
Human-in-the-loop Outlier Detection

The MIT Faculty has made this article openly available. Please share 
how this access benefits you. Your story matters.

Citation Chai, Chengliang et al. "Human-in-the-loop Outlier Detection."
Proceedings of the 2020 ACM SIGMOD International Conference on
Management of Data, May 2020, Portland Oregon, Association for
Computing Machinery, May 2020. © 2020 Association for Computing
Machinery

As Published http://dx.doi.org/10.1145/3318464.3389772

Publisher Association for Computing Machinery (ACM)

Version Author's final manuscript

Citable link https://hdl.handle.net/1721.1/130072

Terms of Use Creative Commons Attribution-Noncommercial-Share Alike

Detailed Terms http://creativecommons.org/licenses/by-nc-sa/4.0/

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/130072
http://creativecommons.org/licenses/by-nc-sa/4.0/


Human-in-the-loop Outlier Detection
Chengliang Chai

Tsinghua University

chaicl15@mails.tsinghua.edu.cn

Lei Cao

CSAIL, MIT

lcao@csail.mit.edu

Guoliang Li

Tsinghua University

liguoliang@tsinghua.edu.cn

Jian Li

Tsinghua University

lijian83@@tsinghua.edu.cn

Yuyu Luo

Tsinghua University

luoyy18@mails.tsinghua.edu.cn

Samuel Madden

CSAIL, MIT

madden@csail.mit.edu

ABSTRACT
Outlier detection is critical to a large number of applications

from finance fraud detection to health care. Although nu-

merous approaches have been proposed to automatically

detect outliers, such outliers detected based on statistical rar-

ity do not necessarily correspond to the true outliers to the

interest of applications. In this work, we propose a human-

in-the-loop outlier detection approach HOD that effectively
leverages human intelligence to discover the true outliers.

There are two main challenges in HOD. The first is to design

human-friendly questions such that humans can easily un-

derstand the questions even if humans know nothing about

the outlier detection techniques. The second is to minimize

the number of questions. To address the first challenge, we

design a clustering-based method to effectively discover a

small number of objects that are unlikely to be outliers (aka,

inliers) and yet effectively represent the typical character-

istics of the given dataset. HOD then leverages this set of

inliers (called context inliers) to help humans understand the

context in which the outliers occur. This ensures humans

are able to easily identify the true outliers from the outlier

candidates produced by the machine-based outlier detection

techniques. To address the second challenge, we propose

a bipartite graph-based question selection strategy that is

theoretically proven to be able to minimize the number of

questions needed to cover all outlier candidates. Our experi-

mental results on real data sets show that HOD significantly
outperforms the state-of-the-art methods on both human

efforts and the quality of the discovered outliers.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

SIGMOD’20, June 14–19, 2020, Portland, OR, USA
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-6735-6/20/06. . . $15.00

https://doi.org/10.1145/3318464.3389772

CCS CONCEPTS
• Information systems → Crowdsourcing; • Computing
methodologies → Anomaly detection.

KEYWORDS
outlier detection; human-in-the-loop; question selection

ACM Reference Format:
Chengliang Chai, Lei Cao, Guoliang Li, Jian Li, Yuyu Luo, and Samuel

Madden. 2020. Human-in-the-loop Outlier Detection. In Proceedings
of the 2020 ACM SIGMOD International Conference onManagement of
Data (SIGMOD’20), June 14–19, 2020, Portland, OR, USA. ACM, New

York, NY, USA, 15 pages. https://doi.org/10.1145/3318464.3389772

1 INTRODUCTION
Given a dataset, outliers are the objects that are significantly

different from the others (aka, inliers) in the dataset. Outlier

detection is of paramount importance in a wide variety of

applications such as fraud detection for credit cards, insur-

ance, health care, fault detection in safety critical systems,

military surveillance for hostile activities [15], and outliers

detection and repairing in visualization tasks [33].

Due to the importance of outlier detection, numerous out-

lier detection methods [2, 3, 5, 23, 41] have been proposed.

In general, these methods can be divided into two categories:

supervised and unsupervised methods. The supervised meth-

ods require labeled outliers to train a binary classification

model. However, since outliers typically correspond to rare

events, there is no enough number of available labeled out-

liers that are sufficient to train an accurate model in many

real applications. Although active learning techniques can be

leveraged to guide humans to label the objects that are more

likely to be outliers, they cannot solve the problem of lacking
outliers. Crowdsourcing-based methods, like CrowdER [44],
leverage humans to judiciously select questions in order to

reduce the cost. However, they incur huge costs when used

to address the outlier detection problem, because they ask

humans to label many pairs of objects. As confirmed in our

experiments, existing methods [14, 42] do not perform well.

On the other hand, unsupervised techniques do not rely

on any labeled data [22], and they identify the objects that

∗
Guoliang Li is the corresponding author.

https://doi.org/10.1145/3318464.3389772
https://doi.org/10.1145/3318464.3389772


Name (a1) Customers (a2)
o1 Apple iPhone 7th 16GB white cu1, cu2, cu3
o2 Apple iPhone 7th 32GB black cu2, cu3, cu4, cu5
o3 Apple iPhone 8th 32GB cu5, cu6, cu7
o4 iPhone 5s cu1
o5 Huawei Mate 10 cu2, cu5, cu8, cu9
o6 Huawei Mate 20 cu3, cu8, cu9, cu10
o7 Huawei P30 pro Black 64GB cu4, cu8, cu10
o8 P20 Pro cu8, cu9
o9 Sumsung S7 White cu4, cu11, cu12, cu13
o10 Sumsung Galaxy S7 cu1, cu11, cu13
o11 Sumsung Note 2 cu12, cu14
o12 iPhone 6th case cu17, cu18
o13 Huawei Mate Earphone cu10, cu11
o14 Google Pixel 3 cu10, cu16, cu17, cu18
o15 Google Pixel 2 cu11, cu16, cu17
o16 Google Pixel 3 XL cu15, cu17, cu18

Table 1: Records in a Product Dataset

have few neighbors as outliers, where an object and its neigh-

bors should be very similar to each other. However, simply

relying on these data driven (unsupervised) methods tends

to erroneously flag normal objects as outliers (false positive)

or miss true outliers to the interest of applications (false

negative). Next, we use a toy example to demonstrate this.

Given a dataset with two attributes (product name & cus-

tomers who viewed the product) as shown in Table 1, most of

the objects are cellphones in different brands (o1−o11,o14−o16).
Obviously, o12 and o13 are different from the majority, be-

cause they are cellphone case and earphone respectively.

Therefore, in this dataseto12 ando13 are considered as the true
outliers, which probably were erroneously inserted into this

cellphone database by the product manager. However, apply-

ing the above unsupervised techniques on this dataset, we ob-

tain a set of outliers {o4,o7,o8,o11,o12} as shown in Fig. 1(b),

which do not agree with the true outliers. o4,o7,o8,o11 tend
to be misclassified as outliers, because they are not close

enough to any other object in this dataset. For example, o4
only has one common word “iPhone” with o1, o2, o3 and has

a significantly different customer list. Therefore, although it

is also an Apple cellphone same to o1, o2, o3, it was detected
as an outlier incorrectly. On the other hand, the true outlier

o13 is missed, because it is close to objects o5 and o6, which
also contain the word “Huawei Mate”.

In this work, we focus on designing an approach that ef-

fectively leverages human intelligence in outlier detection

to solve the above problems. Unlike the supervised outlier

detection methods, we do not target on training a classifi-

cation model to detect outliers. Instead, we propose to first

generate some outlier candidates using unsupervised outlier

algorithms, and then use humans to identify the true out-

liers based on the machine generated results. However, to

effectively leverage the human efforts, several challenging

problems have to be solved. First, although outliers typically

are rare, a large number of outlier candidates will still be

produced when detecting outliers from large data sets. It will

be very expensive if we rely on the human to evaluate each

of these candidates one by one. Therefore, when interact-

ing with the human, questions have to be carefully designed

such that each question can cover as many outlier candidates

as possible to minimize the human efforts. Second, human

often do not have a deep understanding on the applications,

nor the unsupervised outlier detection techniques. There-

fore, we have to design some effective outlier explanation

mechanisms that intuitively show why each outlier candi-

date has been flagged to be a potential outlier. Otherwise, it

will be extremely hard for the human to validate the outlier

candidates and thus lead to low quality results.

To address these challenges, we propose a human-in-the-

loop outlier detection framework HOD, that accurately identi-

fies the true outliers with minimal human efforts. Essentially,

it unifies the merits of unsupervised outlier detection algo-

rithms and human intelligence. Our solution is based on the

inlier observation. That is, given a set of inliers, the inliers

surrounding an outlier candidate constitute the context in

which this candidate occurs, so called context inliers. These
context inliers represent the typical characteristics that a

normal object in this area is expected to show. Therefore,

humans can verify the status of an outlier candidate based

on its similarity to its context inliers. More specifically, an

outlier candidate typically corresponds to an inlier if it is

similar to one context inlier, while it tends to be an outlier if

it is considered to be different from all its context inliers.

HOD fully leverages this insight. First, we design a clustering-
based method to discover a set of context inliers that is com-

pact yet sufficient to represent the typical characteristics

of the whole data set. HOD first conducts clustering on the

objects that the unsupervised outlier detection methods be-

lieve are unlikely to be outliers. Then leveraging a small set

of inlier examples acquired through human feedback, HOD
learns a probability for each pair of objects in a cluster that

together indicates how possible this cluster corresponds to

an inlier cluster. Only one object from each inlier cluster is

selected as a context inlier. On the other hand, the objects in

the less certain clusters are considered as outlier candidates

in addition to those produced by the outlier detection meth-

ods. In this way, HOD avoids producing misleading context

inliers and also captures the outliers missed by the outlier

detection algorithms using small human efforts. Moreover,

we propose a context-aware question selection mechanism

that minimizes the human efforts in verifying the outlier

candidates. Instead of directly asking the human if a given

object is an outlier or not, we use a multi-object questioning

mechanism. This not only allows the human to easily verify



the outlier candidates by contrasting them against their cor-

responding context inliers, but also reveals the opportunities

to verify the status of multiple objects using one single ques-

tion. Based on the questioning mechanism, we encode the

outlier candidates, the context inliers, and their relationships

into a bipartite graph. We then model our question selection

problem as an edge covering problem, and efficiently solve

this problem with a small approximation ratio to the optimal

solution.

In conclusion, the key contributions of this work include:

(1) We propose a human-in-the-loop outlier detection ap-

proach (HOD) that is able to accurately discover outliers using
as few human efforts as possible (see Section 2).

(2)We propose a question selectionmethod that minimizes

the number of questions with the theoretical guarantee, thus

effectively reducing the human efforts (see Sections 3, 4).

(3) We design a clustering-based method that discovers a

set of representative inliers, effectively serving as the context

for the easy evaluation of outlier candidates (see Section 5).

(4) Our experiments conducted on real-world datasets

confirm that HOD improves the precision and recall of outlier

detection bymore than 40% and 20% compared with the unsu-

pervised outlier detection methods, while only using half of

the human efforts in comparison to the baseline approaches.

Besides, given the same budget, HOD improves the F1-score

by more than 30% compared with the active learning-based

methods. HOD also outperforms crowdsourcing-based meth-

ods on both quality and cost (see Section 6).

2 OUR OVERALL APPROACH
In this section, we first formally define the human-in-the-

loop outlier detection problem (Sec. 2.1), and then overview

the high level design of our HOD approach (Sec. 2.2).

2.1 Problem Definition
Definition 2.1. Human-in-the-loop Outlier Detection:

Given a dataset O = {o1,o2, ...,oN }, each object has M at-

tributesA = {a1,a2, ...,aM }. Assume there is a set of outliers

Ô ⊂ O that is unknown apriori. Human-in-the-loop outlier

detection aims to discover all outliers in Ô from O with the

minimum human efforts.

For example, consider the toy product dataset in Table 1,

which has 16 records with two attributes, namely the product

name and the IDs of the customers who have viewed the

product. In this dataset, most of the objects correspond to

different brands of cellphones, such as Apple, Huawei, etc.

However at the same time, there are also a few products that

are not cellphones hidden in the data. As shown in Table 1,

o12,o13 are cellphone cases and earphones. These two objects
are considered as outliers by the application, because this

dataset is supposed to only contain cellphones.

2.2 Overall Approach
Context Inlier Observation. The HOD approach is built on

our context inlier observation. Suppose we have a set of

inliers known beforehand. If the human believes that an

outlier candidate is similar to a known inlier, we can deduce

that it is also an inlier with high possibility. Otherwise, if the

candidate is different from any inlier, it tends to be an outlier.

For example, in our product dataset, assumewe already know

that o6 (“Huawei Mate 20”) is an inlier. Given two outlier

candidates o7 and o8, they fall into the same category with o6,
as they are also cellphones made by Huawei. On the other

hand, o13 will be considered as an outlier, as it is an earphone,

different from the known inliers which are all cellphones.

If we can acquire a set of objects that are guaranteed to be

inliers, these inliers can be used as references to verify the

status of the outlier candidates, so called context inliers.
Problems to Solve. To effectively leverage this inlier obser-

vation, several problems have to be solved. First, an outlier

candidate set has to be produced that covers most of the true

outliers. Second, in real applications the inliers typically are

not given beforehand. Instead, they have to be discovered

from the data. Therefore, an inlier discovery method has to

be designed that: (1) is reliable and not producing any outlier

erroneously; (2) produces inliers that represent the typical

characteristics of the given dataset. Moreover, to minimize

the human efforts, the questions for the human to answer

have to be carefully designed and selected. Intuitively, to

verify the status of a given candidate, we can ask the human

to compare it against each context inlier. However, a large

number of questions will be produced.

In this work, we successfully solve the above problems by

designing three techniques, namely an outlier candidate gen-

eration method, a clustering-based context inlier discovery

algorithm, and a bipartite graph-based question selection

strategy, which are applied step by step as sketched below.

2.2.1 Outlier Candidate Generation. We use an ensemble of

different outlier detection algorithms to produce the outlier

candidates. Although there are many outlier detection algo-

rithms, none of them fits all datasets with diverse data charac-

teristics. Thus, we invoke several outlier detection algorithms

AG = {A1,A2, ...A |N |} that generate |N | different sets of

outliers. We then compute the union of these sets as our

outlier candidate set U to avoid the missing of true outliers.

Naturally, other objects left in O constitute the inlier candi-

dates I. As shown in Fig. 1(b), I = {o1,o2,o3,o5,o6,o9,o10,
o13,o14,o15,o16} andU = {o4,o7,o8,o11,o12}.

As confirmed in our experiments, HOD is not sensitive to
specific detection algorithms and their input parameters used

in generating outlier candidates. In other words, using HOD,
users do not have to carefully select the outlier detection

algorithms and tune their input parameters.



Human-in-the-loop Phase  

Metric Learning

Set Threshold

(b)

Outliers Candidate

Inliers Candidate

o
1

o
2

o
3

o
13

o
5

o
6

o
10o

9

o
12

o
8

o
7

o
15

o
16

o
14

o
11

o
4

(c)

Outliers Candidate

Context Inlier Clusters

o
12

o
8

o
7

o
4

o
11

o
13

o
16 o

14

o
15

C1

…

o
1
o

2

o
3

C2

…

o
10

o
9

C3

…

o
5

o
6

C4
Question SelectionHuman-in-the-loop

Clustering
Machine-based 

Ensemble

(a)

o
12

o
1

o
2

o
3

o
4

o
11

o
10o

9

Entire Dataset

o
5

o
6

o
8

o
7

o
14

o
15

o
16

o
13

Machine Phase 

Questions

Outliers

Inliers

(d)

…o
1 o

2

o
3

o
4

…

o
10

o
11

o
9

o
13

o
12

…

o
5

o
6

o
8

o
7

o
16 o

14

o
15

Answers

Figure 1: Framework of Human-in-the-loop Outlier Detection

           Huawei Mate 20 

C!"#$%&'()*+,(“Huawei Mate Earphone ”, 

choose objects that can be clustered with it.

SUBMIT

           Huawei P30

Check All Check None

           Huawei Mate Earphone  

           Huawei Mate 10

Figure 2: Example Question for Humans
2.2.2 Clustering-based Context Inlier Discovery. The context
inliers are discovered from I. To this end, we aim to cluster

objects inI and generate a collectionIC = {C1,C2, ...,C|IC |},

where each Ci (Ci ⊂ I) denotes a set of inliers that can be

clustered together. Only one inlier from each cluster is se-

lected as a context inlier. In this way, we produce a small set

of context inliers to effectively represent the typical charac-

teristics of the whole dataset.

Moreover, to ensure the reliability of the discovered con-

text inliers, we leverage the human feedback to learn a func-

tion that for each pair of objects, computes a probability to

indicate how possible this object pair belongs to the same

cluster. The reason is that even if two objects are clustered

together by a classical clustering algorithm which typically

uses some standard distance functions to determine their

similarity, they do not necessarily fall into the same category

by the semantics of the application. This is also one of the key

reasons that the data driven outlier detection techniques do

not work well in capturing true outliers. These probabilities

are then used in HOD to cluster objects.

In addition, the clustering algorithm often produces some

small clusters which do not necessarily correspond to context

inliers. Therefore, HOD moves the objects in these small clus-

ters toU as outlier candidates. This not only ensures the reli-

ability of the context inliers, but also avoids themissing of the

true outliers. For example, now U = {o4,o7,o8,o11,o12,o13},
because o13 is moved into the outlier candidate set. Thus the

clustering algorithm aims at generating high-quality clusters

of inliers while not involving outliers.

2.2.3 Question Generation. HOD aims to verify if each object

o ∈ U is an outlier or not. Intuitively, to achieve this, we can

ask the human to compare each outlier candidate against

every context inlier. However, since the number of outlier

candidates and the context inliers potentially is large, this

naive method will cost huge amount of human efforts.

Multi-Object Questions. To solve this problem, we first

design a multi-object question interface used to interact with

the human, as shown in Fig. 2. It effectively leverages the

context inliers observation.

Definition 2.2. Multi-objectQuestion in HOD: Each ques-
tion q consists of two parts. One corresponds to a single tar-

get object and the other contains at most k optional objects

or options. The human is asked to mark the options that

share the same category/similar property with the target

through the checkboxes.

Note that either a context inlier or an outlier candidate

can be used as the target. If a question aims to verify if a

given candidate is an outlier, this question should use the

candidate as the target and theh nearest context inliers of this
candidate as the options. On the other hand, in the case that

one context inlier corresponds to the nearest context inlier

of multiple candidates, a question can be constructed that

uses this context inlier as target and the outlier candidates as

options. Thus, a multi-object question can verify the status

of multiple candidates at once.

Question Selection. Given a set of outlier candidates and

the context inliers, a question selection strategy decides on

how to select the targets and the options to construct the

multi-object questions. An optimal question selection strat-

egy should minimize the costs used in the verification of the

outlier candidates, as defined below.

Definition 2.3. Question Selection for Outlier Detec-

tion: Given a dataset O and the size k of a question (i.e.,

a target object and k options), the problem is to produce a

minimal number of questions that are sufficient to verify the

status of all candidates ∈ U.



o
13

o
11

o
12

o
4

o
7

o
8

C1 C2C3 C4
o
14

o
9

o
1

o
5

Figure 3: Graph Model

t
1

t
2

t
3

s
1 s

2
s
3

s
4 s

5
s
6

(a) (b)

t
1

t
2

t
3

s
1

s
2 s

3
s
4

s
5

s
6

Figure 4: A Case for the Graph Model
To solve this problem, we first encode the outlier candi-

dates and the context inliers into a bipartite graph, where

one part of vertices correspond to the outlier candidates in

U and the second part of vertices correspond to the con-

text inliers in IC. An edge indicates that a context inlier

is among the h context inliers nearest to the corresponding

outlier candidate.

For example, suppose k = 3 and h = 3. Given the dataset

in Table 1, as shown in Fig 1(c), we first split them into outlier

candidates (U = {o4,o7,o8,o11,o12,o13}) and context inliers

collection (IC = {{o1,o2,o3}, {o5,o6}, {o9,o10}, {o14,o15,o16}}).
Then the optimal solution generates 4 questions to identify

the status of the objects inU, i.e., {o9,o13,o11,o12}, {o1,o13,o12,o4},
{o5,o12,o7,o8}, {o14,o13}, where o9,o1,o5,o14 are the targets.
Intuitively, a question with k options can cover at most

k edges. The goal is to cover all edges using the minimal

number of questions. In the next section (Sec. 3), we will

formally show that this problem is NP-hard. In Sec. 4 we will

give an approximate solution that solves this problem with

a small approximation ratio. The clustering-based context

inliers discovery method will be presented in Sec. 5.

Discussion: the Scope of HOD. Although the focus of HOD
is to directly discover all outliers from a given dataset using

minimal human efforts, it can also be used as a tool to ob-

tain a set of labels to train a classification model which is

used later to classify outliers from the new data produced

by the application. It tends to be more effective than the

existing active learning methods [14, 42], since using the

same number of questions, HOD can find more outliers with

higher precision, as confirmed in our experiments (Sec. 6).

3 QUESTION SELECTION PROBLEM
In this section, we analyze the complexity of the question

selection problem using a bipartite graph-based model.

Suppose we already know the true outliers inU and have

a perfect context inlier set IC in advance. The bipartite

graph is constructed as follows.

Definition 3.1. Question Selection Bipartite Graph:

Given the context inliers and the outlier candidates U, a

bipartite graph G = (S,T , E) is constructed, where vertices
in S denote the context inliers and vertices in T denote the

candidate object in U. For a vertex t ∈ T whose ground

truth is an inlier, there is an edge between t and the vertex

s ∈ S that represents the nearest context inlier to t . For a

vertex t ′ ∈ T whose ground truth is an outlier, there are h
edges connecting t ′ and the vertices in S corresponding to

t ′’s h nearest context inliers.

For example, as shown in Fig. 3 (h = 3),o4,o7,o8,o11,o12,o13
correspond to the outlier candidate U. o14,o1,o9,o5 corre-
spond to the context inliers IC, representing inlier clus-

ters C1,C2,C3,C4 respectively. For ease of understanding,

given the ground truth, we color the true inlier (outlier) as

Green(Red).
Among the outlier candidates, o13 is an outlier (colored

in Red) and o14,o1,o9 are o13’s top-3 nearest context inliers,
there are 3 edges (o13,o14), (o13,o1) and (o13,o9). In addition,

since o7 (colored in Green since its ground truth is in fact

an inlier) is the nearest to context inlier o5, there is an edge

(o7,o5). Next, we define the bipartite graph-based version of

our question selection problem (Definition 3.2).

Definition 3.2. Question Selection onGraph: Each ques-

tion q contains x vertices in the bipartite graph G, where x
∈ [1,k]. An edge e ∈ E is covered by question q if two nodes

connected by e are included in q. A vertex in T is considered

to be resolved if all edges associated to it are covered. The

problem is to construct the minimal number of questions

that cover all edges (or resolve all vertices in T ) in E.

For example, given the graph in Fig. 3 (constructed based

on Table 1), we can generate five questions {o13,o14,o9,o1},
{o12,o1,o5,o9}, {o5,o7,o8}, {o1,o4} and {o9,o11}. However,
a better solution is to generate four questions {o14,o13},
{o9,o13,o11,o12}, {o1,o13,o12,o4} and {o5,o12,o7,o8}, where
o14,o1,o9,o5 are the representatives of inlier clusters C1, C2,

C3, C4 respectively. Therefore, all edges are covered. o4, o7,
o8, o11, o12, o13 are resolved. Based on the above definition,

covering all edges in E equals to resolving all vertices in T .

So we use those two terminologies interchangeably. For the

ease of presentation, sometimes we also use the notation of

the cluster to denote the context inlier sampled from it. For

example, {o14,o13} can be written as {C1,o13}.

Theorem 3.3. The question selection problem is NP-hard.

Proof. We omit the proof because of the space limit and

put it into the technical report [7]. □

4 GRAPH-BASED QUESTION SELECTION
As shown above, the question selection problem is NP-hard

even if we assume that the ground truth outliers are already



o4 o7 o8 o11 o12 o13
C1 0.5 0.4 0.2 0.5 0.4 0.45

C2 0.78 0.3 0.3 0.45 0.48 0.48

C3 0.45 0.2 0.2 0.78 0.45 0.48

C4 0.4 0.75 0.8 0.3 0.45 0.35

Table 2: Examples of Candidate-Cluster Distances

known beforehand, we propose a bipartite graph-based ques-

tion selection strategy that effectively solves this problem

with a small approximate ratio, without relying on such as-

sumption. We first show how to construct the bipartite graph

G. Then we introduce our question selection algorithm and

show its theoretical property.

4.1 Graph Construction
A bipartite graph G is constructed based on Def. 3.1 (Sec. 3).

The objects in IC and U correspond to the nodes in S and

T of G respectively. To produce the edges in E, we need to

find the h closest context inliers in IC for each candidate

in U. For ease of understanding, we use the cluster which a

context inlier represents to denote the corresponding context

inlier. For example, C2 denotes context inlier o1. Note the
context inliers IC are discovered using our inlier clustering

method which will be presented later in Sec. 5.

We define pi j as the probability that oi and oj can be cate-

gorized into the same cluster. This probability is also used

in our inlier clustering to produce IC. So we will discuss

how to compute this probability in Sec. 5 together with our

clustering method. The distance between an outlier candi-

date and a cluster is then measured using candidate-cluster

likelihood defined below.

Definition 4.1. Candidate-Cluster Likelihood: Given

u ∈ U and C ∈ IC, q(u,C) denotes the likelihood that u
can be clustered into C . q(u,C) = q(C,u) = puu∗ , where

u∗ = argmaxu′
∈C puu′ .

We show how this distance is computed using o4 and C2

in Fig. 1(c) as example. Suppose p14 = 0.55, p24 = 0.6 and

p34 = 0.78, then q(o4,C2) = 0.78, because p34 corresponds to
the largest probability.

For each u ∈ U, we use closest(u) to denote its closest in-

lier cluster. hclosest(u) denotes the h closest inlier clusters of

u. Table 2 gives the distances between the outlier candidates

and inlier clusters in Fig. 1(c). For example, closest(o4) = C2.

hclosest(o4) = {C1,C2,C3} when h = 3.

ByDefinition 3.1, an edge exists betweenu and its closest(u)
if u is an inlier. On the other hand, h edges exist between

v and nodes in hclosest(v) if v is an outlier. However, ap-

parently in practice we do not know the ground truth in

advance. We solve this problem by presuming the outlier

candidates as outliers or inliers based on their distances to

the corresponding closest clusters. Although the presumed

o
13

o
11

o
12

o
4

o
7

o
8

C3 C4C1

(2,2,1)k-tuple:

Capacity: 2 2 1

C2

Figure 5: Online Graph Model

ground truth is not precise, it can be used as a good start

point to solve the question selection problem.

More specifically, when building the graph G = (S,T , E),
given one u ∈ U, if q(u, closest(u)) > 0.5, we color u as

Green and insert an edge connecting u and closest(u) to E.

Otherwise, it is colored as Red. h edges are added into E that

connect u and the nodes in hclosest(u).
For example, given Table 2, we build a graph as Fig. 5.

Since q(o12, closest(o12)) = 0.48 < 0.5, we color it to Red
and connect it with C2,C3 and C4. Since q(o4, closest(o4)) =
0.78 > 0.5, it is colored as Green and connected with C2.

4.2 Approximate Solution
In this section, we present our approximate solution to the

graph-based question selection problem, or in short AQS .
We then show that AQS has a small approximate ratio. AQS

consists of 3 steps. The goal is to resolve all vertices in T .

Step 1. Evaluate Greennodes:AQSfirst tackles the Green
nodes that are likely to be inliers. These green nodes are

evaluated based on the S connected with them, where these

nodes in S correspond to the context inliers.

Given one node si inS, AQS first finds out all Green nodes
connected with si , denoted as д(si ). For each si , based on the

size of д(si ), AQS generates ⌈
|д(si ) |
k ⌉ questions. Each question

has si as the target and the Green nodes inд(si ) as the options.

Among these questions, the options of ⌊
|д(si ) |
k ⌋ questions are

fully occupied by k Green nodes.
However, ifk%|д(si )| , 0, one question still hask−k%|д(si )|

options that remain unused. These leftovers are marked as

available and will be used later to evaluate red nodes. For ex-

ample, C4 is connected with 2 Green nodes. Since k = 3, AQS

generates ⌈ 2
3
⌉ = 1 question. The question has one option

remaining available. So its capacity is 1.

Step 2. Evaluate some Red nodes for free: We use S
′

to denote a subset of S, where each s ∈ S
′

is connected with

at least one Green node. For example, S
′

= {C2,C3,C4} in

Fig. 5.T
′

denotes a subset of Red nodes inT . For each t ∈ T
′

,

there exist at least one edges that connect t to the nodes in

S
′

. Thus potentially the red nodes in T can be verified using

the available capacities of the questions created in Step 1,

without having to create new questions.

For each t ∈ T
′

, we use a h-tuple to denote the available

capacities of the nodes in S
′

t connects to. For example, as

shown in Fig. 5, T
′

= {o12}. o12 is connected to C2, C3 and



C4. Since the available capacities of C2, C3 and C4 are 2, 2,

and 1, the h-tuple of o12 is (2,2,1).
Note o13 is not in T

′

. The reason is that in graph G it is

connected to C1, while C1 is not used to evaluate the green

nodes in Step 1, and hence is not listed in S
′

.

AQS then iterates each ti ∈ T
′

. Given a ti , if all green
nodes in its h-tuple have remaining capacities, ti is assigned
as options to the h questions created in Step 1, which use the

green nodes connected to ti as targets. Then the capacities

recorded in h-tuple decrease by 1.

For example, the h-tuple of o12 is (2,2,1), indicating that

the status of o12 can be resolved using the existing questions.

More specifically, o12 is assigned to the existing questions

that use C2, C3 and C4 as target. Meanwhile, the capacities

of C2, C3 and C4 decrease to (1,1,0). Therefore, no Red node
can be assigned to the question that uses C4 as target.

Those questions are then submitted to the human. For

each question, if a Green node in the options is believed to

match with its target, it will be indeed an inlier. Therefore, its

status is resolved. Otherwise, AQS changes this green node

to Red. Meanwhile, by Def. 3.1, in the bipartite graph each

Red node u should connect to h nodes in S, corresponding

the h nearest context inliers (inlier clusters) of u. Since in
the current graph, u only has one edge connecting to its

nearest context inlier, h − 1 new edges have to be created.

The unresolved Red nodes are evaluated in the next step.

Step 3. Evaluate the rest Red nodes:We first give some

notations used in this step. Tu denotes the set of unresolved

Red nodes (potential outliers). Su denotes a subset of S,

where each s ∈ Su connects to at least one red node in

Tu . r (si ) represents the set of unresolved Red nodes that

are connected to one si ∈ Tu . In our example, Tu = {o13},
Su = {C1,C2,C3} and r (C1) = r (C2) = r (C3) = 1. New

questions have to be created to evaluate the Red nodes in Tu .

To achieve this, AQS provides two alternative algorithms

suitable for different situations.

Red Node (Outlier Candidate) Driven Solution (OC).
When forming a question a red node is used as the tar-

get, and its corresponding h nodes are used as options. ⌈hk ⌉

questions are produced for each unresolved red node. Thus,

in total ⌈hk ⌉ |Tu | questions are produced. In our example,

⌈hk ⌉ · |Tu | = 1.

Inlier Cluster (Context Inlier) Driven Solution (IC). For
each si ∈ Su , we generate ⌈

|r (si ) |
k ⌉ questions. Each question

uses si as the target and those red nodes as the options.

In total

∑
si ∈Su ⌈

|r (si ) |
k ⌉ questions will be generated. In our

example, it generates 3 questions.

Cost-based Algorithm Selection. The cost model of OC

solution corresponds to cost(OC) = ⌈hk ⌉ |Tu |, while the cost

model of IC corresponds to cost(IC) =

∑
si ∈Su ⌈

|r (si ) |
k ⌉.

Therefore, if cost(OC) < cost(IC), we choose solution OC.
Otherwise, we choose solution OC. In our example, solution

OC is chosen, which produces one new question {o13,C1,C2,C3}.

These questions are then submitted to the human. If Red
node does not match any node in closest(u), it is declared as

an outlier. Otherwise, it is an inlier.

4.3 Approximate Ratio
Next, we establish the approximate ratio of AQS.

Theorem 4.2. Given a bipartite graph G which contains
n+ Green nodes and n− Red nodes with h edges, if the number
of options in each question is set as k , the AQS algorithm has

an approximate ratio 1 +
n++ ⌈ hk ⌉kn−

n++hn− + 1

W ∗ , whereW ∗ denotes
lower bound of the question selection algorithm.

Proof. We omit the proof because of the space limit and

put it into the technical report [7]. □

Note as typically used in our experiments, k usually is set

to the same value with h. In this case the approximate ratio

is equal to 2+ 1

W ∗ . SinceW ∗
is guaranteed to be much larger

than 1, this is a small approximate ratio.

5 CONTEXT INLIER DISCOVERY
As discussed in Section 2.2, HOD includes context inliers in
the multi-object question. These context inliers assist the

human to verify the outlier candidates. However, if an object

used as a context inlier is in fact an outlier, it would lead to

misleading questions and in turn the mis-classification of

the outlier candidates.

In this work, we design a clustering-based method to reli-

ably discover the context inliers. The key idea is to apply a

clustering method on I and only consider the objects in the

big clusters as inliers IC. This way, the small outlier clusters
that are not discovered by the outlier detection algorithms

will be safely excluded from context inliers. One object will

be selected from each of these big clusters as a context in-

lier. This not only reduces the number of context inliers, but

also ensures the diversity of the context inliers, effectively

representing the typical characteristics of the given dataset.

Intuitively, we can use any existing clustering method to

cluster the inlier candidates. However, since clustering is an

unsupervised technique, due to the lack of human supervi-

sion, the formed clusters tend to contain objects that are not

considered to be similar in the application domain [26].

To solve this problem, we introduce a clustering method

that effectively leverages human input to ensure the quality

of the produced clusters. More specifically, using a small

number of examples provided by the human, we first learn a

function that for each pair of objects, computes a probability

indicating how possible this object pair belongs to the same

cluster (Section 5.1). We then again leverage human feedback



to establish a probability cutoff that is used to produce the

clusters, similar to the distance threshold used in classical

clustering methods such as DBSCAN [16] (Section 5.2). The

clustering algorithm is also presented in this section. In the

end, we show how to use the clustering results to refine

the outlier candidates produced by the unsupervised outlier

detection methods (Section 5.3).

5.1 The Learned Clustering Probability
Here we use di j to denote the distance between a pair of

objects oi and oj computed based on Euclidean distance or

Jaccard distance. Using a small set of training examples, HOD
learns a function F that maps di j to pi j ∈ [0, 1], representing
the probability that oi and oj belong to the same cluster, so

called clustering probability.
To acquire training examples, we first sample some object

pairs from O and then ask the human if each object pair

belongs to one cluster or not. If the answer to a given pair

is positive, p = 1. Otherwise p = 0. For example, we can

ask the human if “Huawei Mate 10” and “Huawei Mate 20”

in Table 1 belong to the same cluster (category). Using as

input the labeled object pairs and the distances between the

objects in these pairs, HOD employs the logistic regression

model to learn the function F†. As shown in Equation (1), omi
denotes the value onm-th attribute of oi . d(o

m
i ,o

m
j ) denotes

the similarity between oi and oj on attributem.

p =
1

1 + e−θT x
,x = (x1, ...,xM ),xm = d(o

m
i ,o

m
j ), m ∈ [1,M].

(1)

When computing this similarity score, different distance

functions can be used on different attributes. For example,

we can use Euclidean distance for numerical attributes and

Jaccard or Edit distance for text attributes.

Therefore, our method naturally supports data with mixed

data types. θ corresponds to a vector of parameters to be

learned, which capture the significance of each attribute.

Each element in feature vector x represents the distance

value computed on one attribute.

5.2 Threshold Setting
HOD uses a cutoff threshold τ to determine if two objects

should be clustered together. A pair of objects will be as-

signed to the same cluster if the clustering probability pro-

duced by F is larger than τ . Therefore, τ is critical for the

quality of the produced clusters. In this work, we propose a

binary search-based method to establish an appropriate τ .
Binary Search-based Method. HOD first uniformly divides

the probability range [0,1] into |R | subrangesR = {r1, r2, ..., r |R |}.

ri is considered to be smaller than r j if the upper bound of

†
Other learning models such as Random Forest can be applied here if they

can produce a confidence score to represent the clustering probability.

…

Binary Search

1 0.99 0.98 0.97 0.96 0.95 0.94 0.93 0.92 0.91 0.90 0

l

Figure 6: Threshold Setting
ri is smaller than the lower bound of r j . These subranges
are sorted in descending order. For example, if |R | = 100,

r1 = (0.99, 1], r2 = (0.98, 0.99], and r100 = [0, 0.01]. All object
pairs are distributed into the corresponding range based on

the probabilities computed by function F . One object pair is
sampled from each subrange as the representative. Human

is then asked to evaluate if these object pairs belong to the

same cluster or not.

Intuitively, if the human says Yes to an object pair in

subrange ri , it is highly likely that the answers to the object

pairs in subranges {r j |j < i, r j ∈ R} are also Yes. This is
because these object pairs have larger probabilities to be

clustered together than those in ri . If the answer is instead
No, then the object pairs in subranges {r j |j > i, r j ∈ R}
also cannot be clustered together. An appropriate threshold

τ should be able to separate the Yes object pairs and the

No object pairs. In other words, τ should correspond to the

largest Yes subrange.

Based on this observation, we design a binary search-based

method to locate the τ threshold. It effectively minimizes

the number of object pairs to be evaluated by the human.

That is, it starts by asking the human to check the object

pair sampled from subrange r |R |

2

. If the answer is Yes, the

human will proceed to check the subrange r 3

4
|R | . Suppose

the user eventually stops at the subrange rk = [low,hiдh]. If
the answer is Yes, τ = low . Otherwise τ = hiдh.
A Conservative Strategy. However, although the above

binary search-based method prunes a large number of sub-

ranges, it may generate a relatively low threshold and thus

form invalid clusters. It happens in the cases that the object

pair in a skipped subrange is actually a non-matching pair,

but is incorrectly marked as Yes, because an object pair was

identified as a matching pair before, and it lies in a subrange

with a index smaller than the skipped subrange.

To avoid such problems, we propose a conservative strat-

egy that starts from the subrange with the high probability

(small index in R), where the object pairs are likely to be

clustered together, as shown in Fig. 6. More specifically, in

the t-th human identification iteration, we ask the human to

check the (l × t)-th subrange, where l denotes the number

of subranges skipped in each iteration, for example l = 5

in Fig. 6. If the pairs in the (l × t)-th subrange are marked

as Yes, all pairs in the subranges with indices smaller than

l × t are marked as Yes (color those subranges in green in

Fig. 6). The algorithm jumps to the (l ×(t +1))-th subrange to

conduct the next iteration of human evaluation. Otherwise,

the algorithm marks all pairs in the subranges with an index



|O | # Attr # Outliers

Product 1070 5 74

Paper 10578 8 817

Glass 214 9 9

Table 3: Datasets
larger than l×t as No (color those subranges in red). A binary

search is conducted between subranges l × (t − 1) and l × t .
Clustering Algorithm. Using the learned clustering proba-
bilities and the threshold τ , we design a clustering algorithm

to find the collection of context inliers IC. It first picks a

pivot o randomly from I, computes poo′ ,o
′

∈ I, and add

those objects into a cluster if poo′ > τ . Then it removes

the objects in this cluster from I, picks another pivot, and

repeats until all objects in I are assigned to some clusters.

5.3 Outlier Candidate Refinement
Next, we show how to use the clustering results to identify

the potential outliers missed by the unsupervised outlier

methods and prune the outlier candidates that do not have

to go through the human evaluation phase. As confirmed

in our experiments, these intuitive methods are effective in

reducing the human efforts yet improving the accuracy of

outlier detection.

Identifying Missed Outliers. By [23], big clusters with a

large number of objects tend to be inlier clusters. So HOD
divides the produced clusters as big clusters and small clus-

ters using the method introduced in [23]. We then move the

objects in the small clusters to the outlier candidate setU.

More details are described in our experiments (Sec. 6).

Pruning Outlier Candidates. To achieve this, we leverage
the candidate-cluster likelihood q(u, closest(u)) between an

outlier candidate u and its closest inlier cluster (Def. 4.1). For

each u ∈ U, if q(u, closest(u)) > τ which corresponds to

the threshold learned through human feedback as shown in

Section 5.2, u will be directly declared as an inlier. This is

because very possibly u also belongs to closest(u). On the

other hand, if q(u, closest(u)) < 1−τ ,u will be declared as an

outlier without having to go through the human evaluation.

These objects are then removed from U.

6 EXPERIMENTAL EVALUATION
We evaluate our HOD approach on both the human efforts

and the quality of the produced outliers. HOD is implemented

in Python. The experiments were run on a Ubuntu server

with Intel 2.4GHz Processor and 32GB memory.

6.1 Experiment Setting
Datasets. We evaluate HOD using three real datasets, namely

Product dataset, Paper dataset and Glass dataset. The statis-

tics of the datasets are summarized in Table 3.

Product. We crawl 1070 different brands of cellphones from

Amazon. Each product has 5 attributes: Asin, Title, Brand,

Also viewed, Bought together. Outliers correspond to acces-

sories of cellphones such as case, charger, earphone etc.

Clustering Question Selection Total time

Product 10min 4min30s 14min30s

Paper 10min 18min48s 28min48s

Glass 10min 4min18s 14min18s

Table 4: Time of outlier detection

Paper. We crawl 130 Google Scholar pages. Each page con-

tains publications of a senior researcher in Computer Science.

In total we obtain 10,578 papers (objects). Each object consists

of eight attributes: Title, Authors, Date, Venue, Volume, Issue,

Pages and Publisher. Outliers correspond to the papers that

are written by other researchers, but erroneously assigned

to this researcher by Google Scholar. Since the co-authors,

research topics, or publication venues of these outlier papers

are different from the papers authored by the 130 researchers,

human can easily capture these outliers.

Glass. Glass [1] is an outlier benchmark dataset with 214

objects and 9 attributes. Each attribute represents one prop-

erty of glass. In total, it contains 7 types of glasses. The

outliers correspond to the tableware glass, because only a

small number of objects belong to the tableware glass.

Evaluation Metrics. We evaluate both the human efforts

and the precision/recall of outlier detection. The human

effort is measured as the total number of questions needed

to complete the outlier detection task including the costs in

the training and clustering step, while precision and recall

measure the quality of the identified outliers. Using LT to

denote the true outliers in the produced outlier set L, the

precision p = |LT |

|L | . The recall r =
|LT |

|Ô |
.

User Study. 10 students (7 males, 3 females aged from 18

– 24) from our group participate in the evaluation. None of

them is expert in outlier detection. Each question includes

five objects (k = 5). Before starting the evaluation, we demon-

strate the participants using two example questions from

each dataset. Two batches of questions are generated se-

quentially. The questions within each batch are independent

with each other. Thus, users can answer questions in parallel.

This accelerates the evaluation process and we show the

time usage of our proposed method.

We report how long it takes to detect outliers in Table 4.

First, we give each user 10 min to label, browse the dataset,

and understand the task requirement. Next, the users start to

answer questions. Since they work in parallel, most datasets

can be evaluated in 20 min and all datasets can be handled

within half an hour, as shown in Table 4.

To handle human errors, we assign each question to three

different users and aggregate their answers using the major-

ity voting (MV), following the typical error-tolerance practice

in crowdsourcing [18, 36, 37]. More specifically, given a ques-

tion in Fig.2, it is assigned to three users. Correspondingly,

for each question, three answers are collected and aggre-

gated using MV. A similar approach is also applied to the

baselines for fair comparison.



Training Step. As shown in Section 5, HOD trains a logistic
regression model to learn the probability that two objects

belong to one cluster. Therefore, we need to acquire some

training examples through human feedback. We first sample

some object pairs and then ask the human if these pairs of

objects belong to one cluster. To acquire a similar number

of Yes pairs and No pairs, the number of close object pairs is

similar to the number of distant object pairs.

In the evaluation, we acquired 50 labeled object pairs. Us-

ing our multi-object question interface defined in Def. 2.2,

this only costed 10 questions, much less than the number of

questions generated for evaluating outlier candidates.

SettingUpClusteringThreshold. Setting up the thresh-
old τ used in clustering also costs a few questions. As illus-

trated in Section 5.2, we set the threshold by checking object

pairs in the 100 probability subranges. Eventually we ob-

tain the τ = 0.8 for dataset Product, τ = 0.8 for Paper and
τ = 0.7 for dataset Glass, after asking 5 or 6 questions.

Comparison with the State-of-the-art. We compare

HOD with the well known unsupervised outlier detection

methods including KNN [40], LOF [5], Cluster method [23]

and Ensemble method [3] as well as active learning based

methods AI2 [42] and AAD [14].

(1) Unsupervised Methods:
1) KNN computes an outlier score for each object. The score

is defined as the distance from the object to its K-th nearest

neighbor in a given data set.

2) LOF computes a LOF value for each object as the outlier

score. For a given object, the LOF score is equal to the ratio

of the average local density of the K nearest neighbors of

the object and the local density of this object itself.

3) Cluster method adopts the idea that inlier objects

belong to large and dense clusters, while outliers belong

to either small or sparse clusters. Therefore, it first clus-

ters on the entire dataset, ranks them based on the size

of the clusters in descending order, and divides these clus-

ters into large or small ones. More specifically, suppose

IC = {C1,C2, ...,C|IC |} is the set of clusters, where |C1 | ≥

|C2 | ≥ ... ≥ |C|IC | |. Given a β , we define b as the boundary

to separate large and small clusters if
|Cb |

|Cb+1 |
≥ β .

4) Ensemble first uses the above three outlier detection

algorithms to detect outliers separately and then takes a

majority voting on the results. If an object is regarded as an

outlier by most algorithms, it will be considered as an outlier.

We compare HOD with all above methods. To ensure a fair

comparison, we make sure that different approaches use

the same parameters (K in KNN, K in LOF and β in Cluster)
as HOD. On each dataset we evaluate 4 groups of parame-

ters, that is, para1 = {20, 20, 3}, para2 = {30, 30, 4}, para3 =
{40, 40, 5}, para3 = {50, 50, 6} respectively, where para1 =
{20, 20, 3} indicates that we set K in KNN and LOF as 20 and β

in Cluster as 3. In the Ensemble approach and the ensemble-

based outlier candidate generation phase of HOD, the same

set of parameters are used. Given these parameters, we com-

pute the outlier scores using the above algorithms and rank

the objects in descending order by the scores. The top-n ob-

jects with largest outlier scores are selected as outliers. The

parameter n influences the quality of detected outliers. For

these unsupervised outlier detection algorithms, we select a

n that leads to the highest F1-score (f1 =
2pr
p+r ). But for HOD,

when we ensemble machine-based algorithms to acquire out-

lier candidates, we fix n as 0.1 × |O | – a clear bias to these

unsupervised methods.

(2) Active Learning based Methods: We compare with

twomethods: AI2 [42] and AAD [14]. The details are discussed
in Related work (Section 7).

(3) EntityMatching (EM) basedMethods:We compare

with two methods: CrowdER [44] and Magellan [24].

1) CrowdER uses crowdsourcing techniques to identify

matching pairs. Specifically, it generates all pair of objects,

prunes some of them that are likely to be non-matching

based on the likelihood and some pruning techniques [45],

and finally asks the human to label the rest pairs through

cluster-based questions [44]. We first leverage CrowdER to

cluster on I. Given the clustering results, we use clusters of

size larger than 1 as context inliers and apply our question

selection strategy on top of them.

2) Magellan asks the human experts to label some match-

ing or non-matching objects and then train a random forest

to process the dataset. For fair comparison, in Magellan, we
ask the experts to label the same number of object pairs as

HOD does. Next, we use Magellan to train a model to predict

whether two objects can be clustered and use the model to

conduct clustering on the inlier candidates and generate con-

text inliers similar to HOD. Then we use our question selection
method to identify outliers.

Evaluation on Alternative Strategies. We also com-

pare HOD with three baselines. 1) ClusterAll. We design a

baseline algorithm that first clusters on the entire dataset,

split the cluster into inlier candidate subset and outlier candi-

date subset, and evaluate the objects in the latter subset using

our proposed algorithm AQS in Section 4.2. This experiment

shows the significance of our outlier ensemble and clustering

strategy. 2) CheckAll. Given IC and the to-be-evaluated

outlier candidatesU, CheckAll identifies outliers by evaluat-
ing every candidate inU without using the outlier candidate

pruning strategy. 3) CandAll. CandAll is an alternative of

AQS . The difference from AQS is that when forming ques-

tions, CandAll uses each outlier candidate u ∈ U as the

target and the objects in hclosest(u) as options.



0

0.2

0.4

0.6

0.8

1

para1 para2 para3 para4

P
re

c
is

io
n

(a) Parameters for algorithm(Product)

Cluster

KNN

LOF

Ensemble

HOD

0

0.2

0.4

0.6

0.8

1

para1 para2 para3 para4
P

re
c
is

io
n

(b) Parameters for algorithms(Paper)

Cluster

KNN

LOF

Ensemble

HOD

0

0.2

0.4

0.6

0.8

1

para1 para2 para3 para4

P
re

c
is

io
n

(c) Parameters for algorithms(Glass)

Cluster

KNN

LOF

Ensemble

HOD

Figure 7: Evaluate State-of-the-art Works: Precision

6.2 Comparison with the State-of-the-art
We compare with three categories of state-of-the-art outlier

detection methods, namely unsupervised methods (Section

6.2.1), active learning based-methods (Section 6.2.2), and

crowdsourcing entity matching (EM) methods (Section 6.2.3).

By default the parameter h is set as 5.

6.2.1 Comparison with the Unsupervised Method. In this set

of experiments, we compare HOD against state-of-the-art un-

supervised outlier detection approaches KNN, LOF, Cluster
method and Ensemble method by measuring the precision

(Fig. 7) and recall (Fig. 8) under various parameter settings.

For theprecision of Product dataset, as shown in Fig. 7(a),
in all cases Ensemble achieves the lowest precision. For ex-
ample, as using para3, Ensemble has a precision of 44%,

while the precision of othermachine-based approaches is 53%

(Cluster), 55% (KNN), and 52% (LOF) respectively. This is be-
cause Ensemble computes the union of different approaches

and involves many inliers into outlier candidates.

However, all these methods are far worse than our method

HOD. For example, when we use para4, HOD has a precision

of 98% – more than 40% higher than that of Cluster (55%),
KNN (56%), LOF (50%) and Ensemble (43%) on average. This

is because HOD leverages the human input to locate inliers in

the outlier candidates, while these inliers are mis-classified

as outliers by these machine-based algorithms. In addition,

as the parameters vary, the precision of HOD does not vary
much. This is because we ensemble different algorithms to

compute the candidates, covering as many outliers as we can.

Therefore, our algorithm is not sensitive to the parameters.

For dataset Paper in Fig. 7(b), HOD also outperforms these

machine-based algorithms. For example, when using para1,
HOD has a high precision of 96%, while the precision of other

methods is 55% (Cluster), 53% (KNN), 50% (LOF) and 46%

(Ensemble) respectively.
For Glass, when using para3, HOD has a precision of 89%,

while the precision of other methods is 57% (Cluster), 53%
(KNN), 78% (LOF) and 62% (Ensemble), as shown in Fig. 7(c).

For recall of Product dataset, as shown in Fig. 8(a), Ensemble
performs better than other machined-based approaches. For

example, when using para2, Ensemble has a recall of 81%,

which is higher than that of Cluster (78%), KNN (73%) and
LOF (78%). This is because the ensemble method obtains

more true outliers than any single method. Our HOD still per-

forms the best among all approaches. For instance, when

using para3, HOD has a recall of 98%, while the recall of

0.75

0.8

0.85

0.9

0.95

1

para1 para2 para3 para4

R
e

c
a
ll

(a) Parameters for algorithm(Product)

Cluster

KNN

LOF

Ensemble

HOD

0

0.2

0.4

0.6

0.8

1

para1 para2 para3 para4

R
e

c
a
ll

(b) Parameter for algorithms(Paper)

Cluster

KNN

LOF

Ensemble

HOD

0

0.2

0.4

0.6

0.8

1

para1 para2 para3 para4

R
e

c
a
ll

(c) Parameters for algorithm(Glass)

Cluster

kNN

LOF

Ensemble

HOD

Figure 8: Evaluate State-of-the-art Works: Recall

other methods are 80% (Cluster), 82% (KNN), 88% (LOF) and
90% (Ensemble) respectively. This is because HOD leverages
both the outlier ensemble and clustering approaches to avoid

the missing of true outliers. Similarly, for Paper and Glass
dataset, HOD outperforms the others and is not sensitive to

the parameters as shown in Fig. 8(b) and (c).

6.2.2 Comparison with the Active LearningMethod. For a fair
comparison, we design the same number of questions for AI2,
AAD and HOD. We apply para3 to HOD when comparing with

the other twomethods. Under this situation, HOD costs 78, 352,
and 52 questions on the three datasets respectively. For AI2,
we conduct 10 human evaluation iterations. Using Product
dataset as example, we ask 78 questions in total. Therefore,

we ask X = ⌈ 78
10
⌉ questions in each iteration. When we test

AAD, 78 iterations are conducted, because AAD only selects

one question to ask in each iteration.

As shown in Fig. 9(a), HOD performs better than the other

two methods on precision. On Product dataset, HOD has a

precision of 96%, while the precision of AI2 is only 19%. This
is because in AI2 the training data is extremely unbalanced

– containing much more labeled inliers than outliers. AAD
has a high precision 92%, because it relies on the human to

label the objects and does not use the trained classifier to

predict. However, AAD still performs worse than HOD, because
AAD requires the users to directly label each outlier. This is

error-prone. Our multi-object question in HOD instead pro-

vides users the context inliers as the references during the

evaluation process. Therefore, it is much easier to answer.

As for recall, as depicted in Fig. 9(b), HOD also performs

better than the other two methods. For example, on Paper
dataset, HOD has a recall of 96%, while the recall of AAD is

only 85%. This is because HOD discovers almost all outliers in

the machine-based outlier detection and clustering phases

and then uses human input to effectively filter out the false

outliers in the following step. However, AAD utilizes the ma-

chine learning model to recommend the potential outliers

for the user to label, while the machine learning model tends

to miss true outliers because of the imbalanced training data

(insufficient number of labeled outliers). AI2 has a recall of
92%, which is higher than AAD. This is because in addition

to the human evaluated outliers, AI2 also automatically pro-

duces outliers from the unlabeled data using the classifica-

tion model, although the classification model is not accurate

enough due to the imbalanced training data.



0

0.2

0.4

0.6

0.8

1

Product Paper Glass

P
re

c
is

io
n

(a) Evaluate precision on datasets

AI
2

AAD HOD

0.4

0.5

0.6

0.7

0.8

0.9

1

Product Paper Glass

R
e
c
a

ll

(b) Evaluate recall on datasets

AI
2

AAD HOD

0

0.2

0.4

0.6

0.8

1

Product Paper Glass

F
1
-s

c
o

re

(c) Evaluate F1-score on datasets

AI
2

AAD HOD

Figure 9: Evaluate Active Learning Works

0

0.2

0.4

0.6

0.8

1

Product Paper Glass

P
re

c
is

io
n

(a) Evaluate precision on datasets

CrowdER Magellan HOD

0.4

0.5

0.6

0.7

0.8

0.9

1

Product Paper Glass

R
e
c
a

ll

(b) Evaluate recall on datasets

CrowdER Magellan HOD

10

10
2

10
3

10
4

Product Paper Glass
C

o
s
t

(c) Evaluate cost on datasets

CrowdER Magellan HOD

Figure 10: Evaluate EM-based Approaches

Finally, we report the F1-scores of these methods on the

three datasets in Fig. 9(c). HOD has the highest F1-score on all

these three datasets. For example, on Paper dataset, HOD has

an F1-score 95%, while the F-1 scores of AI2 and AAD are 84%
and 86% respectively. On Glass dataset, HOD has an F1-score

83%, while AI2 and AAD have the same F-1 score at 78%.

6.2.3 Comparison with the Entity Matching Methods. In this

section, we compare HOD with EM methods CrowdER [44]

and Magellan [24]. For CrowdER [44], we ask the users to

process the dataset using its proposed method and compare

the precision, recall and cost with HOD. CrowdER uses cluster-

based questions to interact with users. We set the cluster

size as k for fair comparison. For a fair comparison with

Magellan [24], we set the same budget of cost, and compare

its precision and recall against our HOD.
For precision, in Fig. 10(a) HOD has a similar precision with

CrowdER on three datasets. CrowdER achieves a good perfor-

mance because it leverages humans to address all pairs. HOD
achieves a similar performance, because it also incorporates

human knowledge, i.e., using some labels to train a model

and learn a threshold for clustering. Besides, we cluster on

a pure candidate set whose objects are likely to be inliers.

This leads to a good clustering result. We can also observe

that HOD has higher precision than Magellan. For example,

on dataset Product, HOD has a precision of 96%, while the

precision of Magellan is only 83%. This is because HOD can
judiciously select the threshold for clustering after training,

while Magellan relies on the model for clustering.

For recall, HOD outperforms CrowdER by about 5%. For ex-

ample, on the Product dataset, HOD has a recall of 99%, while
the recall of CrowdER is 95%. The reason is that CrowdER uses
clusters of size larger than 1 as context inliers. This does not

perform well, because some of small clusters are also likely

to be outliers. Besides, HOD also outperforms Magellan (84%)
for the similar reason to that of precision.

For cost, since we use the same number of labels for HOD
and Magellan for fair comparison, they have the same cost.

In Fig. 10(c) CrowdER takes much more cost than HOD on

0

50

100

150

para1 para2 para3 para4

C
o

s
t

(a) Parameters for algorithm(Product)

ClusterAll

CheckAll

CandAll

HOD

0

400

800

1200

1600

2000

2400

2800

3200

para1 para2 para3 para4

C
o

s
t

(b) Parameters for algorithms(Paper)

ClusterAll

CheckAll

CandAll

HOD

0

20

40

60

80

100

para1 para2 para3 para4

C
o

s
t

(c) Parameters for algorithm(Glass)

ClusterAll

CheckAll

CandAll

HOD

Figure 11: Evaluate Baselines: Human Efforts

0.8

0.85

0.9

0.95

1

para1 para2 para3 para4

P
re

c
is

io
n

(a) Parameters for algorithm(Product)

ClusterAll

CheckAll

CandAll

HOD

0.8

0.85

0.9

0.95

1

para1 para2 para3 para4

P
re

c
is

io
n

(b) Parameters for algorithms(Paper)

ClusterAll

CheckAll

CandAll

HOD

0.5

0.6

0.7

0.8

0.9

1

para1 para2 para3 para4

P
re

c
is

io
n

(c) Parameters for algorithm(Glass)

ClusterAll

CheckAll

CandAll

HOD

Figure 12: Evaluate Baselines: Precision

0.8

0.85

0.9

0.95

1

para1 para2 para3 para4

R
e
c
a

ll

(a) Parameters for algorithm (Product)

ClusterAll

CheckAll

CandAll

HOD

0.8

0.85

0.9

0.95

1

para1 para2 para3 para4

R
e
c
a

ll

(b) Parameter for algorithms(Paper)

ClusterAll

CheckAll

CandAll

HOD

0.4

0.5

0.6

0.7

0.8

0.9

1

para1 para2 para3 para4

R
e
c
a

ll

(c) Parameters for algorithm (Glass)

ClusterAll

CheckAll

CandAll

HOD

Figure 13: Evaluate Baselines: Recall
all datasets. For example, on the Product dataset, HOD only
asks 78 questions, while CrowdER asks 560. This is because
CrowdER needs to generate multi-object questions to cover

all pairs of objects in I and there are a large number of

pairs (|I |2). Although CrowdER prunes some of pairs using

a threshold [44] and leveraging the transitivity [45], it still

costs too much. Therefore, our method not only saves the

cost but also achieves high quality.

6.3 Evaluation on Our Techniques
We compare HOD against the three alternative algorithms

(Section 6.1) by measuring human efforts (number of ques-

tions asked) (Fig. 11), precision (Fig. 12) and recall (Fig. 13).

For the human efforts, HOD significantly outperforms all

baseline algorithms, because it uses the AQS algorithm to

select questions which is shown to have a good theoretical

guarantee. For example, as shown in Fig. 11(a), when we

use para1, HOD only uses 76 questions and costs about 30%

less than ClusterAll, because ClusterAll clusters on the

entire dataset and generates many small clusters that have to

be evaluated by human. CheckAll costs about 2 times more

than HOD, because HOD prunes some objects that are very

likely to be inliers or outliers and hence do not have to be

evaluated by human. HOD costs about 25% less than CandAll,
because HOD fully uses the capacities of each question. As

another example, when using para2, ClusterAll, CheckAll
and CandAll use 105, 139 and 103 questions respectively,

while HOD only uses 79 questions.

Similarly, for dataset Paper, HOD outperforms the three

baseline algorithms as shown in Fig. 11(b). For example, when

using para3, HOD costs 1394 questions, while ClusterAll,
CheckAll and CandAll cost 1752, 2177 and 2512 questions

respectively. On this dataset, CandAll costs nearly two times



Cost, Precision, Recall

Question Selection

HOD CheckAll CandAll

Clustering

HOD 78, 97%, 99% 144, 97% , 100% 98, 97%, 99%

CrowdER 560, 96% , 95% 632, 96%, 96% 580, 96% , 95%

Magellan 80, 94%, 83% 142, 96%, 85% 102, 94%, 83%

Table 5: Impact Comparison of Cost and Quality on
the Product dataset.
more than HOD. This is because many inliers are hidden in

the outlier candidate set. Unfortunately, unlike HOD, CandAll
does not take any advantage of inliers which only need one

comparison against the nearest context inlier to verify.

For dataset Glass, HOD still outperforms the three baseline

algorithms as shown in Fig. 11(c). For example, when using

para3, HOD costs 52 questions, while ClusterAll, CheckAll
and CandAll cost 88, 60 and 102 questions respectively.

For theprecision, HOD and CandAll are expected to achieve
the same precision because they use the same bipartite graph

to produce questions. We can see from Fig. 12 (a) and (b) that

all approaches achieve similar high precision, more than 96%.

On Product dataset, the precision of HOD is slightly lower

than CheckAll, because a few candidates that are regarded

as outliers directly by our candidate pruning strategy are

in fact inliers. However, the pruning is shown to be very

effective in recognizing the obvious inliers which are very

close to some context inliers. Therefore, HOD and ClusterAll
even achieve a slightly better precision than CheckAll on

Paper dataset. CheckAll has to check all candidates in U

even if most of them are in fact inliers. Sometimes inliers

are mis-classified as outliers in human evaluation, because

the questions created for inliers only contain one context

inlier as option to save costs. However, in the rare cases this

introduces errors due to the lack of information for human

to make correct decision.

For the recall, similar to the precision, HOD and CandAll
performs the same. On all datasets (Fig. 13) HOD and CheckAll
achieve a similar high recall, because they have the same

outlier candidates and use human to identify the outliers.

However, HOD outperforms ClusterAll. For example, on

Product dataset, when using para1, HOD has a recall of 99%,

while the recall of ClusterAll is 96%. This is because in

addition to the outlier candidates acquired by the ensemble

of outlier detection techniques, HOD also incorporates more

true outliers intoU by treating the objects in small cluster

as outlier candidates.

On Paper (Glass) dataset, HOD has a recall of 94% (88%),

while the recall of ClusterAll is 89% (66%) using para2.

6.4 Evaluation on Question Selection
Next, we show in Table 5 how different techniques for cluster-

ing and question selection perform on the Product dataset
in both cost and quality. Each column denotes the methods

that use different clustering methods but the same question-

selection methods. Each row denotes the methods that use

0

0.2

0.4

0.6

0.8

1

Product Paper Glass

P
re

c
is

io
n

(a) Evaluate precision on datasets

5% 10% 15%

0.4

0.5

0.6

0.7

0.8

0.9

1

Product Paper Glass

R
e
c
a
ll

(b) Evaluate recall on datasets

5% 10% 15%

Figure 14: Evaluate experts errors
the same clustering method but different question-selection

methods. We have the following observations.

First, clustering strategies have large impact on the cost

and quality (i.e., comparing the rows in the same column). For

cost, CrowdER takes much larger cost than HOD and Magellan.
The reason is that CrowdER requires to ask humans to label

many pairs of objects, while HOD and Magellan ask the hu-

mans to label a small number of objects for clustering. For

quality, HOD has similar quality with CrowdER but achieves
much higher quality than Magellan. This is because even
if Magellan also asks the humans to label the similar num-

ber of questions with HOD, Magellan does not leverage the
humans to judiciously determine an appropriate threshold

used in clustering and thus it may involve potential outliers

during the clustering, leading to missing true outliers. In

summary, HOD is able to get high clustering quality, while

achieving lower cost.

Second, different question selection methods perform dif-

ferently on cost (i.e., comparing the columns in the same row).

For cost, HOD saves half of the cost compared to CheckAll and
saves 25% cost compared to CandAll, because HOD prunes

those unnecessary pairs, and CheckAll and CandAll still

need to ask some unnecessary pairs. For quality, question

selection strategies achieve the similar precision and recall,

because they both leverage the human intelligence to check

the outlier candidates. In summary, HOD is able to prune some

unnecessary objects, without sacrificing the quality.

6.5 Evaluation of Human Errors
We simulate the error rate of experts as 5%, 10% and 15%

respectively and test the precision, recall and cost. The ex-

perimental results are shown in Fig. 14. In Fig. 14(a) for

different error rates of experts, the precision is nearly the

same. For example, on the Product dataset, the precision of

users with 5% and 10% error rate is 96% and the precision of

15% is 95%, because the majority voting is good at handling

the expert errors. However, the precision is still not perfect

due to other types of errors induced by pruning methods or

a small h. For recall, we observe the similar phenomenon

with the precision. On the dataset Product, the recalls are
99%, 99% and 98% respectively for different error rates.

7 RELATEDWORK
Outlier Detection Techniques. A large number of outlier

detection techniques have been proposed in the literature.



Outlier detection techniques can be broadly classified into

supervised methods and unsupervised methods.

Supervised Outlier Detection. Techniques in this class as-

sume that abundant labeled outliers and inliers are available

beforehand. Using these labeled data, a classificationmodel is

then trained, which classifies a testing object as an outlier or

inlier. However, supervised outlier detection has two severe

problems. First, outliers in the training set typically are far

fewer than inliers. This leads to the imbalanced class distribu-

tion and thus impacts the classification accuracy [38, 43, 46].

Second, it is difficult to obtain a large number of high quality

labels, especially outlier labels because of the rarity nature

of outliers [2, 41]. Due to these problems, supervised outlier

detection methods are not prevalent in real applications.

Unsupervised Outlier Detection. Techniques [3, 5, 6, 23, 40,
52] in unsupervised class are widely used in real world, be-

cause they do not require any training data. In general, these

techniques detect outliers based on the observation that in-

liers in the data set usually is much more frequent than

outliers. However, the accuracy of unsupervised techniques

tends to be low as we described in Section 1. We thus pro-

pose to use human input to improve the accuracy of the

unsupervised techniques. However, although human is in-

volved, unlike the supervised techniques, we do not require

the human to explicitly mark the objects as inliers or outliers,

which is typically hard and extremely time-consuming. In-

stead, by carefully selecting the questions to be answered by

the human as shown in Fig. 2, our HOD is able to accurately

discover outliers with the least human efforts.

Active Learning-based Methods Given a human cost bud-

get, the active learning methods choose objects from the

dataset, ask the human to label these objects and train a

classifier iteratively until the budget is used up. In [14, 42],

active learning has been used to detect outliers.

(1)AI2 [42]: Each time AI2 selects X objects for the users

to label, in which
X
2
objects come from an unsupervised

method and the other
X
2
objects are provided by the super-

vised method (random forest). After theX objects are labeled,

it retrains the supervised model and selects another X ob-

jects until the budget is used up. Finally, it uses the model to

predict the rest unlabeled data.

(2)AAD [14]: First, AAD extracts features for each object, and
uses a supervised method to train a classifier. Next, based on

themodeling results, AAD selects one object that is most likely

to be an outlier for the human to label. Then it iteratively

retrains the model to adjust the weight of each feature and

selects a new outlier candidate.

Although the active learning methods effectively reduce

the labeling efforts of the human, they do not solve the

unique challenge in outlier detection, that is, the lacking

of ground truth outliers in the real applications due to the

rarity nature of outliers. Therefore, their outlier detection

accuracy is still much lower than our HOD approach as con-

firmed in our experiments.

Crowdsourcing. Crowdsourcing leverages the human cog-

nitive ability to solve many significant data management and

analytics tasks [8–13, 19, 21, 27, 28, 30, 32, 34, 35, 39, 47, 48].

Crowdsourcing entity matching (EM) [20, 24, 44] focuses

on identifying records that refer to the same entity, while

our proposed method HOD focuses on identifying outliers

that are significantly different from others. In essence, these

two problems are contradictory. Further, EM targets on text

data (strings), while HOD generally supports various types

of data including strings and numerical values. Even if EM-

based techniques can be leveraged in the clustering step of

HOD, they always suffer from either high cost (asking many

pairs of objects) or low quality (leading to poor clustering

results due to the influence of potential outliers during clus-

tering). Some other existing works focus on data cleaning

by experts [4, 17, 25, 29, 31, 49–51]. SampleClean [25] is a

framework that only requires the human to clean a sample

of data, and utilizes the cleaned sample to obtain unbiased

query results with confidence intervals. However, it mainly

focuses on processing aggregate queries rather than outlier

detection. QOCO [4] is a query-oriented system that asks

the crowd workers to clean inconsistent records or missing

values. Our HOD instead is for outlier detection. To the best

of our knowledge, this is the first work on crowdsourcing

outlier detection. Traditional crowdsourcing EM approaches

do not work well on this problem as confirmed in our exper-

iments, because they either incur much cost or low quality.

8 CONCLUSION
In this paper, we propose a human-in-the-loop approach

HOD that leverages the human input to accurately discover

outliers from a dataset. HOD features a clustering algorithm
to reliably generates context inliers that are used as con-

text to contrast against the outlier candidates in the human

evaluation phase. This facilitates the evaluation of outlier

candidates. We then map the question selection problem to

a bipartite graph-based edge cover problem, which is proven

to be NP-hard. An approximate algorithm is then designed

that solves this problem with theoretical guarantee. This ef-

fectively minimizes the human efforts used in the evaluation.

Our experimental results on multiple real datasets show that

HOD significantly outperforms the alternative approaches on

both human efforts and outlier quality.

Acknowledgement. This paper is supported by NSF of

China (61925205, 61632016), Huawei, and TAL education.



REFERENCES
[1] https://archive.ics.uci.edu/ml/datasets/.

[2] N. Abe, B. Zadrozny, and J. Langford. Outlier detection by active

learning. In KDD, pages 504–509, 2006.
[3] C. C. Aggarwal. Outlier ensembles: position paper. SIGKDD Explo-

rations, 14(2):49–58, 2012.
[4] M. Bergman, T. Milo, S. Novgorodov, and W. C. Tan. Query-oriented

data cleaning with oracles. In SIGMOD, pages 1199–1214, 2015.
[5] M. M. Breunig, H. Kriegel, R. T. Ng, and J. Sander. LOF: identifying

density-based local outliers. In SIGMOD, pages 93–104, 2000.
[6] G. O. Campos, A. Zimek, J. Sander, R. J. G. B. Campello, B. Micenková,

E. Schubert, I. Assent, and M. E. Houle. On the evaluation of unsu-

pervised outlier detection: measures, datasets, and an empirical study.

Data Min. Knowl. Discov., 30(4):891–927, 2016.
[7] C. Chai, L. Cao, G. Li, J. Li, Y. Luo, and S. Madden. Human-in-the-loop

Outlier Detection.
[8] C. Chai, J. Fan, and G. Li. Incentive-based entity collection using

crowdsourcing. In ICDE, pages 341–352, 2018.
[9] C. Chai, J. Fan, G. Li, J. Wang, and Y. Zheng. Crowdsourcing database

systems: Overview and challenges. In ICDE, pages 2052–2055, 2019.
[10] C. Chai, G. Li, J. Fan, and Y. Luo. Crowdchart: Crowdsourced data

extraction from visualization chart. IEEE Trans. Knowl. Data Eng., 2020.
[11] C. Chai, G. Li, J. Fan, and Y. Luo. Crowdsourcing data extraction from

visualization chart. In ICDE, 2020.
[12] C. Chai, G. Li, J. Li, D. Deng, and J. Feng. Cost-effective crowdsourced

entity resolution: A partial-order approach. In F. Özcan, G. Koutrika,

and S. Madden, editors, SIGMOD, pages 969–984. ACM, 2016.

[13] C. Chai, G. Li, J. Li, D. Deng, and J. Feng. A partial-order-based

framework for cost-effective crowdsourced entity resolution. VLDB J.,
27(6):745–770, 2018.

[14] S. Das, W. Wong, and et al. Incorporating expert feedback into active

anomaly discovery. In ICDM, 2016.

[15] C. C. A. S. Edition. Outlier Analysis. Springer, 2017.
[16] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm

for discovering clusters a density-based algorithm for discovering

clusters in large spatial databases with noise. In KDD, 1996.
[17] J. Fan, G. Li, B. C. Ooi, K. Tan, and J. Feng. icrowd: An adaptive

crowdsourcing framework. In SIGMOD, pages 1015–1030, 2015.
[18] M. J. Franklin, D. Kossmann, T. Kraska, S. Ramesh, and R. Xin. Crowddb:

Answering queries with crowdsourcing. In SIGMOD, 2011.
[19] Z. Gharibshah, X. Zhu, A. Hainline, and M. Conway. Deep learning

for user interest and response prediction in online display advertising.

Data Science and Engineering, 5(1):12–26, 2020.
[20] C. Gokhale, S. Das, A. Doan, J. F. Naughton, N. Rampalli, J. W. Shavlik,

and X. Zhu. Corleone: hands-off crowdsourcing for entity matching.

In SIGMOD, pages 601–612, 2014.
[21] S. Hao, C. Chai, G. Li, N. Tang, N. Wang, and X. Yu. Outdated fact

detection in knowledge bases. In ICDE, 2020.
[22] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical

Learning: Data Mining, Inference, and Prediction. Springer, 2009.
[23] Z. He, X. Xu, and S. Deng. Discovering cluster-based local outliers.

Pattern Recognition Letters, 24(9-10):1641–1650, 2003.
[24] P. Konda, S. Das, P. S. G. C., A. Doan, A. Ardalan, J. R. Ballard, H. Li,

F. Panahi, H. Zhang, J. F. Naughton, S. Prasad, G. Krishnan, R. Deep,

and V. Raghavendra. Magellan: Toward building entity matching

management systems. PVLDB, 9(12):1197–1208, 2016.
[25] S. Krishnan, J. Wang, M. J. Franklin, K. Goldberg, T. Kraska, T. Milo,

and E. Wu. Sampleclean: Fast and reliable analytics on dirty data. IEEE
Data Eng. Bull., 38(3):59–75, 2015.

[26] B. Kulis. Metric learning: A survey. Foundations and Trends in Machine
Learning, 5(4):287–364, 2013.

[27] G. Li, C. Chai, J. Fan, X. Weng, J. Li, Y. Zheng, Y. Li, X. Yu, X. Zhang,

and H. Yuan. CDB: optimizing queries with crowd-based selections

and joins. In SIGMOD, pages 1463–1478, 2017.
[28] G. Li, C. Chai, J. Fan, X. Weng, J. Li, Y. Zheng, Y. Li, X. Yu, X. Zhang, and

H. Yuan. CDB: A crowd-powered database system. PVLDB, 11(12):1926–
1929, 2018.

[29] G. Li, J. Wang, Y. Zheng, and M. J. Franklin. Crowdsourced data

management: A survey. IEEE Trans. Knowl. Data Eng., 28(9), 2016.
[30] K. Li and G. Li. Approximate query processing: What is new and

where to go? Data Science and Engineering, 3(4):379–397, 2018.
[31] K. Li, X. Zhang, and G. Li. A rating-ranking method for crowdsourced

top-k computation. In SIGMOD, pages 975–990, 2018.
[32] M. Li, H. Wang, and J. Li. Mining conditional functional dependency

rules on big data. Big Data Mining and Analytics, 03(01):68, 2020.
[33] Y. Luo, C. Chai, X. Qin, N. Tang, and G. Li. Interactive cleaning for

progressive visualization through composite questions. In ICDE, 2020.
[34] Y. Luo, X. Qin, C. Chai, N. Tang, G. Li, and W. Li. Steerable self-driving

data visualization. IEEE Trans. Knowl. Data Eng., 2020.
[35] Y. Luo, X. Qin, N. Tang, and G. Li. Deepeye: Towards automatic data

visualization. In ICDE, pages 101–112, 2018.
[36] A.Marcus, E.Wu, S. Madden, and R. C.Miller. Crowdsourced databases:

Query processing with people. In CIDR, pages 211–214, 2011.
[37] A. G. Parameswaran, H. Park, H. Garcia-Molina, N. Polyzotis, and

J. Widom. Deco: declarative crowdsourcing. In CIKM, 2012.

[38] C. Phua, D. Alahakoon, and V. C. S. Lee. Minority report in fraud

detection: classification of skewed data. SIGKDD Explorations, 2004.
[39] X. Qin, Y. Luo, N. Tang, and G. Li. Deepeye: An automatic big data

visualization framework. Big Data Mining and Analytics, 1(1):75, 2018.
[40] S. Ramaswamy, R. Rastogi, and K. Shim. Efficient algorithms for mining

outliers from large data sets. In SIGMOD, pages 427–438, 2000.
[41] I. Steinwart, D. R. Hush, and C. Scovel. A classification framework for

anomaly detection. Journal of Machine Learning Research, 2005.
[42] K. Veeramachaneni, I. Arnaldo, V. Korrapati, C. Bassias, and K. Li. Aiˆ

2: training a big data machine to defend. In BigDataSecurity, pages
49–54. IEEE, 2016.

[43] R. Vilalta and S. Ma. Predicting rare events in temporal domains. In

ICDM, pages 474–481, 2002.

[44] J.Wang, T. Kraska, M. J. Franklin, and J. Feng. Crowder: Crowdsourcing

entity resolution. PVLDB, 5(11):1483–1494, 2012.
[45] J. Wang, G. Li, T. Kraska, M. J. Franklin, and J. Feng. Leveraging

transitive relations for crowdsourced joins. In SIGMOD, 2013.
[46] G. M. Weiss and H. Hirsh. Learning to predict rare events in event

sequences. In KDD, pages 359–363, 1998.
[47] T. Zhao, C. Chai, Y. Luo, J. Feng, Y. F. Huang, S. Yang, H. Yuan, H. Li,

K. Li, F. Q. Zhu, and K. Pan. Towards automatic mathematical exercise

solving. Data Science and Engineering, 4:179 – 192, 2019.

[48] T. Zhao, Y. Huang, S. Yang, Y. Luo, J. Feng, Y. Wang, H. Yuan, K. Pan,

K. Li, H. Li, and F. Zhu. Mathgraph: A knowledge graph for auto-

matically solving mathematical exercises. In G. Li, J. Yang, J. Gama,

J. Natwichai, and Y. Tong, editors, DASFAA, 2019.
[49] Y. Zheng, G. Li, and R. Cheng. DOCS: domain-aware crowdsourcing

system. PVLDB, 10(4):361–372, 2016.
[50] Y. Zheng, G. Li, Y. Li, C. Shan, and R. Cheng. Truth inference in

crowdsourcing: Is the problem solved? PVLDB, 10(5):541–552, 2017.
[51] Y. Zheng, J. Wang, G. Li, R. Cheng, and J. Feng. QASCA: A quality-

aware task assignment system for crowdsourcing applications. In

SIGMOD, pages 1031–1046, 2015.
[52] A. Zimek, R. J. G. B. Campello, and J. Sander. Ensembles for unsuper-

vised outlier detection: challenges and research questions a position

paper. SIGKDD Explorations, 15(1):11–22, 2013.


	Abstract
	1 Introduction
	2 Our Overall Approach
	2.1 Problem Definition
	2.2 Overall Approach

	3 Question Selection Problem
	4 Graph-based Question Selection
	4.1 Graph Construction
	4.2 Approximate Solution
	4.3 Approximate Ratio

	5 Context Inlier Discovery
	5.1 The Learned Clustering Probability
	5.2 Threshold Setting
	5.3 Outlier Candidate Refinement

	6 Experimental Evaluation
	6.1 Experiment Setting
	6.2 Comparison with the State-of-the-art
	6.3 Evaluation on Our Techniques
	6.4 Evaluation on Question Selection
	6.5 Evaluation of Human Errors

	7 Related Work
	8 Conclusion
	References

