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Abstract—As datasets increase radically in size, highly scalable
algorithms leveraging modern distributed infrastructures need
to be developed for detecting outliers in massive datasets. In
this work, we present the first distributed distance-based outlier
detection approach using the MapReduce-based infrastructure,
called DOD. DOD features a single-pass execution framework
that minimizes communication overhead. Furthermore, DOD
overturns two fundamental assumptions widely adopted in the
distributed analytics literature, namely cardinality-based load
balancing and one algorithm for all data. The multi-tactic strategy
of DOD achieves a truly balanced workload by taking into account
the data characteristics in data partitioning and assigns most
appropriate algorithm for each partition based on our theoretical
cost models established for distinct classes of detection algorithms.
Thus, DOD effectively minimizes the end-to-end execution time.
Our experimental study confirms the efficiency of DOD and its
scalability to terabytes of data, beating the baseline solutions by
a factor of 20x.

I. INTRODUCTION

Motivation. Outlier detection is recognized as an important
data mining method [1]. It concerns the discovery of abnormal
phenomena that may exist in the data, namely data values
that deviate significantly from the common trends in the data
[2]. Outlier detection is critical in many applications ranging
from credit fraud prevention, network intrusion detection, stock
investment tactical planning, to disastrous weather forecasting.
For such mission-critical applications, the anomalies (outliers)
must be detected efficiently and in a timely manner. Even a
short time delay may lead to losses of huge funds, investment
opportunities, or even human lives.

Distance-based outlier detection [3], one of the most pop-
ular outlier detection techniques, has been widely adopted in
many applications [1]. In the seminal distance-based outlier
definition, also called distance-threshold outlier [3], a data
point p is considered to be an outlier if it has very few neigh-
bors within a certain distance range. Despite this simplicity,
state-of-the-art centralized algorithms [3]–[5] that realize this
popular outlier semantics can no longer satisfy the stringent
response time requirements of emerging big data applications,
especially now that the data itself is inherently becoming more
distributed. Therefore, the development of highly distributed
solutions for distance-based outlier detection is no longer an
option, but a necessity.

Numerous Map-Reduce [6] style distributed computing
platforms from Hadoop [7], Spark [8] to Hadapt [9] have
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become prevalent in recent years. This is due to their desirable
features including scalability to thousands of machines, flexi-
bility in the data model, efficient fault tolerant execution, and
cost effectiveness as open-source technologies. Nevertheless,
despite the importance of outlier detection and the popularity
of these compute infrastructures, no work has been proposed to
date to leverage their power in developing an efficient distance-
based outlier detection solution.

State-of-the-Art. No MapReduce-based distributed algo-
rithm has been designed to date for supporting this popular
distance-based outlier semantics [3]. Some distributed tech-
niques focus on distinct outlier detection semantics such as
kNN-based outliers [10]. Furthermore, they utilize a message-
passing distributed system, e.g., [11]–[13]. These specific
purpose architectures suffer from heavy centralized and bot-
tlenecked computations before the distribution across the slave
nodes [13], and/or require strict synchronization and exchange
of data among the slave nodes [11], [12] — which limits the
effectiveness of the distribution strategies. As demonstrated by
their experiments [11]–[13], these techniques cannot process
datasets larger than 10G − and thus clearly are not being able
to meet the rising requirements of this big data era.

Unlike these systems, the modern shared-nothing infras-
tructures neither assume centralized processing in any stage
nor require synchronization between the worker nodes. There-
fore, a MapReduce-based outlier detection solution would have
the potential to achieve higher scalability and better efficiency
than prior limited infrastructures. Plus, use of these widely
adopted open-source compute paradigms to solve our proposed
detection problem will assure broader adoption as well as the
possible transfer of our proposed strategies to tackle other data
analytics problems beyond outliers.

Moreover, a common limitation in all prior work [11]–
[13] is that they apply one single outlier detection algorithm
to all compute nodes. This simplistic “monolithic” detection
approach is based on the implicit assumption that one central
detection algorithm is superior to all other algorithms for all
types of datasets. However, we observe that although a number
of centralized algorithms have been proposed to speed up
the outlier detection process, e.g., [3]–[5], none has shown
consistent superiority in all circumstances. This is confirmed
both by our theoretical analysis as well as by our empirical
study in Sec. IV. Instead, their performance strongly varies
depending on the characteristics of the dataset being processed.
As we will demonstrate, such misguided assumption overlooks
the well-known fact that real world datasets tend to be skewed
[1]. Therefore instead distinct algorithms should be assigned
to different data partitions to minimize the overall costs of the

2017 IEEE 33rd International Conference on Data Engineering

2375-026X/17 $31.00 © 2017 IEEE

DOI 10.1109/ICDE.2017.143

961

2017 IEEE 33rd International Conference on Data Engineering

2375-026X/17 $31.00 © 2017 IEEE

DOI 10.1109/ICDE.2017.143

961

2017 IEEE 33rd International Conference on Data Engineering

2375-026X/17 $31.00 © 2017 IEEE

DOI 10.1109/ICDE.2017.143

961

2017 IEEE 33rd International Conference on Data Engineering

2375-026X/17 $31.00 © 2017 IEEE

DOI 10.1109/ICDE.2017.143

947

2017 IEEE 33rd International Conference on Data Engineering

2375-026X/17 $31.00 © 2017 IEEE

DOI 10.1109/ICDE.2017.143

947

2017 IEEE 33rd International Conference on Data Engineering

2375-026X/17 $31.00 © 2017 IEEE

DOI 10.1109/ICDE.2017.143

947

2017 IEEE 33rd International Conference on Data Engineering

2375-026X/17 $31.00 © 2017 IEEE

DOI 10.1109/ICDE.2017.143

947

2017 IEEE 33rd International Conference on Data Engineering

2375-026X/17 $31.00 © 2017 IEEE

DOI 10.1109/ICDE.2017.143

947

2017 IEEE 33rd International Conference on Data Engineering

2375-026X/17 $31.00 © 2017 IEEE

DOI 10.1109/ICDE.2017.143

947

2017 IEEE 33rd International Conference on Data Engineering

2375-026X/17 $31.00 © 2017 IEEE

DOI 10.1109/ICDE.2017.143

959

2017 IEEE 33rd International Conference on Data Engineering

2375-026X/17 $31.00 © 2017 IEEE

DOI 10.1109/ICDE.2017.143

959

2017 IEEE 33rd International Conference on Data Engineering

2375-026X/17 $31.00 © 2017 IEEE

DOI 10.1109/ICDE.2017.143

959



distributed outlier detection process.

In this work, we target the design and development of
a scalable MapReduce-based outlier detection technique that
overcomes aforementioned limitations while minimizing the
end-to-end execution time.

Challenges. The design of an efficient distributed outlier
detection approach is challenging. First, we must develop an
effective partitioning strategy. Intuitively, a random partition-
ing solution would spread the neighbors of one data point into
possibly many compute nodes. Therefore, a point p would not
be able to discover all its neighbors within its local partition.
This inevitably would lead to a multi-job map-reduce solution,
causing prohibitive costs involved in reading, writing, and
re-distribution of the data over a series of separate jobs. In
contrast, domain-based partitioning that takes the locality of
the data into account may do a better job, grouping nearby data
points together on one compute node. This would increase the
chances for a given point p to find its neighbors locally on the
machine where it resides. However, real-world datasets tend
to be skewed over the domain space [1]. Therefore, domain-
based partitioning struggles with the inherent problem of load
imbalance, which may not only cause a significant slowdown
in processing time, but also risks excessive job failures [14].

Second, to solve the problem caused by the traditional
“monolithic” detection approach, we must assign an ap-
propriate detection algorithm to each partition optimized
to leverage its data characteristics. This requires a thorough
understanding of the correlations between the characteristics
of the data and the performance of the respective classes of
algorithms. However, to date no such work appears in the
literature. Furthermore, a mechanism must be designed that
determines the most suitable algorithm for each partition on
the fly when allocating data partitions to each compute node.

Third, even more challenging is that the partition gen-
eration problem (Challenge 1) and the algorithm-selection
problem (Challenge 2) are strongly interdependent. On the
one hand, the partitioning should consider the performance
properties of different detection algorithms to orchestrate its
partitions so that the selected algorithms can best utilize the
characteristics of the dataset. On the other hand, the algorithm
assignments must be determined based on the characteristics of
the data subsets produced by the partitioning plan. This raises
the proverbial chicken and egg question.

Proposed Approach. In this paper, we propose the first
Distributed Outlier Detection approach using MapReduce,
called DOD, that detects the distance-threshold outliers hidden
in large distributed datasets with minimized execution time.

As foundation, we first design the distributed framework
for DOD, that correctly discovers all outliers in one single
pass. This is achieved by DOD leveraging the general notion
of support [15], [16]. It ensures that each core point p will have
all information within its local partition needed to classify it as
either outlier or inlier by replicating so called support points
into the partition . Therefore any centralized algorithm can be
applied independently on each partition to detect outliers.

We further enhance DOD with our novel multi-tactic
approach to minimize the end-to-end execution time by op-
timizing both the map-side partitioning and the reducer-side

detection algorithm selection in an integrated fashion. This
integrated solution leverages two key observations on load
balancing and on performance of detection algorithms as
described below.

The first observation concerns that the traditional
cardinality-based load balancing assumption, namely that an
equal input data size would lead to roughly equal work-
load, — although commonly adopted by distributed analytics
work [14], [17]–[19] — does not hold for outlier detection.
We observe that the computational costs of an outlier detection
algorithm on a partition P do not only depend on the number
of points in P, i.e., its cardinality, but also on its data density
— the ratio of data cardinality to the domain area. Based on
this observation, we establish the first theoretical cost models
customized for distinct classes of central detection algorithms
[3], [5]. This in turn provides the theoretical foundation for a
true cost-based load balancing strategy.

Our second observation is based on our analysis of the cost
models characterizing different classes of prominent distance-
based outlier detection algorithms from the literature [5]. We
observe that the density of a data partition P determines which
algorithm performs better on P. In other words, we uncover
that data partitions with similar density characteristics are best
served by the same detection algorithm.

Leveraging these two observation, our density-aware multi-
tactic approach DMT successfully solves the highly interde-
pendent partition-generation and algorithm-selection problems
in one step while ensuring a balanced work load across
different compute nodes.

Generality of the Proposed Methodology. The key ob-
servations and corresponding optimization principles put forth
in this work are not limited to the MapReduce framework.
On the contrary, they are equally applicable to other shared-
nothing distributed platforms as long as the architecture does
not require synchronization among the compute nodes. More-
over, these principles are also of potential value to a much
broader class of distributed data analytics tasks beyond outlier
detection. For example, our analysis and cost models reveal
that the widely adopted load balancing assumption does not
necessarily hold. This opens interesting research questions in
the context of other classes of techniques such as association
rule mining [20] and reverse kNN [21]. Similarly, our multi-
tactic approach is not specific to distance-based outliers, since
the observation that no single algorithm is superior to all others
for all datasets can be shown to hold also in other contexts such
as the above mentioned techniques.

Contributions. The key contributions of our work include:

• We propose the first distributed approach that supports
distance-based outlier detection using MapReduce.

• We design a general framework called DOD that using
the supporting area technique detects all outliers in a single
MapReduce job.

• For the first time, we theoretically analyze and contrast
the costs of classes of outlier detection algorithms under a va-
riety of data distributions. Based on this theoretical foundation,
we prove that the traditional cardinality-based load balancing
assumption does not hold in the outlier detection context.
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• We furthermore propose a multi-tactic strategy that auto-
matically selects the best outlier detection algorithm for a given
data partition. Our proposed density-aware technique success-
fully solves the two interdependent problems of partition-
generation and algorithm-selection in one step.

• We experimentally evaluate the DOD technique using
terabyte sized real world datasets. The results demonstrate that
our technique outperforms the baseline solutions by a factor of
20x and drives down the execution time from days to hours,
making outlier detection for the first time practical in big data.

II. PRELIMINARIES

Let D = {p1, p2, ..., pn} be a dataset composed of n d-
dimensional points, where each point pi ∈ D is represented
as pi = 〈vi1 , vi2 , ..., vid 〉. Assume the function dist(pi , pj ) is
a distance function that measures the proximity between two
points pi and pj .

Definition 2.1: Two points pi and pj in D are said to be
neighbors if dist(pi , pj ) ≤ r, where r is a distance threshold.

The neighbor set of pi w.r.t a distance threshold r in D is
denoted as N

r(pi), with |Nr(pi)| denoting its cardinality.

Definition 2.2: Given a distance threshold r and a
neighbor-count threshold k, a data point pi is said to be a
distance-based outlier iff |Nr(pi)| < k.

Given the distance-based outlier parameters r, k and a
dataset D distributed over HDFS in a Hadoop cluster, our goal
is to discover and report all outliers in D with minimal end-
to-end execution time.

III. DISTRIBUTED OUTLIER DETECTION FRAMEWORK

In this section, we introduce the basic DOD distributed
framework that discovers distance-based outliers using a single
MapReduce job. The key of this framework is the supporting
area partitioning strategy that ensures the outliers in each
partition can be detected in isolation from the other partitions.
Therefore any centralized algorithm can be applied indepen-
dently on each partition to detect outliers.

A. The DOD Framework

DOD involves three key steps, namely grid cell parti-
tioning, enhancement with supporting area, and parallelized
outlier detection.

Step 1: Grid Cell Partitioning. As a first step, DOD
partitions the entire domain space Domain(D) of a dataset
D into m disjoint grid cells Ci such that C1 ∪ C2 ∪ ... ∪ Cm

= Domain(D). A grid cell is formally defined below.

Definition 3.1: A grid cell Ci in a d-
dimensional domain space is a hyper rectangle
Ci = 〈(low1i , high1i), (low2i , high2i), ..., (lowdi , highdi)〉,
where (lowxi , highxi) are the boundaries of Ci in the xth

dimension, where 1 ≤ x ≤ d .

The points inside cell Ci, referred to as Ci’s core points,
are denoted as Ci .core = {pj | pj ∈ Ci}. The areas of the
domain space covered by each grid cell need not be of equal
size. In general, any partitioning strategy could be utilized to

C1

C12

C4C3C2

C7C5

Supporting 
area of C1

Supporting 
area of C7Object p4

Object p1

Object p2

Object p3

Fig. 1: DOD Framework.

produce such grid cells. Fig. 1 depicts a two-dimensional space
partitioned into grid cells using an equi-width partitioning
method. It divides each dimension of the domain space into
equal width segments. Then points are grouped based on their
membership in a particular grid cell. Fig. 1 shows such a
grouping by representing the points in each grid cell with the
same shape.

Step 2: Enhancement with Supporting Areas. The data
points inside each grid cell are not sufficient for detecting
the outliers in each cell independent from the other cells. For
example, data point p2 in grid cell C1 appears to be an outlier
when considering only grid cell C1. However, p2 may have
neighbor points in grid cell C5, e.g., p1, which may make p2
an inlier. To break such dependency between the grid cells and
thereby enable true parallelization for outlier detection among
different grid cells, we introduce the notion of supporting area.
As formally defined in Def. 3.2, the data points within the
supporting area of cell Ci may affect the outlier decision of
at least one core point of Ci.

Definition 3.2: The supporting area of a grid cell Ci,
denoted as Ci.suppArea, is an extension of the boundaries
of Ci in the dimensions of D such that Ci .suppArea exactly
contains all points pj , also called support points, iff pj satisfies
the following two conditions: (1) pj �∈ Ci .core , and (2) there
exists at least one point pk ∈ Ci .core such that dist(pj , pk) ≤
r, where r is the distance threshold parameter in Def. 2.2.

Fig. 1 highlights in grey the supporting areas of grid
cells C1 and C7 respectively. Each grid cell Ci will now be
augmented with its support points in addition to its core points.
For example, C1 will be extended to contain support points
{p1, p3} in C1’s supporting area, along with its circle-shaped
core points.

Next we prove that enhanced by the supporting area, each
grid cell Ci now would have enough information to classify
the core points in Ci as inliers or outliers.

Lemma 3.1: For a given grid cell Ci, the support points in
Ci .suppArea are the necessary and sufficient set of points
to determine the outlier status of the core points in Ci.

Proof. “Necessity” Proof. By Def. 3.2, any point pj ∈
Ci .suppArea is the neighbor of at least one point pi ∈ Ci .
If pj is excluded from Ci .suppArea , then possibly pi in Ci

would have been falsely reported as an outlier if pi happens
to only acquire k − 1 neighbors.

“Sufficiency” Proof. Any data point pj �∈ Ci .suppArea
cannot become the neighbor of any point pi ∈ Ci because it
is not within threshold r distance from any pi ∈ Ci . Therefore
pj has no influence on the decision of whether or not pi is an
outlier by the outlier definition in Def. 2.2. �
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Fig. 2: MapReduce Implementation of DOD.

Step 3: Parallelized Outlier Detection. The final step is to
apply a centralized outlier detection algorithm, e.g., the Nested-
Loop algorithm [3], to each of the grid cells Ci to identify the
outliers among the core points contained within that cell only.
This step can be applied to each grid cell in total isolation from
the other cells, i.e., distributed to different machines. Since
each point of D is the core point of exactly one single cell,
this correctly leads to DOD identifying all outliers.

B. MapReduce Implementation of DOD

We sketch one MapReduce strategy of the DOD frame-
work in Fig. 2. This can be easily adapted to support other
mining tasks that can take advantage of the supporting area
partitioning strategy, such as density-based clustering [16] and
LOCI outlier detection [22].

For the ease of implementation, instead of directly applying
the supporting area definition in Def. 3.2, we utilize the
simplified definition in Def. 3.3.

Definition 3.3: Given a d-dimensional grid cell Ci, the
supporting area of Ci is an r-extension to the boundaries of
Ci in each dimension. That is, Ci .suppArea = 〈(low1i − r ,
high1i + r), (low2i − r , high2i + r), ..., (lowdi − r , highdi + r)〉
- Ci , where (lowxi , highxi) are the boundaries in the xth

dimension of Ci ( 1 ≤ x ≤ d ).

Since the supporting area defined in Def. 3.3 is a superset of
the supporting area in Def. 3.2, it is guaranteed to be sufficient
to support each grid cell to be processed independently without
relying on the points in any other cell.

The pseudocode of the map and reduce functions of DOD
is presented in Figure 3. The input dataset, which resides in
HDFS, has no prior partitioning properties, i.e., the data points
are randomly distributed over the HDFS blocks. Each map
function retrieves one data block and the space partitioning
strategy (Fig. 2). Then for each data point pi, the map
function produces two types of output records, i.e., core- and
supporting-related records.

A core-related record is one key-value pair record (K = Ci,
V =“0-pi”), where key is the ID of the grid cell for which pi
is a core point, i.e., pi ∈ Ci. The prefixed flag “0” in the value
component indicates that pi is a core point for Ci (Lines 2-3
in the map function in Figure 3). For example, in Fig. 2, the
mapper Map 1 generates output record (K = C5, V =“0-p1”)
for point p1.

Map (key k, value p) Function 
Auxiliary Inputs 
     - S � Space partitioning strategy  
     - r � distance threshold of the outlier algorithm 
 
1- Begin 
2-     Ci � Compute the grid cell in which p is a core point; 
3-     output (Ci, “0-p”); 
 

4-     For (each grid cell Cj in which p is a supporting point) Loop 
5-               output (Cj, “1-p”); 
6-     End Loop 
7- End 
   

Reduce (key cell-Id, v-list [ p1, p2, …, pm ]) Function 
Auxiliary Inputs 
     - k �count threshold of the outlier algorithm 
     - r � distance threshold of the outlier algorithm 
 
1- Begin 
2-     core-list � the set of points in v-list with prefix tag = “0” 
3-     support-list �the set of points in v-list with prefix tag = “1” 
         

4-     outlier-list � Execute OutlierDetection(v-list, r, k); 
5-      For (each outlier o in outlier-list) Loop 
6-             If  (o exists in core-list) Then 
7-                  output (null, o)           // Report Outliers 
8-     End Loop 
9- End 

Fig. 3: MapReduce pseudocode of the DOD Framework.

Mappers also create zero or more supporting-related
records for a point pi in the form of (K = Cj , V =“1-pi”),
where key pi ∈ Cj is the ID of the grid cell for which pi is
a support point, i.e., pi ∈ Cj .suppArea . The prefixed flag “1”
in the value component indicates that pi is a support point for
Cj (Lines 4-6 in the map function in Fig. 3). For example, in
Fig. 2, the mapper Map N generates three additional output
records for point p4 since it is a support point for C3, C6, and
C7.

After the internal shuffling and sorting phases based on
the cell ID, each group of records received by a reducer will
correspond to a specific grid cell, say Ci. It will consist of
the union of the core and support points belonging to Ci

(See Fig. 2). The reducer function categorizes the data points
according to their attached flag encoded in the value (lines 2-3
in the reduce function in Fig. 3). Lastly, it executes an outlier
detection algorithm to detect outliers among the Ci.core set
(lines 4-8) while using both Ci.core and its Ci.support as
possible neighbors.

C. Multi-Tactic Outlier Detection Problem Formalization

Based on the one pass DOD framework(Sec. III-A), we
now are ready to formally define our multi-tactic outlier
detection optimization problem.

A partition plan of dataset D is a set of m pairwise disjoint
partitions whose union covers the domain space of D, where m
is the number of the partitions specified as an input parameter.
We use P(D) to denote a particular partition plan of D and
P(D) to denote the set of all possible partition plans of D.

Given a partition plan P(D), an algorithm plan AP(D ,P)
of P(D) is a set of m detection algorithms, namely one for
each of the m partitions in P(D) selected from an algorithm
candidate set A.

964964964950950950950950950962962962



Definition 3.4: The optimal algorithm plan with respect
to a partition plan P(D), denoted as APopt(D ,P), is the
algorithm plan AP(D ,P) in which the algorithm Ai ∈
AP(D ,P) assigned to the corresponding partition Pi ∈ P(D)
(1 ≤ i ≤ m) corresponds to the algorithm with minimal pro-
cessing costs compared to any other algorithm Aj ∈ A, namely,
cost(Ai ,Pi) = min(cost(Aj ,Pi)|∀Aj ∈ A).

The cost of the partition plan P(D) with respect
to its optimal algorithm plan APopt(D ,P), denoted as
cost(P(D)), is defined as cost(P(D)) = max{cost(Ai ,Pi)
| Ai ∈ APopt(D ,P),Pi ∈ P(D), 1 ≤ i ≤ m}. Intuitively
cost(P(D)) represents the processing costs of the most
expensive partition, which in turn indicates the end-to-end
execution time of the outlier detection process.

Multi-tactic optimization can now be defined as below.

Definition 3.5: Given all possible partition plans P(D) of
D, the multi-tactic optimization problem MT is to find a
partition plan P(D)opt and the corresponding algorithm plan
APopt(D ,P), such that cost(P(D)opt) is minimal among
cost(P(D)j ) of all possible P(D)j in P(D).

Complexity Analysis of Multi-tactic Optimization Prob-
lem. Given a dataset D with a continuous domain space
Domain(D), there are an infinite number of options to divide
Domain(D) into m partitions. Therefore the search space of
the partitioning problem itself is infinite. Even if Domain(D)
were to be discretized, the search space of the multi-tactic
optimization is still prohibitively large.

Let C = |Domain(D)| denote the cardinality of
Domain(D). Then the cardinality of P(D), namely, |P(D)| =

1
m!

m∑
j=1

(−1 )m−j (ni

k

)
jC is exponential in C. Clearly for large

C, the search is prohibitively expensive. Furthermore, if the op-
timal algorithm plan has to be generated for each partition plan
in P(D), then the overall complexity of the problem search
space would be O(|P(D)|) ∗m ∗ E ). Here E denotes the cost
of finding a best algorithm for one partition. Worst yet, to date
no formal cost models have been established for the typical
outlier detection algorithms found in the literature. In essence,
the complexity of MT problem (Def. 3.5) originates from two
key factors: (1) the combinatorial number of possible partition
plans and (2) the strong interdependency of the partitioning
and algorithm selection subproblems. Given this exponential
complexity of the MT problem, it is thus imperative that
efficient yet effective search heuristics are devised for tackling
the MT problem defined in Def. 3.5.

IV. KEY OBSERVATIONS

Next, we introduce the key observations upon which our
multi-tactic approach is built, namely load balancing and
algorithm performance in the context of outlier detection.

A. Load Balancing Observation

By Definitions 3.4 and 3.5, the objective of our multi-
tactic problem is to minimize the end-to-end execution time
which is determined by the processing costs of the most
expensive partition. To achieve this, the whole workload has to
be equally divided into a limited number of compute nodes −
in other words into a balanced workload. In fact load balancing

has been shown to be one of the most critical problems for
distributed data processing. Load imbalance may not only
result in significant slowdown, but also cause job failures [14].

In the literature most distributed analytical algorithms
[11]–[13] ensure load balancing by adopting the traditional
load balancing assumption that an equal number of data
points leads to a balanced workload. In this work we over-
turn this fundamental assumption in the context of distance-
based outlier detection supported by an empirical study and
a theoretical analysis. Our cost model established for the
typical class of outlier detection algorithms demonstrates that
both the cardinality and the distribution characteristics (data
density) determine the processing costs of a dataset. This
model provides a theoretical foundation for the design of
cost-based partitioning strategies that generate partitions of
balanced workloads.

For this, we first design an experiment to study the effect of
the data’s density on the execution of central outlier detection
algorithms (Figure 4). We use two datasets, each consisting
of the same number of data points (100KB). However their
densities are very different, where D-Dense is much “denser”
than D-Sparse. Here density is defined as the ratio of data
cardinality to the domain area covered by the data. The
domain area covered by the D-Dense dataset is only 1

4 of the
domain area covered by the D-Sparse dataset. By the above
measure, D-Dense is four times denser than D-Sparse.

We then apply the Nested-Loop algorithm [3] to both
datasets with the r and k parameters set to 5 and 4 re-
spectively. The Nested-Loop algorithm is a popular albeit
simple algorithm for distance-based outlier detection. Its logic
is based on the following idea. Given a data point pi, the
algorithm evaluates the distance between pi and other points
in the dataset D in random order until either k neighbors
of pi are found (pi becomes inlier), or all data points in
D have been examined (pi becomes outlier). As depicted in
Figure 4, although the input data size and the algorithm’s input
parameters are exactly identical, the execution performance is
entirely different, namely, 4.5x slower in the case of D-Sparse
as compared to D-Dense.

The intuition is that the points in D-Dense are closer to each
other. Thus finding enough neighbors of a point pi within a
distance r to declare pi as inlier is relatively faster in D-Dense
than in D-Sparse. That is, the likelihood that a randomly picked
point in D-Dense is a neighbor of pi is higher than in D-Sparse.
Since outliers tend to be rare and thus the vast majority of the
points can be expected to be inliers, the algorithm applied to
D-Dense will terminate early for most points. This explains
the significantly lower overall costs for D-Dense compared to
D-Sparse. This experiment confirms that the processing costs
do not only depend on the dataset’s cardinality, but also on its
density over the domain space.

Next, we theoretically support this observation by estab-
lishing a formal cost model (Lemma 4.1) for the family of
outlier detection algorithms that rely on random selection and
comparison among the data points, such as Nested Loop [3].

Lemma 4.1: Given a uniformly-distributed dataset D of
cardinality |D| data points, and parameter settings k and r
for the distance-based outlier algorithm, the cost of detecting

965965965951951951951951951963963963
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Fig. 4: Sensitivity of Nested-Loop’s Performance to Dataset Densities.

distance-based outliers based on random selection and com-
parison is Cost(D) =

|D|×A(D)×k
A(pi )

, where A(D) and A(pi)
represent the areas of the domain space covered by the dataset
D and by the distance parameter r around pi, respectively.

Proof. Since D follows a uniform distribution, we have:

Cost(D) = Cost(pi) ×|D | (7)

where Cost(pi) denotes the cost of determining whether
or not a data point pi is outlier, since pi has on average

|D | × A(pi )
A(D) neighbors in D. Then, given any randomly picked

point pj , the probability that pj is a neighbor of pi denoted
as μ equals to:

μ = |D | × A(pi )
A(D)

/ |D | =
A(pi )
A(D)

(8)

The cost of processing pi, denoted by Cost(pi), is
determined by the number of trials N to acquire k neighbors.
Considering the event that a randomly picked point is or is
not a neighbor of pi as a binary variable, then the probability
of observing k occurrences of neighbors in a set of N
samples (random trials) follows the Binomial distribution

Bin(k | N , μ) =

(
N

k

)
μk (1 − μ)N−k . The expected value of

N is E (N ) = k
μ , which leads to:

Cost(pi) = k
μ

= k
A(pi )
A(D)

=
k×A(D)
A(pi )

(9)

By substitution in Eq. (7), we get Cost(D) =
|D|×A(D)×k

A(pi )
,

which proves the lemma. �
Based on Lemma 4.1, the cost of detecting the distance-

based outliers in D relies on both the number of the data
points, i.e., |D|, and the domain space area covered by the
dataset A(D). Since the domain space covered by a sparse
dataset D-Sparse is larger than the domain space covered by
a dense dataset D-Dense, we thus can conclude that Cost(D-
Sparse) > Cost(D-Dense).

B. Algorithm Performance Observation

To the best of our knowledge distributed analytics work
on shared-nothing infrastructures typically applies one single
analytics algorithm to all compute nodes. This “monolithic”
approach is based on the implicit assumption that one central
analytics algorithm is superior to the other known algorithms.

However both our empirical study and theoretical analysis have
shown that although a number of centralized algorithms have
been proposed including Nested-Loop and Cell-Based [3], [5],
no conclusive winner emerged that consistently outperformed
all other algorithms on all datasets. Furthermore, our theoretic
analysis has revealed that the density of each data partition is a
key factor that determines the performance of these algorithms.
This provides a solid foundation for translating the observation
of selecting different algorithms for different data partitions
into actionable multi-tactic optimization decisions.

Similar to Nested-Loop introduced in Section IV-A, the
Cell-Based algorithm [3] is another popular detection algo-
rithm. As an index-based solution, it relies on pruning strate-
gies to avoid unnecessary checking points. First, it uniformly
partitions the domain space into a set of d-dimensional non-
overlapped grid cells, where the length of the cell in each di-
mension is r/2 and r is the distance threshold input parameter.
Then it hashes each point to exactly one grid cell. Each cell
maintains the number of points it contains so that the algorithm
can quickly identify all grid cells that have no outlier or no
inlier. Both types of cells can be excluded from any further
processing. The points in the remaining grid cells have to be
evaluated individually, in a fashion similar to Nested-Loop.

First, we evaluate the performance of Nested-Loop versus
Cell-Based under different data densities. Again density is
defined as the ratio of data cardinality to the domain area
covered by the data. In this experiment, we vary the density
of the datasets by varying the size of the domain area while
keeping the number of data points constant as 10,000 (Sec.
IV-A). The r and k parameters are set as 5 and 4, respectively.

The results (Fig.5) confirm our expectation that density
matters, and no algorithm is superior in all cases. Better yet,
we observe a general trend in Figure 5. Namely, the Cell-
Based algorithm outperforms Nested-Loop when the data is
either very sparse or very dense. In contrast, in the intermediate
density cases the Nested-Loop algorithm is faster.

Intuitively Cell-Based performs well when handling very
sparse or very dense datasets, because in both cases, many of
the d-dimensional grid cells can be directly marked as outliers
(in the very sparse case) or as inliers (in the very dense case).
This then saves computations. In other cases, deciding on the
outlier status of the data points requires more computations on
top of the pre-processing phase. Here, Cell-Based suffers from
the additional overhead of having to index the data points. It
thus performs worse than Nested-Loop.

Next, we theoretically support this observation based on
the cost model we establish for the Cell-Based algorithm
(Lemma 4.2). Without loss of generality, we use a two-
dimensional dataset as example.

Lemma 4.2: Given a uniformly distributed two-
dimensional dataset D of cardinality |D| and data points that
cover a domain space of area A(D), the cost of detecting
distance-based outliers using the Cell-Based algorithm with
parameters r and k is defined as follows:

(1) Cost(D) = |D| If 9
8
r2 × |D|

A(D)
≥ k ;

(2) Cost(D) = |D| If 49
8
r2 × |D|

A(D)
< k ;

(3) Cost(D) = |D |+ |D|×A(D)×k

π×r2
Otherwise
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Fig. 5: Performance of Different Detection Algorithms w.r.t Data’s Densities.

Proof. In the Cell-Based algorithm, the area covered by

each cell Ci corresponds to A(Ci) = 1
2 (

r
2 )

2 = r2

8 , where
r
2 is the diameter of one rectangular cell. According to the
algorithm, given a cell Ci , if there are more than k points
in Ci and its direct adjacent cells (nine cells in total), then
all data points in Ci are marked as inliers. In other words, if
9
8 r

2 × |D|
A(D) ≥ k , then the cost of processing the entire dataset

is equivalent to scanning and indexing the data points. That is
Cost(D) = |D|. This proves Equation (1) of Lemma 4.2.

On the other hand, if there are fewer than k points in the
combined cells of Ci and the cells within 2r distance from it
(in total 49 cells), then all points in Ci are guaranteed to be
outliers without requiring any explicit comparisons. In other

words, if 49
8 r2 × |D|

A(D) < k , then Cost(D) = |D|. This proves

Equation (2) of Lemma 4.2.

If neither of the two aforementioned cases holds, then
the unmarked cells need to execute a Nested-Loop algorithm,
in addition to the indexing costs of the entire dataset. That

is, the cost will be Cost(D) = |D |+ |D|×A(D)×k
π×r2 , where

|D|×A(D)×k
π×r2 represents the cost of Nested-Loop as proven in

Lemma 4.1. This proves Equation (3) of Lemma 4.2. �
According to Lemma 4.2, in the extreme cases of very

sparse and very dense, the cost of Cell-Based is linear w.r.t |D |.
Thus it outperforms Nested-Loop. Whereas in the other cases,
it is more expensive than Nested-Loop due to the overhead
introduced by the indexing phase without gaining any added
benefit from this extra step. Therefore given a dataset D,
the algorithm Alg(D) best serving D can be determined by
applying the following corollary.

Corollary 4.3: Given a two-dimensional dataset D of car-
dinality |D| and data points that cover a domain space of area
A(D), the algorithm that most efficiently detects the distance-
based outliers with parameters r and k is:

(1) Alg(D) = Cell− based If 9
8
r2 × |D|

A(D)
≥ k ;

(2) Alg(D) = Cell− based If 49
8
r2 × |D|

A(D)
< k ;

(3) Alg(D) = Nested− Loop Otherwise

V. DENSITY-AWARE MULTI-TACTIC OPTIMIZATION

Leveraging the load balancing and the detection algorithm
performance observations introduced in Sec. IV, we propose
a simplistic yet effective density-aware multi-tactic approach
(DMT) that generates a partition plan and algorithm plan pair.

By Lemma 4.2, since the density of a partition P determines
which algorithm performs better on P, partitions with similar
densities are expected to share the same appropriate detection
algorithm. Thus the overall idea is the following, while the
detailed algorithm described below.

Overview of DMT. Given a dataset D, its continuous domain
space is first discretized into a large number of small regions
called mini buckets. DMT clusters the mini buckets with
similar densities into larger clusters (partitions). Next the best
detection algorithm is selected for each cluster based on its
density by Corollary 4.3. By this, the partitioning already
caters to the subsequent algorithm assignment goal. Hence
the algorithm plan (AP as defined in Sec. III-C) is naturally
derived based on the data characteristics of each cluster.
Therefore the interdependency deadlock of partitioning versus
algorithm selection is broken. Lastly, a cost-aware allocation
algorithm is introduced to allocate the clusters (partitions) to
each reducer. This algorithm accurately estimates the detection
costs of each partition using the cost model of the selected
algorithm. The estimated costs are then utilized to balance the
workload of each reducer. Therefore this approach abandons
the traditional cardinality-based load balancing assumption.
The DOD framework enhanced with the DMT optimization
effectively minimizes the end-to-end execution time.

A. The Density-Aware Multi-tactic Approach

DMT executes a lightweight pre-processing job to generate
a multi-tactic plan composed of a partition plan and a algorithm
plan pair. This pre-processing phase is composed of two stages,
namely distribution estimation and multi-tactic plan genera-
tion. Both stages can be performed using one MapReduce job.

In the first stage, DMT estimates the distribution of the data
by drawing a sample from the input dataset. We opt for random
sampling since it preserves the distribution of the underlying
dataset [23]. Since we only need to roughly estimate the
distribution, the sampling rate Υ as an input parameter by
default is set to a small value, e.g., 0.5 %. Considering the size
of big datasets, the sample is generated in a distributed fashion
by drawing samples within the map phase of a MapReduce job.
The map tasks assume the entire data space is discretized to
“mini buckets” that form the unit of processing. The map task
then will aggregate the individual sample points and produce
the statistics at the mini bucket level. Then, the mappers’ output
is passed to a centralized node, i.e., a single reducer, for the
plan generation stage.

The reduce function is more sophisticated. It involves
three steps, namely, (1) density and spatial-aware hierarchical
clustering (DSHC), (2) algorithm plan generation and (3)
partition allocation.

DSHC algorithm. In Step 1, we group the mini buckets with
similar densities into one partition such that each partition best
conforms to one particular detection algorithm. This key step
of DMT corresponds to a highly customized multi-objective
clustering problem with constraints or in short MOC clustering.

(1) First, it is both density and spatial-aware. It takes the
spatial properties of the clusters into account, i.e., only the
spatially-adjacent clusters of similar densities are considered
for possible expansion. Grouping the adjacent data points
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together in one partition reduces the size of the supporting
area, avoiding unnecessary data duplication.

(2) Only rectangle-shaped clusters are supported to keep
the resulting plan simple, because partitioning the data based
on an irregular shaped plan (map phase of DOD framework,
Sec. III-B) is expensive − possibly even more expensive than
the actual outlier detection process.

(3) It solves a constrained clustering problem. The car-
dinality of each cluster is upper bounded by a threshold
corresponding to the maximum number of data points that a
single reducer can handle in main-memory.

Inspired by the traditional BIRCH clustering algorithm
[24], we thus design a density and spatial-aware hierarchi-
cal clustering (DSHC) algorithm that efficiently solves this
problem with a single scan of the mini buckets.

The key realization of DSHC relies on a well-designed
Aggregate Features (AF) data structure and a R-tree like index
structure to hold the AF information in its node as well as
indexing spatial information, called AF tree. Each leaf node of
the AF tree corresponds to one cluster C represented by an AF
structure. An AF maintains the aggregated summarization of a
set of mini buckets that form cluster C. AF contains sufficient
information that given an incoming mini bucket MBi, we
can determine whether MBi satisfies all requirements and
constraints of our MOC clustering problem including density,
spatial location, and cardinality such that it can be merged into
cluster C. The AF meta data is defined as below.

Definition 5.1: Aggregate Feature. Given a cluster
C with M mini buckets MBi, where i = 1 , 2 , ...,M ,
its Aggregate Feature (AF) of the cluster C is defined
as a quadruple: AF = (numPoints, ˜minB , ˜maxB ,Density),

where numPoints =
M∑
i=1

MBi .numPoints corresponds to the

number of points in C, ˜minB and ˜maxB are the vectors
corresponding to the minimum and maximum coordinates of

MBs at each dimension, and Density = |numPoints|
d∏

i=1
(maxB(i)−minB(i))

represents the density of C.

A non-leaf node is represented by a R-tree like data
structure, that is, a pair (Rect , child-pointer). Here Rect is an
d-dimensional rectangle which is a bounding box that covers
all rectangles in the lower nodes’ entries. Child-pointer is the
address of a lower node in the AF-tree.

DSHC starts with one single mini bucket as the only cluster
in the AF tree. It then incrementally inserts mini buckets into
the AF tree. When a new mini-bucket comes, it utilizes the
search operation defined below to identify a list of merging
candidate clusters. The new mini bucket can either merge
with existing clusters to form a new cluster or serve as an
independent cluster depending on the given density similarity
and adjacency requirements.

Search Operation. Starting form the root, the searching
operation descends the AF-tree in a manner similar to R-
tree. However, in addition to search the overlapping rectangles,
DSHC also queries nodes that are adjacent to the new mini-
bucket. The search operation will generate a list of merging
candidate clusters or in short LMC. If the LMC is empty,

we maintain the parent node pn of the leaf node that can
accommodate this new mini bucket with least enlargement.

Merge Operation. If the LMC list is not empty, then the
new mini bucket potentially can be merged into an existing
cluster. Then DSHC further filters the LMC list by the merging
criteria defined below.

Definition 5.2: Merging criteria. Given the maximum
density difference threshold Tdiff and the maximum num-
ber of points threshold Tmax#, two clusters Ci and Cj

can be merged if and only if the following three crite-
ria are satisfied: (1)|Ci .Density − Cj .Density | < Tdiff ; (2)
Ci and Cj form a rectangular shape; (3) Ci .numPoints
+Cj .numPoints < Tmax#.

Next, we define how to determine whether given two
clusters C1 and C2 can be merged into a rectangular shape.

Definition 5.3: Rectangular Shape. In a d-dimensional
domain space, given two clusters C1 and C2 with coordinates
( ˜minB1 , ˜maxB1 ) and ( ˜minB2 , ˜maxB2 ), C1 and C2 can
form a rectangular shape iff they satisfy the following two
criteria: (1) For d − 1 dimensions, minB1 (i) = minB2 (i)
and maxB1 (i) = maxB2 (i) and (2) For the remaining
one dimension, either minB1 (i) = maxB2 (i) or
maxB1 (i) = minB2 (i).

After the LMC is filtered by the merging criteria, a final
list of candidate clusters that are able to merge with the new
mini-bucket will be generated. Then the mini bucket will be
merged into the cluster that has the most similar density with
the new bucket.

After the merge operation, a new AF will be computed for
the augmented cluster as below.

Definition 5.4: Given two Aggregate Features
AF1 = (numPoints1 , ˜minB1 , ˜maxB1 ,Density1 ),AF2 =
(numPoints2 , ˜minB2 , ˜maxB2 ,Density2 ), then AFnew =
AF1 + AF2 = (numPoints1 + numPoints2 ,min( ˜minB1 ,

˜minB2 ),max ( ˜maxB1 , ˜maxB2 ),
numPoints1+numPoints2
d∏

i=1
(maxBnew (i)−minBnew (i))

).

Similar to R-tree, the merge action of the AF-tree will
trigger the recursive merge and information update along the
path from the cluster (leaf) to the root if possible. More
specifically, DSHC will try to merge the new augmented cluster
Ca with other clusters in the AF-tree by applying the same
process described above. The recursive merge stops if the new
cluster cannot be merged with any other cluster in the AF-tree.

Insert Operation. If the incoming mini bucket cannot be
merged with any existing cluster (leaf), a new leaf will be
created. If the LMC list is not empty, again a cluster Ci in LMC
that has the most similar density with the new mini bucket will
be selected. The new leaf will then be attached to the parent of
Ci as its child. Otherwise, the new leaf will be created under
the pn node found in the search operation.

Split Operation. The insertion of a new leaf might trigger
the split operation. The standard split operation defined by R-
tree can be equally applied here. Due to space constraint, the
details are omitted.

Finally, after inserting all mini buckets into the AF tree,
every leaf node in the tree represents one cluster (partition).
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Fig. 6: Execution Workflow of the Multi-Tactic DOD Framework.

Therefore, the final partition plan can be directly obtained.
Moreover, the AF tree can be leveraged as an index to
accelerate the process of mapping data points into partitions.

The outcome of Step 1 is the final partition plan to be used
in the DOD framework by the mappers.

Step 2 then decides on the algorithm plan, i.e., which
outlier detection algorithm should be used for which partition.
For each partition P and a specific algorithm A, the cost of A
is estimated based its cost model (Sec. IV). The most efficient
algorithm will be assigned to P .

The last step of this pre-processing phase is then to allocate
the partitions to reducers and balance the workload of each
reducer. The work load is measured as the sum of costs of
the partitions allocated to a given reducer. This problem is
equivalent to the problem of multi-bin packing, in which a set
of N numbers needs to be divided into K subsets, such that
the sums within each subset are as similar as possible. This
problem is known to be NP-Complete. Several approximation
algorithms have been proposed to solve it. In DOD, we adopt
the polynomial-time algorithm proposed in [25].

Overall Workflow of DOD. In Figure 6, we summarize
the execution workflow of our full-fledged DOD approach. The
workflow consists of two MapReduce jobs: the pre-processing
job on a small data sample (top) corresponding to DMT
and the outlier-detection job on the actual data D (bottom)
corresponding to the DOD framework. The pre-processing job
produces three types of outputs passed to the DOD framework.
More specifically, the output of Step 1 (the partition plan) is
passed to its map phase. The output of Step 2 (the algorithm
plan) is passed to the reduce phase. The output of Step 3
(the allocation plan) is passed to the partitioner functions to
stipulate which partitions are assigned to which reducers.

VI. EXPERIMENTAL EVALUATION

A. Experimental Setup & Methodologies

Experimental Infrastructure. All experiments are con-
ducted on a shared-nothing cluster with one master node
and 40 slave nodes. Each node consists of 16 core AMD
3.0GHz processors, 32GB RAM, 250GB disk, and nodes are
interconnected with 1Gbps Ethernet. Each server runs Hadoop
2.4.1. Each node is configured to run up to 8 map and 8 reduce
tasks concurrently. The replication factor is set to 3.

Datasets. We utilize two real datasets and one synthetic
dataset to evaluate our proposed strategies and observations.

The first one is the TIGER dataset [26]. TIGER con-
tains spatial extracts from the Census Bureau’s MAF/TIGER
database, containing features such as roads, railroads, rivers, as
well as legal and statistical geographic areas. TIGER contains
70 million records with a total size of 60G.

The second one is OpenStreetMap dataset [19]. Open-
StreetMap (500 GBs) is one of the largest real datasets publicly
available and has been used in other similar research work
[19]. OpenStreetMap contains the geolocation information of
buildings all over the world. Each row in this dataset represents
a building. Four attributes are utilized in this experiment,
namely ID, timestamp, longitude, and latitude.

To evaluate the robustness of our proposed methods for
diverse data distributions, we pick four segments from the
whole openStreetMap dataset corresponding to buildings in
Massachusetts, Ohio, California, and New York respectively.
The four segments are equally sized (≈30 million points).
However, they vary significantly in their densities, i.e., New
York and California are very dense, Ohio is relatively sparse,
and Massachusetts is in the middle between them. In addi-
tion, we build hierarchical datasets with Massachusetts as the
smallest unit, then New England, then the United States, up to
the whole planet. The number of data points gradually grows
from 30 million to 4 billion.

Lastly, to evaluate how DOD performs on terabyte level
data we further generate a 2TB synthetic dataset based on the
real OpenStreetMap dataset. More specifically, we developed
a tool that creates a distortion of the original dataset D by
replicating each point p in D three times to generate p′, p′′, p′′′,
each with a random degree of alteration on each dimension.

Metrics. We measure the end-to-end execution time
common for the evaluation of distributed algorithms. We also
measure the breakdown of the execution time for the key
stages of the MapReduce workflow including preprocessing,
partitioning (map), and processing (reduce) time.

Experimental Methodology. We evaluate two key compo-
nents of our MapReduce outlier detection algorithms, namely
the partitioning method at the mapper side and the outlier
detection method at the reducer side. In particular for the
partitioning method, we evaluate four alternative strategies,
namely (1) the default domain-based partitioning without sup-
porting area Domain that needs an additional MapReduce job
to confirm the outlier status of a point p if p is at the edge of a
partition and is classified as an outlier in the first MapReduce
job, (2) the uniform domain space partitioning uniSpace (Sec.
III-A), (3) the data-driven partitioning DDriven that divides
the dataset into partitions with similar number of data points,
and (4) the cost-driven partitioning CDriven that divide the
dataset into partitions with similar workload. The workload
of each partition is estimated utilizing our cost model (Sec.
IV) with respect to the selected detection algorithm. Similar
to our full-fledged multi-tactic approach DMT (Sec. V), uniS-
pace, DDriven, CDriven also feature a pre-processing job to
generate the statistics and produce the partition plan. All three
algorithms are based on our one pass DOD framework with
supporting area. We utilize these algorithms to demonstrate
the effectiveness of our optimization strategies. Due to space
constraint the details of these algorithms are omitted in this
manuscript.
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Their performance is evaluated for varying sizes of datasets
and diverse distributions. We use the domain-based partitioning
Domain as the baseline approach to compare against the
algorithms designed by us.

For outlier detection at the reducer side, we evaluate three
alternatives, namely Nested-Loop, Cell-Based, and our multi-
tactic approach DMT proposed in Sec. V. Nested-Loop is the
basic distance-based outlier algorithm widely adopted in the
literature, while Cell-Based is the most commonly used index-
driven detection algorithm. To minimize the influence of the
partitioning method on the result the same partitioning method
is deployed for Nested-Loop and Cell-Based, namely the most
advanced cost-driven partitioning CDriven.

We also evaluate the execution time breakdown of DMT
and compare it against other alternatives.

B. Evaluation of Partitioning Methods

First we conduct experiments to evaluate the effectiveness
of the partitioning methods.

Effectiveness Evaluation For Various Distributions
With Real Datasets. In this set of experiments we evaluate
the performance of our partition methods under diverse data
distributions using Ohio, Massachusetts, California, and New
York areas. We show the performance of the Domain, uniS-
pace, and DDriven strategies relative to our proposed CDriven
partitioning strategy. To exclude the influence of detection
algorithm, we fixed the detecting algorithm at the reducer side
to be the Nested-Loop solution in Figure 7(a) and the Cell-
Based algorithm in Figure 7(b).

Clearly, as depicted in both Figures 7(a) and 7(b), the cost-
driven partitioning method significantly outperforms all other
alternatives up to 5 fold, no matter how the data distribution
changes. Our uniSpace partitioning strategy outperforms the
default Domain partitioning method. This is due to the fact that
uniSpace ensures that the detection task can be done in a single
pass, therefore incurring much smaller communication costs.
However uniSpace is not effective at load balancing, because

the real datasets tend to be skewed. Therefore on average,
the performance is 40% worse than that of DDriven. On
the other hand, although DDriven ensures that each partition
has a similar number of data points, the workload on each
reducer is not effectively balanced, confirming our observation
that an equal number of data points does not guarantee an
equal workload (Sec. IV-A). Our final CDriven partitioning
strategy instead achieves true load balancing. Therefore it
outperforms DDriven by at least 50% and all other methods
more significantly (up to five fold).

Scalability Evaluation For Varying Data Sizes. Next
we evaluate the scalability of our partitioning method on
increasing dataset sizes, from the Massachusetts dataset, New
England dataset, United States dataset, to the entire OpenMap-
Street dataset. The results in Fig. 8 show that the cost-driven
partitioning method CDriven consistently wins in all cases.
Better yet, the larger the dataset, the more it wins. In particular
when the dataset is the largest (the planet dataset), CDriven is 6
times faster than the second best partitioning method DDriven
and 17 times faster than the default Domain partitioning. This
thus demonstrates that our partitioning method is scalable to
real-world large datasets.

C. Evaluation of Detection Methods

In this section, we focus on the evaluation of the out-
lier detection algorithms applied at the reducer side. Three
algorithms are considered in this set of experiments, namely
the Nested-Loop and Cell-Based algorithms and the DMT
approach introduced in Sec. V.

Effectiveness Evaluation For Varying Data Distribu-
tions. In this experiment, we utilize the Massachusetts, Ohio,
California, and New York areas to evaluate the efficiency of the
three detection algorithms with diverse data distributions. As
shown in Figure 9(a), Cell-Based is at least two times faster
than Nested-Loop when processing the California and New
York datasets. The reason is that overall, California and New
York are densely populated. As proven by Lemma 4.2, Cell-
Based theoretically performs better than Nested-Loop on dense
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datasets. DMT further outperforms Cell-Based by a factor of 2,
because it takes the advantages of both Cell-Based and Nested-
Loop. That is, it adapts to Cell-Based when handling dense or
sparse data partitions, while automatically switching to Nested-
Loop when the density of the data partition is in the middle.

As the dataset gets sparser and sparser, the dataset contains
more outliers. In this case, the pruning ability of the Cell-
Based method becomes less effective. Therefore its running
time increases dramatically. On the other hand, the running
time of Nested-Loop increases at a more steady pace. As shown
in Figure 9(a) Nested-Loop outperforms Cell-Based when
processing the Ohio data − the most sparse out of the four.
This again confirms our algorithm performance observation
in Sec. IV-B with respect to these two typical classes of
detection algorithms. The running time of DMT remains stable
as the data distribution changes. DMT has overall much better
performance in all cases.

Scalability Evaluation For Varying Data Sizes. In this
experiment we evaluate the scalability of different detection
algorithms utilizing real datasets. Similar to the scalability test
in Sec. VI-B we increase the size of the real dataset by utilizing
first the Massachusetts only dataset, then New England, the
United States, up to the entire OpenStreetMap dataset. As
shown in Figure 9(b), DMT consistently outperforms Nested-
Loop and Cell-Based. The larger the dataset, the more DMT
wins. This is so because the larger datasets tend to be more
skewed. In other words, large data usually contains not only
many sparse partitions, but also many dense partitions. How-
ever as demonstrated in Sec. IV-B neither Nested-Loop nor
Cell-Based performs well under all circumstances. DMT is
able to dynamically adapt to Nested-Loop or Cell-Based for
each partition based on its distribution. Therefore DMT scales
well to large datasets.

D. Evaluation of Overall DOD Approach

Next we focus on the evaluation of the overall approach.
We measure the breakdown of the execution time for the key
stages of the MapReduce workflow.

2TB Synthetic Dataset. We measure the preprocessing
time, the partitioning time, and the detection time separately.
At the mapper side, four partitioning algorithms are con-
sidered, namely the baseline Domain partitioning and our
uniSpace, DDriven, and our full-fledged DMT approach. For
the other three partitioning methods we apply the Cell-Based
detection algorithm. This is because Cell-Based is confirmed
by our additional experiments to be the algorithm that on
average fits this dataset better than Nested-Loop. In this exper-
iment we use the 2TB dataset derived from the OpenStreetMap
dataset (see Sec. VI-A). This also confirms the scalability of
DOD on terabyte-scale data.

As shown in Fig. 10(a), the preprocessing time of DMT is
longer than DDriven. This is expected because DMT utilizes
a hierarchical like clustering approach to group data with
similar densities together. This is expensive. Domain and
uniSpace do not feature this preprocessing stage. Therefore no
preprocessing costs are experienced. In the partitioning map
stage, all four approaches take almost the same amount of
time. For all, each datum can be mapped to its corresponding
partition in near constant time. At the reduce stage, DMT is

up to 10 times faster than other alternatives for the following
two reasons. First, DMT achieves true workload balancing
across the reducers by utilizing our cost models designated for
each known detection algorithm. Second, given a particular
partition, DMT automatically adapts to the algorithm best
fitting the data characteristics of that partition. Although this
“dense” dataset on average fits the Cell-Based algorithm better
than the Nested-Loop algorithm, there are still many relatively
sparse partitions for which Nested-Loop is more appropriate.

TIGER Dataset. We also evaluate the breakdown of the
execution time on the TIGER real dataset. In this set of
experiments, we compare DMT against CDriven + Nested-
Loop and CDriven + Cell-Based. That is, the two alternative
solutions apply the most sophisticated partitioning strategy at
the mapper side while apply different detection algorithms at
the reducer side. As shown in Fig. 10(b) DMT significantly
outperforms the alternatives (up to 20 times faster). This again
demonstrates the effectiveness of our multi-tactic optimization
technique.

VII. RELATED WORK

Centralized Outlier Detection. Distance-based outliers was
first proposed in [3] along with two popular algorithms de-
scribed in Sec. IV. [4] improved upon these prior results [3]
by introducing the pivot-based index technique. However, this
depends on building a global index. Thus it does not fit well the
shared-nothing distributed architectures such as MapReduce
because no single compute node can accommodate such a big
global index for large data.

Distributed Outlier Detection. Hung and Cheung [27]
presented a parallel version of the Nested-loop algorithm of
the distance-based semantics from [3]. This technique requires
strict synchronization between the worker nodes. Namely each
node has to send messages and receive messages at the
same time. It assumes all nodes can communicate with each
other at will by message passing. Thus, it is not suitable for
MapReduce-like infrastructures where mappers (and similarly
reducers) work independently from each other.

Angiulli et al. [11] presented a distributed algorithm to
support another major variant semantics of distance-based out-
liers, namely the kNN based definition [10]. First, it represents
the original dataset using a compact solving set. Then given
a point p, its status as an outlier can be approximated by
comparing p to only the elements in the solving set. Therefore
[11] provides an approximate result, whereas we instead focus
on providing an exact solution for our targeted distance-based
outlier semantics [3]. Furthermore, [11] requires the solving
set to be broadcasted to each node. This is not scalable to big
datasets which in turn indicate a large solving set.

Bhaduri et al. [13], also working with the kNN based
outlier definition, developed a distributed algorithm on a ring
overlay network architecture. Their algorithm passes data
blocks around the ring allowing the computation of neighbors
to proceed in parallel. Along the way, each point’s neighbor
information is updated and distributed across all nodes. For
this, a central node is utilized to maintain and update the top-
n points with largest kNN distances. Their strategies, such
as checking the test blocks in a round robin fashion, which
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requires m iterations, is clearly not practical for Map-Reduce.
Furthermore, MapReduce also does not feature a central node.

Data Analytics in MapReduce. The efficiency of our DOD
approach relies on and advances important strategies in dis-
tributed systems such as load balancing and efficient parti-
tioning. These strategies have previously been discussed with
respect to other analytics tasks. We examine these works now
to look for relationships.

In [14] the authors studied the problem of performing
similarity joins using MapReduce. The proposed MR-MAPSS
algorithm partitions the input data into work sets with minimal
redundancy. It achieves load balancing by repartitioning the
densely clustered large work sets. However their load balanc-
ing method relies on the traditional load balancing assumption,
namely an equal number of data points indicating equal work
load. This assumption is proven to be faulty in our context of
distance-based outlier detection (see Sec. IV-A).

Research work also has been done for KNN-Joins on
MapReduce. The approximation algorithm in [19] first maps
the multi-dimensional dataset into one dimension using space-
filling curves (z-values), and then transforms the KNN join
into a sequence of one-dimensional range searches. This way,
the partitioning of a multi-dimensional dataset is reduced
to an equal size one-dimensional partitioning problem. This
technique is not applicable in our context. First, we focus on
producing exact and complete results of distance-based out-
liers instead of an approximation. Second, this approximation
method is shown to be not suitable for skewed data, while
most real world datasets are known to be skewed [5].

[17] studies density-based clustering on MapReduce. Al-
though density-based clustering is the clustering definition
most closely related to distance-based outliers, this approach
cannot be directly applied to solve our outlier detection prob-
lem. First, introducing outliers as by-products of clustering has
already been shown not to be effective in capturing abnormal
phenomena [5]. Further, density-based clustering has been
demonstrated to be more expensive than distance-based outlier
detection [1], because the cluster structure is more complex
to detect and update than individual outlier points due to the
inter-dependence among data points. Therefore applying the
density-based clustering algorithm to attempt to detect outliers
is neither effective nor efficient.

VIII. CONCLUSION

Using outlier detection algorithms to extract abnormal phe-
nomena from huge volumes of data is an extremely important
yet expensive task. Existing techniques lack proper scaling to
terabyte of data. In this paper, we proposed the first distributed
distance-based outlier detection approach called DOD using
the MapReduce paradigm. Innovations of DOD includes a
single-pass execution framework to minimize communication
overhead and the multi-tactic optimization strategy leveraging
the localized characteristics of each data partition to minimize
the processing time. Our experiments show the efficiency and
scalability of DOD on terabytes of data.
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