Problem I

Write a procedure `islist` which succeeds if its argument is a list, and fails otherwise.

Problem II

Write a procedure `alter` which changes English sentences according to rules given in the database. Example:

```prolog
change(you, i).
change(are, [am, not]).
change(french, german).
change(do, no).
?- alter([do,you,know,french],X).
   X = [no,i,know,german]
?- alter([you,are,a,computer],X).
   X = [i,[am,not],a,computer]
```

Problem III

Write a list subtraction procedure. Example:

```prolog
?- sub([1,2,4,6,8], [2,6], L).
   L=[1,4,8].
```
Problem IV

Write a procedure `pick` which returns the first N elements of a given list.
Example:

?- pick([1,2,4,6,8], 3, L).
 L=[1,2,4].

Problem V

Write a procedure `alt` which produces every other element in a list.
Example:

?- alt([1,2,3,4,5,6], A).
 A = [1,3,5]

Problem VI

Write a procedure `del` which removes duplicate elements from a list.
Example:

?- del([a,c,x,a,g,c,d,a], A).
 A = [a,c,x,g,d]

Problem VII

Write a procedure `tolower` which converts an atom containing upper case characters to the corresponding atom with only lower case characters.
Example:

?- tolower('hEj_HoPp3', A).
 A = hej_hopp3
Problem VIII

Write a procedure \texttt{max3} which produces the largest of three integers.
Example:

\[
\text{?- max3(3,5,1,X).} \\
X = 5
\]

Problem IX

Write a procedure \texttt{double} which multiplies each element in a list of numbers by 2.
Example:

\[
\text{?- double([1,5,3,9,2], A).} \\
A = [2,10,6,18,4]
\]

Problem X

Write a procedure \texttt{ave} which computes the average of a list of numbers.
Example:

\[
\text{?- ave([1,5,3,9,2], A).} \\
A = 4
\]

Problem XI

Write a procedure \texttt{sum} which produces the sum of the integers up to and including its first argument.
Example:

\[
\text{?- sum(5, S).} \\
S = 15
\]
Problem XII

Suppose our database contains facts of the form

\[\text{person}_\text{age}(\text{Name}, \text{Age}).\]
\[\text{person}_\text{sex}(\text{Name}, \text{Sex}).\]

where Sex is either male or female. Write a procedure combine which extends the database with additional facts of the form

\[\text{person}_\text{full}(\text{Name}, \text{Age}, \text{Sex}).\]

The procedure should produce one such fact for each person who has both an age record and a sex record.

Example: Given the following database

\[\text{person}_\text{age}(\text{chris}, 25). \text{ % Yeah, right...}\]
\[\text{person}_\text{sex}(\text{chris}, \text{male}).\]
\[\text{person}_\text{age}(\text{louise}, 8).\]
\[\text{person}_\text{sex}(\text{louise}, \text{female}).\]

combine should produce these additional facts:

\[\text{person}_\text{full}(\text{chris}, 25, \text{male}).\]
\[\text{person}_\text{full}(\text{louise}, 8, \text{female}).\]

Problem XIII

Write a Prolog procedure which reverses the order of John's children in the database. For example, given the following database

\[\text{child}(\text{mary}, \text{john}).\]
\[\text{child}(\text{jane}, \text{john}).\]
\[\text{child}(\text{bill}, \text{john}).\]

the goal \(\text{?- reversefacts}.\) should change it to

\[\text{child}(\text{bill}, \text{john}).\]
\[\text{child}(\text{jane}, \text{john}).\]
\[\text{child}(\text{mary}, \text{john}).\]

Problem XIV

Write a Prolog procedure to assemble a list of someone's children from the facts in the database. The database should remain unchanged. Example:

\[\text{child}(\text{mary}, \text{john}).\]
\[\text{child}(\text{jane}, \text{john}).\]
\[\text{child}(\text{bill}, \text{john}).\]

\(\text{?- assemble}(\text{john}, \text{L}).\)
\(\text{L} = \{\text{mary}, \text{jane}, \text{bill}\}\)
Problem XV

Write down the all results (including variable bindings) of the following query:

?- append([], [1, 2|B], C),
 append([3,4], [5], B).

Problem XVI

Write down the all results (including variable bindings) of the following query:

?- bagof(X, Y^append(X, Y, [1,2,3,4]), Xs).

Problem XVII

Write down the all results (including variable bindings) of the following query:

?- L=[1,2], member(X, L), delete(X, Y, L).

Problem XVIII

Write down the all results (including variable bindings) of the following query:

?- member(X, [a,b,c]), member(Y, [a,b,c]), !, X \= Y.
Problem XIX

Given the following Prolog database

```
balance(john, 100).
balance(sue, 200).
balance(mary, 100).
balance(paul, 500).
```

list all the results of these Prolog queries:

1. `?- bagof(Name, balance(Name, Amount), Names).`
2. `?- bagof(Name, Amount^balance(Name, Amount), Names).`
3. `?- bagof(Name, Name^balance(Name, Amount), Names).`

Problem XX

Describe (in English) what the following predicate does:

```
% Both arguments to bbb are lists.
bbb([], []).  
bbb(A, [X|F]) :- append(F, [X], A).
```

Problem XXI

Given the following program

```
a(1,2).
a(3,5).
a(R, S) :- b(R, S), b(S, R).

b(1,3).
b(2,3).
b(3, T) :- b(2, T), b(1, T).
```

list the first answer to this query:

```
?- a(X, Y), b(X, Y)
```

Will there be more than one answer?

Problem XXII

Given the following definitions:

```
f(1, one).
f(s(1), two).
f(s(s(1)), three).
f(s(s(s(X))), N) :- f(X, N).
```

what are the results of these queries? If there is more than one possible answer, give at least two.

```
?- f(s(1), A).
?- f(s(1), two).
?- f(s(s(s(s(s(s(1)))))), C).
?- f(D, three).
```
Problem XXIII

Write a Prolog predicate `sum_abs_diffs(List1, List2, Diffs)` which sums the absolute differences between two integer lists of the same length.
Example:

```
?- sum_abs_diffs([1,2,3], [5,4,2], X).
X = 7 % abs(1-5) + abs(2-4) + abs(3-2)
```

Problem XXIV

Write a Prolog predicate `transpose(A, AT)` which transposes a rectangular matrix given in row-major order.
Example:

```
?- transpose([[1, 2], [3, 4]], AT).
AT = [[1, 3], [2, 4]]
```

Problem XXV

Write Prolog predicates that given a database of countries and cities

```
% country(name, population (in thousands), capital).
country(sweden, 8823, stockholm).
country(usa, 221000, washington).
country(france, 56000, paris).
% city(name, in_country, population).
city(lund, sweden, 88).
city(paris, usa, 1). % Paris, Texas.
```

Problem XXV...

Answer the following queries:

1. Which countries have cities with the same name as capitals of other countries?
2. In how many countries do more than \(\frac{1}{3} \) of the population live in the capital?
3. Which capitals have a population more than 3 times larger than that of the second most populous city?
Problem XXV...

%country(name, population (in thousands), capital).
country(sweden, 8823, stockholm).
country(usa, 221000, washington).
country(france, 56000, paris).
country(denmark, 3400, copenhagen).
% city(name, in country, population).
city(lund, sweden, 88).
city(new_york, usa, 5000). % Paris, Texas.
city(paris, usa, 1). % Paris, Texas.
city(copenhagen, denmark, 1200).
city(aarhus, denmark, 330).
city(odense, denmark, 120).
city(stockholm, sweden, 1300).
city(gothenburg, sweden, 350).
city(washington, usa, 3400).
city(paris, france, 2000).
city(marseilles, france, 1000).

Problem XXVI

Write a Prolog predicate that extracts all words immediately following “the” in a given list of words.
Example:

?- find([the, man, closed, the, door, of, the, house], X).
X = [man, door, house]

Problem XXVII (Midterm Exam 372/04)

Write a Prolog predicate dup that duplicates each element of a list. Example:

?- dup([2,5,x], A).
A = [2,2,5,5,x,x]

Problem XXVIII (Midterm Exam 372/04)

The following Prolog program evaluates constant expressions:

\[\text{eval}(A+B, V) \leftarrow \text{eval}(A, V1), \text{eval}(B, V2), V \text{ is } V1 + V2. \]

\[\text{eval}(A*B, V) \leftarrow \text{eval}(A, V1), \text{eval}(B, V2), V \text{ is } V1 * V2. \]

\[\text{eval}(X, X) \leftarrow \text{integer}(X). \]

?- eval(3*4+5, V).
V = 17
Problem XXVIII... (Midterm Exam 372/04)

Modify the program so that it allows the expression to contain variables. Variable values should be taken from an environment (a list of variable/value pairs), like this:

?- eval([x=3,y=4], x*y+5, V).
V = 17
?- eval([x=3], x*y+5, V).
no

Problem XXIX (Midterm Exam 372/04)

Write a predicate `mult` which, for all pairs of numbers between 0 and 9, adds their product to the Prolog database. I.e., the following facts should be asserted:

```
times(0, 0, 0). % 0 * 0 = 0
times(0, 1, 0). % 0 * 1 = 0
... times(9, 7, 63). % 9 * 7 = 63
times(9, 8, 72). % 9 * 8 = 72
times(9, 9, 81). % 9 * 9 = 81
```

The interaction should be as follows:

?- times(5,5,X).
no
?- mult.
yes
?- times(5,5,X).
X=25
?- times(2,9,18).
yes

Problem XXX (Midterm Exam 372/04)

Use a 2nd-order-predicate to write a predicate `alltimes(L)` which, given the `times(X,Y,Z)` database above produces a list of all the multiplication facts:

?- alltimes(L).
L = [1*1=2,1*2=2,1*3=3,...,9*9=81].

Problem XXXI (Midterm Exam 372/04)

Show the results (yes/no) and resulting variable bindings for the following queries:

a) ?- f(g(X,X), h(Y,Y)) = f(g(Z), Z).
b) ?- f(g(X,X), h(Y,Y)) = f(g(h(W,a),Z), Z).
c) ?- f(g(X,X), h(_,_)) = f(g(h(W,a),Z), Z).
d) ?- f(x(A,B),C) = f(C, x(B,A)).
Given this Prolog predicate definition

```prolog
mystery(L, B) :-
    member(X, L),
    append(A,[X],L),
    append(B,C,A),
    length(B,BL),
    length(C,CL),
    BL > CL.
```

what does the query

```prolog
?- mystery([1,2,3,4,5],C), write(C), nl, fail.
```

print?