Evaluation

In this section, MCT is verified with two reference data
sources provided by RIPE: Quagga software log and BGP
state messages. We then apply MCT to RouteViews data.
Since RouteViews does not store such additional informa-
tion, MCT provides the first practical way to accurately
identify table transfers in RouteViews data.

3.1. Verification with Quagga software logs

Quagga routing software suite [9] is used by RIPE and
RouteViews as the main platform for data collectors. The
Quagga process log records the start, termination, and
operational status of the collector daemon. Since 2002,
RIPE started to archive the Quagga process log, which can
be used as one data source to verify MCT detection result.

One challenge is that, Quagga does not explicit record
each BGP session reset; rather, it records each individual

70 ——

Mis-matched Table Transfers Il
eol Detected Table Transfer w/ Inferred Resets

50} I i
|

40t i

Count

30 R

201 R

12 3 4 5 6 7 8 9 10 11 12 13 14
Peer ID

Fig. 10. Table transfers and implicit resets, RRC00, October-December
2008.

TCP connection attempt. For example, if the collector
establishes a BGP session with a monitor after two failed
TCP connection attempts, three TCP connection attempts
would be recorded in the Quagga log instead of one BGP
session reset. Since exactly one TCP connection can be
maintained for a BGP session at any given time [10], any
observed TCP connection attempt indicates that there has
been a BGP session failure. Thus, we infer session resets
by grouping consecutive TCP connection attempts that
happened within a short period of time, and compare these
inferred session resets with those detected by MCT. We use
three recent months of RIPE RRCO0 data, from October
2008 to December 2008, which includes update streams
from 14 different IPv4 peers.>

In this three months RRCOO data, we have 265 cases
that the detected table transfers match the inferred session
resets. There are 13 cases where MCT detects a table trans-
fer but there is no inferred session resets. Fig. 10 shows the
counts over different peers. Overall most detected table
transfers (95%) match corresponding inferred session re-
sets. Out of the 14 peers, 9 peers have the perfect match,
3 peers has one mismatch case, 1 peer has 2 mismatch
cases, and only 1 peer has 8 mismatch cases. Due to the
lack of detail session information in Quagga log, it is infea-
sible to identify the cause of mismatches. In the following
section, we further make use of BGP state messages, which
explicitly record the occurrence of session resets, and serve
as a more reliable data source for evaluating MCT.

3.2. Verification with session state messages

In addition to regular BGP updates, RIPE also logs BGP
session state messages, which record BGP session break-
down and re-establishment. Since a session reset would
trigger a table transfer, we use MCT to detect table trans-
fers, and compare the results with session establishment
messages. The same three months period, October-Decem-
ber 2008, is used for verification. We calculates the routing
table size for each day, and uses 99% of this value as the
expected table size for the entire day. RIPE archives the

3 This study does not include IPv6 peers.

642 P.-c. Cheng et al./ Computer Networks 55 (2011) 636-649

routing tables every 8 h, and RouteViews does it every 2 h.
We could re-calculate the expected table size every 8 or
2 h, but it does not make much difference to the final
results.

In the three months data, we detect 265 cases that the
detected table transfers match the session establishment
messages. These confirmed cases are referred as verified ta-
ble transfers/resets (V) in the following sections. Also, there
are 13 cases where MCT detects a table transfer but finds
no session establishment message, and 40 cases that have
a session establishment message but no table transfer is
detected, referred as mismatched table transfers (mT) and
mismatched session resets (mR), respectively.

To quantify MCT’s performance, we define correctness
and effectiveness as follows.

e Correctness:
Fraction of detected table transfers that can be matched
with a logged session resets, calculated by %

o Effectiveness:
Fraction of logged session resets that can be matched
with a detected table transfer, calculated by %z

From the three months of RRCO0 data, MCT is able to
achieve 95% correctness and 87% of effectiveness from the
three months of data. Fig. 11 shows the detection result for
each peer. Most mismatches were contributed by two partic-
ular peers, which might be caused by peers’ specific behav-
iors or events. In the following sections, we investigate in
detail the mismatched table transfers and session resets.

3.2.1. MCT correctness

For detected table transfers without corresponding ses-
sion establishment messages, they could be due to missing
session state messages or “soft reset”. First, though session
state messages are generated locally by the collector, its
logging may not be precise due to the presence of a soft-
ware bug [9]. In our data, we found evidence of missing
session state messages. For example, one session went
through two consecutive session establishment processes
without a session breakdown message in between. Second,
“Soft reset” [11] can be used by router operators to signal

70——————— —_—

Mis-matched Resets (mR) Il

Mis-matched Table Transfers (mT) Il

60r Verified Table Transfers/Resets (V) 1

50 I . 1

+— 40]
c
>
[e]

O 301 m - 1

20} - 1

10F B F = - F 1

1. 2 3 4 5 6 7 8 9 10 11 12 13 14
Peer ID

Fig. 11. Table transfers and session resets, RRCO0, October-December
2008.

changes after router reconfiguration. After a change such
as a change in routing policy, the router may re-announce
the entire table without resetting the BGP session. Finally,
it is possible that the BGP peer may suffer from connection
stability issues with all its upstream peers and, after some
unfortunate failures, the router may lose and then re-learn
(and hence re-announce) almost all of its routing table. In
this study, only the last scenario results in the false posi-
tives of MCT.

To further verify whether the 13 mismatched table
transfers are indeed false positives, two additional metrics
are defined. First, "duplicate ratio” is defined as the similar-
ity between detected table transfers and known routing ta-
bles. This is based on the fact that a routing table and its
derived table transfer updates would not only include the
same number of prefixes, but also the route information
for each prefix shall be identical. In this evaluation, for a
mismatched table transfer, we calculate its duplicate ratio
by comparing its route (i.e., AS Path) to each prefix with a
logged routing table.* In other word, 95% duplicate ratio
indicates that the routes to 95% of the prefixes are identical
in the detected table transfer and the known routing table.

Moreover, “sequencing ratio” is defined as the extent that
prefixes are received following the similar order in detected
table transfers and verified table transfers. This is based on
our observation that, depending on the implementation,
BGP routers may send table transfer updates following a
particular order, which could be persistent within a short
period of time. For example, Quagga organizes routing ta-
bles with a prefix-based tree structure and generates table
transfer updates by traversing the RIB tree in postorder [9].
In this case, if two table transfers occur close in time, and
there are no significant changes to the routing table tree,
the updates received during these two table transfers shall
follow the similar prefix ordering. Therefore, we can con-
firm a mismatched table transfer by comparing its prefix
ordering with the ordering of a verified table transfer. Note
that in real BGP data, we could not always locate two near-
by mismatched and verified table transfers; there are al-
ways a few minutes to days of time offset in between. As
the result, instead of directly comparing the ordering of
two entire table transfers, we randomly sample 100 prefix
sequences from the mismatched table transfer (200 pre-
fixes per sequence), and check if we could find such se-
quences in a verified table transfer using the longest
common sequence algorithm [12]. The sequencing ratio is
calculated by the length of common sequences divided by
the size of sample sequence (i.e., 200).

Fig. 12 shows the duplicate ratio and average sequenc-
ing ratio for each of 13 mismatches. There are 10 cases that
the duplicate ratio ranges from 85% to 99% and the
sequencing ratio ranges from 45% to 83%. These cases are
very likely caused by missing session state messages or
“soft reset”, since compared with a verified table transfer,
these mismatched table transfers not only carry the com-
parable number of prefixes with same route information,
but also follow a similar prefix ordering.

4 To be consistent with MCT, we use the first known routing table at the
beginning of each day.

P.-c. Cheng et al./ Computer Networks 55 (2011) 636-649 643

‘ Duﬁlicaté Rafio -
Sequencing Ratio

Percentage(%)

1 2 3 4 5 6 7 8 9 10 11 12 13
Case ID

Fig. 12. Mismatched table transfers, RRC00, October-December 2008.

There are 2 cases that have both low duplicate and
sequencing ratio, which indicate that the monitored router
loses and re-announces almost all prefixes of its routing ta-
ble with new transient routes.

This is possible when the monitored router solely select
one particular peer as the nexthop for all prefixes. Thus,
when the session between such peer fails, the monitored
router needs to change it routing decision and send a large
amount of routing updates. This situation is relatively rare
for the RouteViews and RIPE projects, since a monitored
router typically has tens of peering routers, and choose
multiple peers as the nexthop routers instead of just one.
In our evaluation, there exists 2 out of 278 cases (0.7%) be-
long to this situation. These cases however represent the
true false positives of MCT, since for better computational
efficiency, MCT detects table transfers by counting the re-
ceived number of prefixes, but not keeping track of routes
to each prefix. In the future work, we are extending this
idea to detect these table transfers in the operational
networks.

Last, there is one interesting case that has 99% duplicate
ratio but only 19% sequencing ratio, in which the table
transfer carry exactly the same routes in a routing table
but with quite different order. By further investigation,
we found that this might be caused by particular imple-
mentation of one peer (91.103.24.1), which does not send
table transfer updates in persistent order; even two nearby
consecutive table transfers reveal two different prefix
ordering. We suspect that such peer had employed some
specific data structure or RIB traversing technique, such
as parallelism, to improve performance, which also intro-
duces randomness in the prefix ordering.

3.2.2. MCT effectiveness

The 40 resets with no detected table transfers could be
due to the fact that, not all session resets lead to complete
table transfers. During persistent failures, BGP session may
fail multiple times before it could finish sending the whole
routing table. Fig. 13 shows one such example from real
BGP data. There are four consecutive session resets fol-
lowed by 33681, 65, 148, and 107133 announced prefixes.
In the first three cases, the table transfer could not com-
plete since the session went down again. Only the last
one completed a table transfer, which is correctly identi-

8000
7000 “\% b
6000 |- 1

5000

T
n

4000

T
n

3000

T
n

2000

T
n

Collection time s(t) (second)

T

session reset K 1
x collection time K,

924000 927000 930000
Time t (second)

1000

Fig. 13. Multiple incomplete table transfers.

fied by MCT. We define the three incomplete table trans-
fers as partial table transfers. Moreover, note that in this
paper, we conservatively choose 99% of estimated table size
at the beginning of each day as the threshold to detect ta-
ble transfers. If the transient table size shrinks significantly
within one day, it is still possible that MCT fails to identify
such complete but smaller table transfers.

Fig. 14 shows the number of prefixes received for each
mismatched reset, calculated by the number of prefixes re-
ceived following these session resets, compared to the size
of known complete routing tables. Most mismatches are
due to partial table transfers since the number of prefixes re-
ceived is less than 80% of a complete routing table. There are
two ambiguous cases which cover 95% and 97% of prefixes.

We manually examine these two cases and confirm that
they are also caused by partial table transfers. In these two
cases, the update message stream stopped suddenly and
remained silent for 90 s, which triggered another BGP ses-
sion reset. This indicates that a transient network failures
or congestion happened just before the BGP session can
complete 99% of the table transfer, and thus cannot be de-
tected by the MCT algorithm. Fig. 15 shows the session
downtime that follows these partial table transfers. (Note
that the same ID in these two figures, and other figures
in this section does not correspond to the same case.) Most
partial table transfers were terminated promptly by 90 s
session downtime, which is the default holddown timeout
for Juniper routers, implying that these table transfers
ended prematurely with a BGP timeout. In addition, some
BGP sessions were reset pro-actively by monitors, instead
of waiting for BGP timeouts, which might be caused by
malformed or corrupted BGP messages [10]. This explains

100
90r
80
7071 ><><><
60 X
501 x
401
301 X
201

10t
0 XXXXxxXXXXxXX

X

XX
XXXX

><><><><><><

Size of partial table transfer
compared with full table size (%)

0 10 20 30 40
ID (sorted by size of partial table transfer)

Fig. 14. Partial table transfer size.

644

P.-c. Cheng et al./ Computer Networks 55 (2011) 636-649

180f

Session downtime(sec)

901

X
><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><>< 4
X

X

10 20 30 20

100
90
80
70
60
50
40
30
20
10

0

Percentage of RIB(%)

OOCOOPORHIIHIIIOOOOOOOOOOOOOONNK

X

X

X
X

X
X

0 10 20 30

40

ID (sorted by session downtime)

Fig. 15. Session downtime following partial table transfer.

the few cases whose session downtime is extremely short
in Fig. 15.

3.2.3. Accuracy of table transfer start time

For the detected start time of table transfer, we quantify
the accuracy for the 265 cases that have both resets re-
corded and table transfer detected. We take the first routing
update message after session establishment as the real start
of a table transfer, as opposed to the session establishment
message itself. We then compare this real start with the
one our method finds. The difference between these two
is called “offset”, and is measured in terms of number of
seconds and number of updates. Out of the 265 cases,
221 (83%) cases have offsets of zero second, i.e., our method
finds the exact starting point of the table transfer with no
error.

For the 43 cases with non-zero offset, Fig. 16 shows their
time offset and Fig. 17 shows the number of prefixes (in the
percentage of routing table size) sent within this time offset.
For most of the cases the offset is small. For example, in 23
cases, MCT misses the real start by less than 30 s, and in 27
cases we miss the real start by less than 1% of routing table
size. Note that these small offsets around or less than 1% are
expected. As discussed in the previous section, since MCT
calculates the expected table size by 99% of last known rout-
ing table size, the true start of table transfer might be 1% off-
set from the MCT detected table transfer. Depending on the
actual trend noise in real BGP data, the bottom search tech-
nique may not fully compensate such offsets.

We also found a few cases to have large offsets. The
largest time offset is 871 s but it has only small percentage
of routing table sent (0.82%) within this offset, which
means there are few large gaps between the updates with-

1000
800 X
600 »

400 [
X

Offset in seconds

50K
200 X

X
W HOOOX

0 cx><>o<x><><><><><><><>o<>o<x><><><
0 10 20 30 40
ID (sorted by time offset)

Fig. 16. Non-zero time offset.

ID (sorted by percentage of RIB within time offset)

Fig. 17. Percentage of routing table sent within non-zero time offset.

in this period, which might be caused by transient network
congestions. There are four extreme cases with very large
number of prefixes, 28%, 35%, 37%, 45%, respectively. After
careful inspection we found evidence of imprecise session
state logs and we suspect that there were in fact two quick
session resets and a missing state message for the second
reset.

3.2.4. Verifying MCT with more collectors

We have verified and investigated the MCT detection
results by using RIPE RRCOO data. In this section, we extend
the evaluation for all other RIPE collectors. Based on the
detail understanding of mismatched cases in the previous
section, we filter out cases that are caused by partial table
transfers and missing session messages to focus on the per-
formance of MCT algorithm.

Table 1 lists the verification result for all RIPE collectors
during October-December 2008, except 4 collectors,
RRCO02, RRCO8, RRC0O9, RRC16, which did not archive BGP
data during these three months. Depending on the number
of peers, MCT detected different number of table transfers,
ranging from tens to hundreds of transfers per collector.
The results show that MCT is able to achieve over 95% of
correctness and effectiveness for most collectors, while
the MCT correctness for RRCO7 is around 80%. This is
caused by a specific peer (194.68.123.76) which kept
announcing most of its prefixes repeatedly in November
20 and November 30. We verified that these announced
prefixes are associated with different routes, which indi-
cates that such session was suffering from connectivity
problem with its upstream peers and kept lose and re-
learn its routing table. Overall MCT detected full routing
table transfers triggered by session resets with both over
95% correctness and effectiveness.

3.3. Applying to RouteViews data

The RouteViews project has collected valuable BGP data
for a number of years, however the routing updates do not
contain session state messages. We applied MCT similarity
on three months of data starting October-December 2008
collected from the Oregon collector of RouteViews.

There are totally 325 table transfers detected in these
three months for 40 peers. For each individual peer,
Fig. 18 shows the number of table transfers, and Fig. 19
shows the percentage of table transfer updates in the total

P.-c. Cheng et al./ Computer Networks 55 (2011) 636-649 645

Table 1
Verification result using state messages.

Collector Type Location Number of peers Verified table transfers Correctness (%) Effectiveness (%)
RRCO0 Multi-hop Amsterdam 14 265 99.3 100.0
RRCO1 Single-hop London 30 223 100.0 97.4
RRC02 Single-hop Paris - - - -
RRCO3 Single-hop Amsterdam 31 415 99.0 100.0
RRC04 Single-hop Geneva 3 5 100.0 100.0
RRCO5 Single-hop Vienna 12 84 94.4 93.3
RRCO6 Single-hop Otemachi 1 4 100.0 80.0
RRCO7 Single-hop Stockholm 6 45 80.4 100.0
RRCO8 Single-hop San Jose - - - -
RRC09 Single-hop Zurich - - - -
RRC10 Single-hop Milan 7 36 100.0 100.0
RRC11 Single-hop New York 12 32 100.0 100.0
RRC12 Single-hop Frankfurt 21 310 100.0 99.0
RRC13 Single-hop Moscow 13 185 954 98.9
RRC14 Single-hop Palo Alto 13 47 100.0 100.0
RRC15 Single-hop Sao Paulo 3 13 100.0 100.0
RRC16 Single-hop Miami - - - -
25 0.3 -
> Number of Table Transfers Ratio of Table Transfers Updates
0.25¢
20
0.2
™ £
3 533 0.15
© 10 o
5 0.05}
0 0

5 10 15 20 25 30 35 40
Peer ID

Fig. 18. Number of table transfer.

number of updates. We observed that the majority of peers
had less than 10 table transfers during the three months
period, while a few peers had more frequent table transfers
than others. In addition, the ratio of table transfer updates
ranges from 2% to 20% and the ratio is proportional to the
number of table transfers as expected. RouteViews users
may need to differentiate table transfers and incremental
updates since the number of table transfer updates is sig-
nificant enough to impact their BGP analysis. Without
requiring additional software logs or state messages, MCT
provides the first practical way to accurately identify table
transfers.

Preceding each detected table transfer, we further mea-
sure the session downtime which indicates that how soon
a BGP instance could recover a failed session. For example,
if there are transient network failures during which no BGP
messages were received, it might take 90 s> to timeout the
failed session [10] and a few seconds to re-establish a BGP
session, which may lead to hundreds of seconds of session
downtime.

However, since there are no explicit logs on when the
BGP session failed, we estimate the session downtime by
calculating the elapsed time between the last seen BGP up-
date and the beginning of table transfer.

5 Depending on BGP implementation and configuration.

5 10 15 20 25 30 35 40
Peer ID

Fig. 19. Ratio of table transfer updates.

Fig. 20 shows the cumulative distribution of estimated
session downtime. We observed that around 30% of session
downtime is shorter than 202 s, while 50% and 90% of ses-
sion downtime is shorter than 829 and 3432 s, respec-
tively. There are also extreme cases that session
downtime is even longer than 2 h, which left significant
gaps in the stored BGP data.

CDF (%)

40 -

20 -

. . .
1 10 100 1000 10000
Session Downtime (sec)

Fig. 20. Session downtime.

646 P.-c. Cheng et al./ Computer Networks 55 (2011) 636-649

It is important for users of BGP data to be aware of such
large session downtime as well as the corresponding table
transfers. The collector will miss valuable BGP routing up-
dates during the downtime; and when the session comes
back up, there will be a large number of extra updates
due to the initial transfer of the entire routing table. If
one does not take data deficiency into consideration, the
results from analyzing the data may very well be
questionable.

4. MCT applications

In this section, we present three applications stemmed
from the results of identifying table transfers.

4.1. Clean collected BGP data

BGP routing data collected by RouteViews and RIPE RIS
have become an essential asset to both the network re-
search and operation communities. However, the BGP
monitoring session failures have introduced noisy artifacts
such as missing update messages as well as duplicate up-
dates during session re-establishment, making analysis re-
sults derived from such data inaccurate at best.
Unfortunately, since there have been no records of these
session failures, data users have to sanitize the data
according to their individual needs. Our MCT tool helps
correctly identify the table transfers, including their occur-
rence as well as the start and end time of table transfers.

Depending on the specific types of study, users may de-
cide to live with the noisy data, if their works focus more
on static BGP properties, such as inferring the Internet
topology over a long period of time. On the contrary, users
could clean up the table transfers from the update stream.
More specifically, the pure duplicates introduced by the ta-
ble transfer shall be discarded while the withdrawn and
newly announced prefixes during the session failures
should be restored. By investigating the difference be-
tween the routing table before and after the detected ses-
sion reset, one can infer the missing announcements and
withdrawals during the downtime.

Admittedly, such inference could not perfectly restore
the actual receiving time or ordering of updates. In addi-
tion, as described in Section 2.2.4, there exist cases that a
BGP session might experience a severe network problem,
and a number of full and partial tables would be observed
consecutively in a short period of time. In these cases, pre-
cisely cleaning the BGP data becomes more difficult. As
RIPE and RouteViews provide routing table snapshots
which record the correct routing state periodically. If users
are strict on the data deficiency, they are suggested to skip
the period of detected noisy data between two snapshots,
or may rather use data from other stable monitored peers.
Note that such noise avoidance is made possible only after
MCT first detects the existence of table transfers.

The MCT implementation is available online. In addi-
tion, for the public available RouteViews and RIPE BGP
data, we further provide our identification results for all
historical BGP data. Without additional processing over-
head, researchers can utilize our detection results to clean

the public BGP data. To our best knowledge, MCT has been
used in various works to clean up BGP table transfers [13-
17].

4.2. Diagnose monitoring sessions

Since BGP monitoring sessions only passively receive
BGP updates from the monitored routers, they tend to have
simple configuration and low workload, and are expected
to be stable and long lived. In [18], we have conducted a
longitudinal study using the RouteViews and RIPE data
over eight years. We use the MCT tool to detect table trans-
fers and session resets. The detected table transfers are also
verified with the session state messages for the RIPE data.
In this section, we briefly summarize our findings of two
data collectors, RRCOO and OREG, from RIPE and Route-
Views, respectively.

First, frequent session resets are observed across all the
monitors and collectors, regardless of the age of the collec-
tor, or its location. Fig. 21 shows the cumulative distribu-
tion of the number of resets per monitor-month. For both
OREG and RRCO00, 10-20% monitor-months do not have
any reset, while the 50-percentile is 3 resets, and the 90-
percentile is 12-15 resets per session-month. The worst
case at OREG is a monitor that had 117 resets in one
month, while one of the RRCO0 peers had alarming 4205
resets in one month. These cases were likely caused by
hardware problems or misconfigurations that made the
sessions up and down constantly before they were fixed.

When a monitoring session fails, the observed session
downtime usually ranges from one or a few minutes to a
few tens of minutes, during which routing updates will
not be received from the peer. Fig. 22 shows the cumula-
tive distribution of session downtimes, we observe that
the majority of session downtimes are within 10 min, but
some cases are much longer. For example, at OREG the ses-
sion downtime has a 25-percentiles at 1 min, 50-percen-
tiles at 6 min, and 90-percentiles at 48 min. There are
cases in which the session downtimes are more than
10 days. While Users can easily spot very long session
downtimes (e.g., days) and take precautions accordingly
in their data processing, the majority of the session down-
times are within 10 min. Without knowing the existence of
session resets, it is difficult for the BGP data users to iden-
tify these short durations of quiet periods as data missing
and take proper measures.

100

90 -

_ 80 L

c &

g 70

8 60

2 50

S

§ 30
20 RRCO0 =% 1
10 OREG ~@- 4

1 10 100 1000
Number of Session Resets (session-month)

Fig. 21. Number of resets per session-month.

P.-c. Cheng et al./ Computer Networks 55 (2011) 636-649 647

100

Cumulative Percent

20 RRCO00 % |
OREG -

0 20 40 60 80 100 120
Session Downtime (Minutes)

Fig. 22. Session downtime.

Furthermore, we often observed failures that happen to
multiple peer sessions on the same collector around the
same time, suggesting that the collector’s local problems
are the cause for the session instability. Verifying with
the collector logs, Table 2 shows the number of detected
collector-restarts along with the number of session resets
triggered by these restarts. We can see that 14% and 37%
of session resets are caused by collector-restarts for the
RRCOO and OREG collector, respectively. The problem is
more pronounced for OREG which has many peers. As col-
lectors’ local problems are a major contributor to session
failures, it is important for the monitoring projects to im-
prove the stability of the collector, including its network
connectivity, software and hardware, in order to reduce
monitoring session failures.

Note that in [18], we use MCT specifically to understand
the public monitoring session failures. To our knowledge,
network operators often archive private BGP data over
time, applying the MCT tool to such operational data could
help understand and improve the internal routing
performance.

4.3. Understand slow table transfers

In the previous section, we briefly describe the charac-
teristics of monitoring session resets, which help reveal
that a significant number of session resets are caused by
collectors’ local problems. In addition, understanding the
table transfers are as well important, as transmitting and
processing large volume of table transfer updates impose
severe stress on the routing operations.

One interesting question is how fast (or slow) are the
table transfers, since it has long been speculated by the
network operators that table transfers are slow. Fig. 23
shows the cumulative distribution of table transfer dura-
tion collected from our longitudinal study [18] over
8 years. For RRCOO0, over 90% of all table transfers finish
within around 5 min, while table transfers at OREG tend
to take longer time to finish, with 50-percentile at
4.5 min and 90-percentile at 14 min.

Table 2
Session resets on collector restarts.

Collector Number of restarts Number of session resets (%)
RRCOO 105 1154 (14%)
OREG 178 6370 (37%)

100

80 :
-
/ s
Vs
6"
60 A

<
[}
<4
& 4

s
2 4
© rd
S 40
g /
© H

rrc00 == |
oreg "
0 d 1
5 10 15 20 25 30

Duration of Table Transfer (Minutes)

Fig. 23. Table transfer time.

Surprisingly, we found that such prolonged table trans-
fer time is not correlated with the routing table size, and is
much slower compared to the link bandwidth, which sug-
gests the existence of other limiting factors in the router
implementation. Recently in [14], Houidi et al. has discov-
ered in control experiments that slow table transfers are
largely caused by commercial routers’ timer-driven pro-
cessing in sending bulk BGP updates, which particularly
introduce many idle gaps within BGP table transfers. More
following experiments and studies are necessary to verify
that the slow table transfers of actual monitoring sessions
are caused by this particular decision of the router
implementation.

5. Related work

Prior works that used BGP updates has highlighted the
need to clean the BGP data to differentiate table transfers
from incremental updates and fall into two classes.

In the first class, rather than identifying table transfers,
researchers propose data cleaning methods specific to their
works. The method employed in [7] removes all duplicate
announcements from the update stream. Based on the fact
that a reset of BGP session triggers a complete table trans-
fer and since the session downtime is usually short com-
pared with routing changes, BGP updates sent after
session re-establishment should consist primarily of dupli-
cate announcements. However, with our three-month RIPE
data set, Fig. 24 shows that duplicate announcements are
not solely produced by table transfers. The percentage of
duplicate announcements due to other factors is generally
small, but could be significant for some peers (e.g. peer 3).
Eliminating all duplicate announcements removes both ta-
ble transfer updates and updates due to other factors,
which could be necessary in studying routing dynamics.
Although this shortcoming does not affect the result in
[7], it limits the applicability of this method as a general
approach to deal with table transfers in BGP logs.

The method in [8] makes use of a aforementioned
observation that updates due to table transfers occur in
bursts. This method splits the update stream into 30-s bins
and discards any bin that contains more than 1000

648 P.-c. Cheng et al./ Computer Networks 55 (2011) 636-649

4e+07 ———
Total
Duplicates
Table transfer duplicates s
@ 3e+07¢
©
°
Q
)
5 2e+07}
o}
Qo
€
Z 1e+07} I)
0 m l l |
3 456 7 8 910111213
Peer ID

Fig. 24. Duplicate discard.

prefixes, regarding them as part of table transfers. In
Fig. 25, we plot the number of valid updates that this
method discards, and table transfer updates this method
misses using the three-month RIPE data set. It is clear that
this method does not miss many table transfer updates,
but it falsely discards a significant number of legitimate
updates. This could be due the conservative default thresh-
old (1000 prefixes in 30 s). Lower the bin-based threshold
may reduce the false positives (valid updates discarded)
but inevitably increase the false negatives (invalid updates
considered).

One problem of these methods is that they are devel-
oped based on specific data cleaning needs, which may
not be applicable to other research works. For example in
[10], Rexford et al. study the path change for popular pre-
fixes, thus simply removing duplicate updates fits their
need. But it could not work for researches which do need
the duplicates to investigate their causes [13] or under-
stand the route MED oscillations [19].

The second class of prior works, including this paper,
propose to detect explicitly BGP session resets or table
transfers. In [20], Wang et al. uses session state messages
in BGP logs to identify the start of a session re-establish-
ment and thus the beginning of a table transfer. However,
RouteViews logs, which have many years of valuable data,
do not contain such state messages. Maennel and Feld-
mann [21] presents a bin-based heuristic to detect session
resets in the Internet, not limited to BGP sessions between
the monitor and its peers. Wu et al. [22] presents a heuris-
tic to detect session resets between a network’s border
routers and their external peers. Their scheme takes into
account a majority of routes shifting from one neighbor
to another, in a small interval of time as an indication of
session reset or restoration. Both these approaches present
heuristics for inferring session resets, but do not directly

4e+07

Total
Valid updates discarded
Invalid updates considered mmm

3e+07 1

2e+07}

Number of Updates

1e+07 1

12345678910111213
Peer ID

Fig. 25. Bin-based discard.

address all the issues arising with session resets between
monitoring points and its direct peers.

The work reported in [23] may be considered most rel-
evant to ours. While our tool focuses on accurately identi-
fying table transfers embedded in the update traces, Flayel
et al. intend to provide a more general framework, Clean-
BGP, which detects various inconsistency in the collected
BGP RIBs and updates, including not only the table trans-
fers, but also update re-ordering, missing updates, etc.
However, with respect to detecting table transfers, the
authors still resort to the heuristic bin-based approach
which we have shown to be imprecise in general. It is pos-
sible that CleanBGP incorporates our MCT algorithm for
much more accurate detection.

Last, in addition to the research community’s efforts on
separating out the monitoring artifacts for more reliable
research results, the industry has also recognized the neg-
ative effect of operational session resets. In [24], Sanli et al.
describe a mechanism, Graceful Restart, which allows a BGP
speaker to preserve forwarding state during session reset,
and uses an End-of-RIB marker to indicate the completion
of the following table transfer. Note that Graceful Restart
does not eliminate table transfers: it mainly improves the
forwarding plane performance by using the stale (while
valid) routing entries. After successful session re-establish-
ments, the routers still require to exchange the whole rout-
ing table to replace the preserved state. The End-of-RIB
marker, though, really helps the identification of table
transfer as it explicitly indicates the end of transfer. Never-
theless, as valuable BGP data without such marker has al-
ready been archived over a decade, our tool provides a
practical and efficient way to sanitize the existing histori-
cal data.

6. Conclusion

In this paper, we presented the design of the minimum
collection time (MCT) algorithm that can identify the start
and duration of BGP routing table transfers resulted from
BGP session resets from a stream of BGP updates with high
accuracy. We evaluated MCT performance by applying it to
three months of BGP data from all RIPE collectors. Our re-
sults show that MCT can identify routing table transfers
across heterogeneous monitoring sessions with over 95%
accuracy, and in 83% of the cases it can pinpoint the exact
start without any error.

MCT efficiently locates table transfers by tracking the
collection time for prefixes, without relying on the avail-
ability of BGP session logging information. Therefore, it
can work with all BGP data, and is particularly useful in
processing RouteViews BGP update logs which do not con-
tain session state messages.

Based on the detected table transfers, we are able to
estimate and identify failures with long session downtime.
These failures negatively impact the quality of BGP logs as
they result in missing BGP updates during session down-
time as well as superfluous updates during the following
table transfer. MCT is the first practical tool for users to fil-
ter out these problems before interpreting and drawing
conclusions from BGP data obtained from RouteViews or

P.-c. Cheng et al./ Computer Networks 55 (2011) 636-649 649

RIPE collectors, and can also be used to detect and diagnose
BGP session failures. The MCT source code is publicly avail-
able at nttp://bgpreset.cs.arizona.edu/ [18]. To our
best knowledge, MCT has been used in various works to
clean up BGP table transfers [13-17].

Acknowledgements

A previous version of this manuscript appeared in SIG-
COMM’05 Mining the Network Data (Minet) Workshop [1].
This work was partially supported by the US National
Science Foundation under Contract No. CNS-0721859,
CNS-0721863 and DHS Grant N66001-08-C-2028.

References

[1] B. Zhang, V. Kambhampati, M. Lad, D. Massey, L. Zhang, Identifying
BGP routing table transfers, in: MineNet’05: Proceedings of the 2005
ACM SIGCOMM Workshop on Mining Network Data, ACM, New York,
NY, USA, 2005, pp. 213-218. <http://doi.acm.org/10.1145/
1080173.1080188>.

[2] Y. Rekhter, T. Li, S. Hares, Border Gateway Protocol 4, RFC 4271,
Internet Engineering Task Force, 2006.

[3] The RouteViews Project. <http://www.routeviews.org/>.

[4] RIPE Routing Information Service. <http://www.ripe.net/projects/ris/>.

[5] J. Cowie, A. Ogielski, B. Premore, Y. Yuan, Global Routing Instabilities
Triggered by Code Red II and Nimda Worm Attacks, Renesys
Corporation, Hanover, New Hampshire, USA, 2001. Available from:
<http://www.renesys.com/projects/papers/
renesys_bgp_instabilities2001.pdf>.

[6] L. Wang, X. Zhao, D. Pei, R. Bush, D. Massey, A. Mankin, S.F. Wu, L.
Zhang, Observation and analysis of BGP behavior under stress, in:
IMW’02: Proceedings of the Second ACM SIGCOMM Workshop on
Internet Measurement, ACM, New York, NY, USA, 2002, pp. 183-195.

<http://doi.acm.org/10.1145/637201.637231>.

[7]]. Rexford, J. Wang, Z. Xiao, Y. Zhang, BGP routing stability of popular
destinations, in: ACM SIGCOMM Internet Measurement Workshop
(IMW), 2002.

[8] D. Andersen, N. Feamster, S. Bauer, H. Balakrishnan, Topology
inference from BGP routing dynamics, in: ACM SIGCOMM Internet
Measurement Workshop (IMW), 2002.

[9] Quagga Software Routing Suite. <http://www.quagga.net/>.

[10] Y. Rekhter, T. Li, S. Hares, A Border Gateway Protocol 4 (BGP-4), RFC
4271 (Draft Standard). <http://www.ietf.org/rfc/rfc4271.txt>, 2006.

[11] Cisco Documentation: Configuring BGP, 2003.

[12] J.W. Hunt, T.G. Szymanski, A fast algorithm for computing longest
common subsequences, Commun. ACM 20 (5) (1977) 350-353.
<http://doi.acm.org/10.1145/359581.359603>.

[13] J. Park, D. Jen, M. Lad, S. Amante, D. McPherson, L. Zhang,
Investigating occurrence of duplicate updates in BGP
announcements, in: Passive and Active Measurement, Springer,
2010, pp. 11-20.

[14] Z.B. Houidi, M. Meulle, R. Teixeira, Understanding slow BGP routing
table transfers, in: IMC 2009, 2009.

[15] Y. Zhu,]. Rexford, S. Sen, A. Shaikh, Impact of prefix-match changes
on IP reachability, in: Proceedings of the 9th ACM SIGCOMM
Conference on Internet Measurement Conference, ACM, 2009, pp.
235-241.

[16] R. Oliveira, B. Zhang, D. Pei, L. Zhang, Quantifying path exploration in
the internet, IEEE/ACM Trans. Netw. (TON) 17 (2) (2009) 445-458.

[17] A. Elmokashfi, A. Kvalbein, C. Dovrolis, BGP churn evolution: a
perspective from the core, in: INFOCOM’10: Proceedings of the 29th
Conference on Information Communications, IEEE Press, Piscataway,
NJ, USA, 2010, pp. 1208-1216.

[18] P.-c. Cheng, X. Zhao, B. Zhang, L. Zhang, Longitudinal study of BGP
monitor session failures, SIGCOMM Comput. Commun. Rev. 40 (2)
(2010) 34-42. <http://doi.acm.org/10.1145/1764873.1764879>.

[19] T. Griffin, G. Wilfong, Analysis of the MED Oscillation Problem in
BGP.

[20] L. Wang, X. Zhao, D. Pei, R. Bush, D. Massey, A. Mankin, S.F. Wu, L.
Zhang, Observation and analysis of BGP behavior under stress, in:
ACM SIGCOMM Internet Measurement Workshop (IMW), 2002.

[21] O. Maennel, A. Feldmann, Realistic BGP traffic for test labs, in:
Proceedings of ACM SIGCOMM, 2002.

[22] J. Wu, Z.M. Mao, . Rexford,]. Wang, Finding a needle in a haystack:
pinpointing significant BGP routing changes in an IP network, in:
Symposium on Networked System Design and Implementation
(NSDI), 2005.

[23] A. Flavel, O. Maennel, B. Chiera, M. Roughan, N. Bean, CleanBGP:
verifying the consistency of BGP data, in: Internet Network
Management Workshop 2008, 2008.

[24] S.Sangli, E. Chen, R. Fernando, J. Scudder, Y. Rekhter, Graceful Restart
Mechanism for BGP, RFC 4724 (Proposed Standard). <http://
www.ietf.org/rfc/rfc4724.txt>, 2007.

Pei-chun Cheng has been pursuing the PhD in
Computer Science at University of California,
Los Angeles, since 2007. He received his B.S.
and M.S. degress from National Taiwan Uni-
versity in 2000 and 2002.

Beichuan Zhang is an assistant professor in
the Department of Computer Science at the
University of Arizona. His research interests
include Internet routing and topology, multi-
cast, network measurement, and security. He
received PhD in Computer Science from the
University of California, Los Angeles in 2003
and B.S. from Beijing University, China in
1995.

Dan Massey is an associate professor at
Computer Science Department of Colorado
State University. Dr. Massey received his
doctorate from UCLA and is a senior member
of the IEEE, IEEE Communications Society, and
IEEE Computer Society. His research interests
include protocol design and security for large
scale network infrastructures, and he is cur-
rently the principal investigator on research
projects investigating techniques for improv-
ing the Internet’s naming and routing infra-
structures. He is a co-editor of the DNSSEC
standard (RFC 4033, 4034, and 4035).

Lixia Zhang received her PhD in Computer
Science from the Massachusetts Institute of
Technology. She was a member of the
research staff at the Xerox Palo Alto Research
Center before joining the faculty of UCLA’s
Computer Science Department in 1995. In the
past she has served as the vice chair of ACM
SIGCOMM, Co-Chair of IEEE Communication
Society Internet Technical Committee, and on
the editorial board for the IEEE/ACM Trans-
actions on Networking. She also served on the
Internet Architecture Board.

http://bgpreset.cs.arizona.edu/
http://doi.acm.org/10.1145/1080173.1080188
http://doi.acm.org/10.1145/1080173.1080188
http://www.routeviews.org/
http://www.ripe.net/projects/ris/
http://www.renesys.com/projects/papers/renesys_bgp_instabilities2001.pdf
http://www.renesys.com/projects/papers/renesys_bgp_instabilities2001.pdf
http://doi.acm.org/10.1145/637201.637231
http://www.quagga.net/
http://www.ietf.org/rfc/rfc4271.txt
http://doi.acm.org/10.1145/359581.359603
http://doi.acm.org/10.1145/1764873.1764879
http://www.ietf.org/rfc/rfc4724.txt
http://www.ietf.org/rfc/rfc4724.txt

	Identifying BGP routing table transfers
	Introduction
	The minimum collection time algorithm
	MCT basic approach
	Practical tune-ups
	Reducing computation load
	Expected table size
	Dealing with trend noise
	Multiple table transfers
	Bottom searching

	Summary of the algorithm

	Evaluation
	Verification with Quagga software logs
	Verification with session state messages
	MCT correctness
	MCT effectiveness
	Accuracy of table transfer start time
	Verifying MCT with more collectors

	Applying to RouteViews data

	MCT applications
	Clean collected BGP data
	Diagnose monitoring sessions
	Understand slow table transfers

	Related work
	Conclusion
	Acknowledgements
	References

